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Some notes on topology of partially metric spaces
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Abstract. In this paper, we introduce a topology which is weaker than the one introduced by Matthews on
partial metric spaces. We present some examples and rolls for our results. Also, we show that the condition
p(x, x) ≤ p(x, y) is redundant in the initial definition of partial metric.

1. Introduction

After introducing partial metric spaces by Matthews in [10] many papers are written especially in fixed
point theory all of them turn on p(a, