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Abstract. In this paper, we study warped pointwise semi-slant submanifolds of nearly Kaehler manifolds.
We prove that there do not exist non-trivial warped product pointwise semi-slant submanifolds of the form
Nθ × f NT in a nearly Kaehler manifold M̄ but the geometry of warped products by reversing these two
factors is similar to the case of general slant fiber.

1. Introduction

Warped products play very important role not only geometry but also in the theory of relativity and
physics. In 1969, Bishop and O’Neill [4], introduced the notion of warped product manifolds to construct
a large class of complete manifolds with negative curvature. These manifolds are natural generalizations
of Riemannian product manifolds. They defined these manifolds as follows: Let

(
N1, 11

)
and

(
N2, 12

)
be

two Riemannian manifolds and f , a positive differentiable function on N1. Consider the product manifold
N1 × N2 with its canonical projections π : N1 × N2 → N1 and ρ : N1 × N2 → N2. The warped product
M = N1 × f N2 is the product manifold N1 ×N2 equipped with the Riemannian structure such that

∥X∥2 = ∥π∗(X)∥2 + f 2(π(p))
∥∥∥ρ∗(X)

∥∥∥2 (1)

for all X ∈ TpM, where ∗ denotes the maps on the tangent space. Consequently, we write 1 = 11 + f 212,
where the function f is called the warping function on M. In [5], O’Neill proved that for all X ∈ TN1 and
all Z ∈ TN2, then

∇XZ = ∇ZX = (X ln f )Z (2)

where ∇ denote the Levi-Civita connection on M. A warped product manifold M = N1 × f N2 is called
trivial or simply a Riemannian product if the warping function f is constant. Let M = N1× f N2 be a warped
product manifold then N1 is totally geodesic and N2 is a totally umbilical submanifold of M, respectively
[5, 8].
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On the other hand, nearly Kaehler manifolds are Tachibana manifolds studied in [22]. It was shown
in [1] that nearly Kaehler manifolds form an interesting class of manifolds admitting a metric connection
with a parallel totally anti-symmetric torsion. A known example of a nearly Kaehler non-Kaehler manifold
is the six dimensional sphere S6. It has an almost complex structure J defined by the vector cross product
in the space of purely imaginary Cayley numbers O which satisfies the nearly Kaehler structure. More
examples of nearly Kaehler manifolds can be found in [26], namely, the homogeneous spaces G/K, where
G is a compact semi-simple Lie group and K is the fixed point set of an automorphism of G of order 3.
Strict nearly Kaehler manifolds obtained a lot of consideration in 1980s due to their relation to Killing
spinors. Th. Friedrich and R. Grunewald showed in [16] that a 6-dimensional Riemannian manifold admits
a Riemannian Killing spinor if and only if it is nearly Kaehler. The only known 6-dimensional strict nearly
Kaehler manifolds are

S6 = G2/SU(3) · Sp(2)/SU(2) ×U(1), SU(3)/U(1) ×U(1), S3
× S3.

In fact, these are the only homogeneous nearly Kaehler manifolds in dimension six [6].
In [18], N. Papaghiuc introduced semi-slant submanifolds such that the class of CRsubmanifolds and

the class of slant submanifolds are particular classes of semi-slant submanifolds. In [15], Etayo introduced
pointwise slant submanifolds of almost Hermitian manifolds and then, in [10], these submanifolds have
been studied by Chen and Garay. Using the idea of pointwise slant submanifolds, Sahin [21] extended
the study of semi-slant submanifolds to pointwise semi-slant submanifolds and their warped products in
Kaehler manifolds.

In [19], Sahin proved that there is no warped product semi-slant submanifolds of the forms NT × f Nθ

and Nθ × f NT in a Kaehler manifold M̄, where NT is a holomorphic submanifold and Nθ is a proper slant
submanifold of M̄.

In this paper, we study warped product pointwise semi slant submanifolds of nearly Kaehler manifolds.
We prove that the warped products of the form Nθ× f NT are simply Riemannian products with a pointwise
slant factor Nθ. On the other hand, the warped products obtained by reversing these two factors exist and
we discuss their geometry in the last section.

2. Preliminaries

Let M̄ be an almost Hermitian manifold with an almost complex structure J and a Hermitian metric 1
such that

(a) J2 = −I, (b) 1(JX, JY) = 1(X,Y) (3)

for all vector fields X,Y on M̄. Also, let Γ(TM̄) be the set of all vector fields tangent to M̄ and ∇̄, the
covariant differential operator on M̄ with respect to 1. By A. Gray [17], if the almost complex structure J
satisfies(

∇̄X J
)

X = 0, equivalently
(
∇̄X J
)

Y +
(
∇̄Y J
)

X = 0 (4)

for all X,Y ∈ Γ(TM̄), then the manifold M̄ is called a nearly Kaehler manifold.
For a submanifold M of a Riemannian manifold M̄, the Gauss and Weingarten formulas are respectively

given by

∇̄XY = ∇XY + h(X,Y), ∇̄Xξ = −AξX + ∇⊥Xξ (5)

for all X,Y ∈ Γ(TM), where ∇ is the induced Riemannian connection on M, ξ is a vector field normal to M, h
is the second fundamental form of M,∇⊥ is the normal connection in the normal bundle T⊥M and Aξ is the
shape operator of the second fundamental form. They are related by

1
(
AξX,Y

)
= 1(h(X,Y), ξ) (6)
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where 1 is the Riemannian metric on M̄ as well as the metric induced on M. The mean curvature vector H
of M is given by H = 1

n
∑n

i=1 h (ei, ei), where n is the dimension of M and {e1, e2, · · · , en} is a local orthonormal
frame of vector fields on M. A submanifold M of an almost Hermitian manifold M̄ is called totally umbilical
if the second fundamental form satisfies h(X,Y) = 1(X,Y)H, for all X,Y ∈ Γ(TM). The submanifold M is
totally geodesic if h(X,Y) = 0, for all X,Y ∈ Γ(TM) and minimal if H = 0.

A submanifold M of an almost Hermitian manifold M̄ is called holomorphic if, for any p ∈ M, we have
J
(
TpM
)
= TpM, where TpM denotes the tangent space of M at p. It is called totally real (or Lagrangian) if

we have J
(
TpM
)
⊆ T⊥p M for each p ∈M, where T⊥p M is the normal space of M in M̄ at p.

For any X ∈ Γ(TM) and ξ ∈ Γ(T⊥M), the transformations JX and Jξ are decomposed into tangential and
normal part as

JX = TX + FX, Jξ = tξ + fξ. (7)

A submanifold M of an almost Hermitian manifold M̃2n is called pointwise slant [10], if at each point p ∈M,
the Wirtinger angle θ(X) between JX and TpM is independent of the choice of a non-zero vector X ∈ TpM.
In this case, the Wirtinger angle gives rise to a real-valued function θ : TM − {0} → R which is called the
Wirtinger function or slant function of the pointwise slant submanifold.

We note that a pointwise slant submanifold is called slant, in the sense of [7], if its Wirtinger function θ
is globally constant. We also note that every slant submanifold is a pointwise slant submanifold.

Moreover, complex and totally submanifolds are pointwise slant submanifolds with slant function
θ = 0 and θ = π

2 , respectively. A pointwise slant submanifold M of a Kaehler manifold M̃ is called a proper
pointwise slant if it is neither complex nor totally real nor θ is globally constant on M.

Furthermore, we know that from Lemma 2.1 of [10], a submanifold M is a pointwise slant submanifold
of an almost Hermitian manifold M̃ if and only if

T2(X) = − cos2 θp(X), (8)

where θp is the slant function of M at p ∈M (see [10] ). As a consequence of the formula (8), we have

1(TX,TY) = cos2 θp1(X,Y) (9)

1(FX,FY) = sin2 θp1(X,Y) (10)

for any X,Y ∈ Γ(TM).

Definition 2.1. Let M̄ be an almost Hermitian manifold and M is a real submanifold of M̄. Then, M is a
pointwise semi-slant submanifold if there exist two orthogonal distributions DT and Dθ on M such that

(a) TM admits the orthogonal direct decomposition TM = DT
⊕Dθ.

(b) The distribution DT is holomorphic i.e., JDT = DT.

(c) The distribution Dθ is pointwise slant with slant function θ.

In this case, we call the angle θ the slant function of the pointwise slant distribution Dθ. The holomorphic
distribution DT of a pointwise semi-slant submanifold is a pointwise slant distribution with slant function
θ = 0.

3. Warped product pointwise semi-slant submanifolds

In this section, we study warped product submanifolds of a nearly Kaehler manifold M̄, either in the
form Nθ × f NT or NT × f Nθ, where NT and Nθ are holomorphic and proper pointwise slant submanifolds
of M̄, respectively. These two types of warped products are the products in between the holomorphic and
proper pointwise slant submanifolds of M̄,
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Theorem 3.1. Let M̄ be a nearly Kaehler manifold and M = Nθ × f NT be a warped product submanifold of M̄. Then
M is Riemannian product of NT and Nθ, where NT and Nθ are holomorphic and proper pointwise slant submanifolds
of M̄, respectively.

Proof. For any X,Y ∈ Γ(TNT) and Z ∈ Γ(TNθ), we have

1(h(X,Y),FZ) = 1
(
∇̄XY, JZ − TZ

)
= 1
(
(∇̄X J)Y,Z

)
− 1
(
∇̄X JY,Z

)
+ 1
(
Y, ∇̄XTZ

)
= 1
(
(∇̄X J)Y,Z

)
+ Z(ln f )1 (X, JY) + TZ(ln f )1 (X,Y) . (11)

Interchanging X and Y in (11), we get

1(h(X,Y),FZ) = 1
(
(∇̄Y J)X,Z

)
− Z(ln f )1 (X, JY) + TZ(ln f )1 (X,Y) . (12)

Then, from (11) and (12) together with the nearly Kaehler characteristic equation (4), we derive

1(h(X,Y),FZ) = TZ(ln f )1 (X,Y) . (13)

Also, we have

1(h(X, JY),FZ) = 1
(
∇̄X JY, JZ

)
− 1
(
∇̄X JY,TZ

)
= 1
(
(∇̄X J)Y, JZ

)
+ 1
(
J∇̄XY, JZ

)
− 1
(
(∇̄X J)Y,TZ

)
+ 1
(
∇̄XY,T2Z

)
+ 1
(
∇̄XY,FTZ

)
= 1
(
(∇̄X J)Y,FZ

)
− Z(ln f )1(X,Y) − 1

(
Y, ∇̄X(− cos2 θ)Z

)
+ 1 (h(X,Y),FTZ)

= 1
(
(∇̄X J)Y,FZ

)
− Z(ln f )1(X,Y) + cos2 θZ(ln f )1 (X,Y) − sin 2θX(θ)1(Y,Z)

+ 1 (h(X,Y),FTZ)

= 1
(
(∇̄X J)Y,FZ

)
− sin2 θZ(ln f )1(X,Y) + 1 (h(X,Y),FTZ) . (14)

Replacing Z by TZ in (14), we have

1(h(X, JY),FTZ)) = 1
(
(∇̄X J)Y,FTZ

)
− sin2 θTZ(ln f )1(X,Y) − cos2 θ1(h(X,Y),FZ). (15)

Using (13), we find

1(h(X, JY),FTZ) = 1
(
(∇̄X J)Y,FTZ

)
− TZ(ln f )1(X,Y). (16)

Interchanging X and Y, we derive

1(h(JX,Y),FTZ) = 1
(
(∇̄Y J)X,FTZ

)
− TZ(ln f )1(X,Y). (17)

Then, from (16) and (17), we obtain

1(h(X, JY) + h(JX,Y),FTZ) = −2TZ(ln f )1(X,Y). (18)

Replacing X by JX and Z by TZ in (18), we get

− cos2 θ1(h(JX, JY) − h(X,Y),FZ) = 2 cos2 θZ(ln f )1(JX,Y). (19)

Again, using (13), we derive

−1(h(JX, JY),FZ) + TZ(ln f )1(X,Y) = −2Z(ln f )1(X, JY). (20)

Interchanging X with JX and Y with JY, we find

1(h(X,Y),FZ) = TZ(ln f )1(JX, JY) − 2Z(ln f )1(JX,Y). (21)

Again, using (13) with (1), we get

2Z(ln f )1(X, JY) = 0, (22)

which implies that f is constant and hence the proof is complete.
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Now, we study the warped product pointwise semi-slant submanifolds of the form NT × f Nθ in a nearly
Kaehler manifold M̄ such that NT is a holomorphic submanifold and Nθ is a proper pointwise slant
submanifold of M̄.

First, we give the following non-trivial example of pointwise semi-slant warped product submanifolds
in an Euclidean space.

Example 3.2. Consider a 4-dimensional submanifold M4 of C5 defined by

ψ(u, v, , r, s) = (u cos r,u sin r,u cos s,u sin s, r − s, v cos r, v sin r, v cos s, v sin s, r + s), u, v > 0.

Then the tangent bundle TM5 is spanned by

Xu = (cos r, sin r, cos s, sin s, 0; 0, 0, 0, 0, 0
)
, Xv =

(
0, 0, 0, 0, 0; cos r, sin r, cos s, sin s, 0),

Xr = (−u sin r,u cos r, 0, 0, 1;−v sin r, v cos r, 0, 0, 1
)
, Xs =

(
0, 0,−u sin s,u cos s,−1; 0, 0,−v sin s, v cos s, 1).

We put

DT = Span{Xu,Xv}, D
θ = Span{Xr, Xs} (23)

where the slant function θ satisfies θ = cos−1
(

2
u2+v2+2

)
. Thus, M is a pointwise semi-slant submanifold.

In fact, M is a pointwise semi-slant warped product submanifold of the form MT × f Mθ with the metric
structure

1 = 2
(
du2 + dv2

)
+
(
u2 + v2 + 2

) (
dr2 + ds2

)
. (24)

Lemma 3.3. Let M = NT × Nθ be a warped product pointwise semi-slant submanifold of nearly Kaehler manifold
M̄. Then, we have

(i) 1(h(X,Y),FZ) = 0,

(ii) 1(h(X,W),FZ) = −JX(ln f )1(Z,W) + 1
3 X(ln f )1(Z,TW).

for any X,Y ∈ Γ(TNT) and Z ∈ Γ(TNθ).

Proof. For any X,Y ∈ TNT and Z ∈ TNθ, we have:

1(h(X,Y),FZ) = 1
(
∇̄XY, JZ

)
− 1
(
∇̄XY,TZ

)
= 1
(
(∇̄X J)Y,Z

)
− 1
(
∇̄X JY,Z

)
− 1 (∇XY,TZ) .

Since NT is totally geodesic in M, using this fact with the orthogonality of vector fields, we derive

1(h(X,Y),FZ) = 1
(
(∇̄X J)Y,Z

)
. (25)

Interchanging X with Y in (25), we get

1(h(X,Y),FZ) = 1
(
(∇̄Y J)X,Z

)
. (26)

Hence, (i) following from (25) and (26) with the nearly Kaehler characteristic equation (4).
For the second part (ii), for any X ∈ Γ(TNT) and Z,W ∈ Γ(TNθ), we have

1(h(X,Z),FW) = 1(∇̄XZ, JW) − 1(∇̄XZ,TW) = 1((∇̄X J)Z,W) − 1(∇̄X JZ,W) − X(ln f )1(Z,TW). (27)

Then, from (5) and (7) with (2), we derive

1(h(X,Z),FW) = 1((∇̄X J)Z,W) − 1(∇̄XTZ,W) − 1(∇̄XFZ,W) − X(ln f )1(Z,TW)
= 1((∇̄X J)Z,W) + 1(h(X,W),FZ). (28)
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On the other hand, we have

1(h(X,Z),FW) = 1(∇̄ZX, JW) − 1(∇̄ZX,TW)
= 1((∇̄Z J)X,W) − 1(∇̄Z JX,W) − X ln f1(Z,TW)
= 1((∇̄Z J)X,W) − JX(ln f )1(Z,W) − X(ln f )1(Z,TW). (29)

Then, from (28) and (29) with (4), we derive

21 (h (X,Z) ,FW) = 1 (h (X,W) ,FZ) − JX(ln f )1 (Z,W) − X(ln f )1 (Z,TW) . (30)

Interchanging Z and W in (30), we obtain

21 (h (X,W) ,FZ) = 1 (h (X,Z) ,FW) − JX(ln f )1 (Z,W) + X(ln f )1 (Z,TW) . (31)

Then, from (31) and (30), we get the required result (ii). Hence, the proof is complete.

4. Inequality for warped product pointwise semi-slant submanifolds

In this section, we establish Chen’s inequality for the squared norm of the second fundamental form h of
M = NT ×Nθ, where NT and Nθ holomorphic and proper pointwise slant submanifolds of a nearly kaehler
manifold M̄.

For this we assume the following fame fields for the warped product submanifold M = NT × f Nθ.
Let 2m = dimR M̄, 2p = dim NT and 2q = dim Nθ, then n = 2p + 2q. Let us denote by DT and
Dθ, the tangent bundles on NT and Nθ, respectively and let

{
e1, . . . , ep, ep+1 = Je1, . . . , e2p = Jep

}
and{

e2p+1 = e∗1, . . . , ep+q = e∗q, e2p+q+1 = secθTe∗1 , . . . , en = secθTe∗q
}

be the local orthonormal frames of DT and Dθ,
respectively. Then, the orthonormal frames of FDθ and µ are {en+1 = ē1 = cscθFe∗1, . . . , ēq = cscθFe∗q, ēq+1 =

cscθ secθFTe∗1, . . . , ē2q = cscθ secθFTe∗q} and
{
en+2q+1 . . . , e2m}, respectively, where en+2q+1 . . . , e2m are or-

thonormal vectors in the invariant normal subbundle µ of T⊥M. The dimensions of FDθ and µ will be 2q
and 2m − n − 2q, respectively.

We use the above mentioned frame fields and some basic results from the previous sections to establish
the following inequality.

Theorem 4.1. Let M = NT× f Nθ be a warped product pointwise semi-slant submanifold of a nearly Kaehler manifold
M̄ such that NT and Nθ are holomorphic and pointwise slant submanifolds of M̄, respectively. Then

(i) The squared norm of the second fundamental form h of M satisfies

∥h∥2 ≥
2q
9

{
10 csc2 θ − 1

}
∥∇

T(ln f )∥2 (32)

where ∇T ln f is the gradient of ln f along NT and 2q = dim Nθ.

(ii) If the equality sign in (32) holds identically, then NT is totally geodesic and Nθ is totally umbilical in M̄.
Moreover, M is a minimal submanifold of M̄.

Proof. From the definition, we have

∥h∥2 =
n∑

i, j=1

1
(
h
(
ei, e j

)
, h
(
ei, e j

))
=

2m∑
r=n+1

n∑
i, j=1

1
(
h
(
ei, e j

)
, er

)2
.

On the decomposition for the frames of FDθ and µ the above relation will be

∥h∥2 =
n+2q∑

r=n+1

n∑
i, j=1

1
(
h
(
ei, e j

)
, er

)2
+

2m∑
r=n+2q+1

n∑
i, j=1

1
(
h
(
ei, e j

)
, er

)2
. (33)
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In the first term of right hand side in (33), er belongs to FDθ while in the second term of right hand side
er belongs to µ. We shall equate only the first term in right hand side, then we get

∥h∥2 ≥
n+2q∑

r=n+1

n∑
i, j=1

1
(
h
(
ei, e j

)
, er

)2
.

Then for the orthonormal frames of DT and Dθ, the above equality takes the form

∥h∥2 =
2q∑

r=1

2p∑
i, j=1

1
(
h
(
ei, e j

)
, ēr

)2
+ 2

2q∑
r=1

2p∑
i=1

2q∑
j=1

1
(
h
(
ei, e∗j
)
, ēr

)2
+

2q∑
r=1

2q∑
i, j=1

1
(
h
(
e∗i , e

∗

j

)
, ēr

)2
. (34)

Thus by Lemma 3.3 (i), the first term of the right hand side in (34) is identically zero and we shall
compute just the next term and leave the third term, then we get

∥h∥2 ≥ 2
2q∑

r=1

2p∑
i=1

2q∑
j=1

1
(
h
(
ei, e∗j
)
, ēr

)2
.

Then using the orthonormal frame fields of D,Dθ and FDθ, we derive

∥h∥2 ≥ 2 csc2 θ

q∑
r=1

p∑
i=1

q∑
j=1

1
(
h
(
ei, e∗j
)
,Fe∗r
)2
+ 2 csc2 θ

p∑
i=1

q∑
r, j=1

1
(
h
(
Jei, e∗j

)
,Fe∗r
)2

(35)

+ 2 csc2 θ sec2 θ

p∑
i=1

q∑
r, j=1

1
(
h
(
ei,Te∗j

)
,Fe∗r
)2
+ 2 csc2 θ sec2 θ

p∑
i=1

q∑
r, j=1

1
(
h
(
Jei,Te∗j

)
,Fe∗r
)2

+ 2 csc2 θ sec2 θ

p∑
i=1

q∑
r, j=1

1
(
h
(
ei, e∗j
)
,FTe∗r

)2
+ 2 csc2 θ sec2 θ

p∑
i=1

q∑
r, j=1

1
(
h
(
Jei, e∗j

)
,FTe∗r

)2
+ 2 csc2 θ sec4 θ

p∑
i=1

q∑
r, j=1

1
(
h
(
ei,Te∗j

)
,FTe∗r

)2
+ 2 csc2 θ sec4 θ

p∑
i=1

q∑
r, j=1

1
(
h
(
Jei,Te∗j

)
,FTe∗r

)2
.

Thus, by Lemma 3.3 (ii) we obtain

∥h∥2 ≥ 2q csc2 θ

2p∑
i=1

(
ei ln f

)2 + 2q
9

cot2 θ

2p∑
i=1

(
ei ln f

)2 = 2q
9

{
10 csc2 θ − 1

}
∥∇

T(ln f )∥2,

which is the inequality (32). If the equality holds in (32), then by Leaving term and Lemma 3.3, we get

h(DT,DT) = 0, h
(
Dθ,Dθ

)
= 0. (36)

Then, NT is totally geodesic and Nθ is totally umbilical submanifold of M̄ by using the fact that NT is totally
geodesic and Nθ is totally umbilical in M [4, 8] with equality holding case of (32) in (36). Furthermore, M is
a minimal submanifold, which proves the theorem completely.

For the special cases of Theorem 4.1, we have the following remarks.

Remark 4.2. If the slant functionθ is globally constant on M then warped product pointwise semi-slant submanifolds
reduce warped product semi-slant submanifolds those are studied in [3] and hence the main Theorem 4.1 of [3] is a
special case of Theorem 4.1.

Remark 4.3. If we assume θ = π
2 in Theorem 4.1, then warped product becomes M = NT × f N⊥, where NT and N⊥

are holomorphic and totally real submanifolds of M̄, respectively. In this case, M is a CR-warped product submanifold
studied in [20]. In this sense, Theorem 4.2 of [20] is a special case of Theorem 4.1.
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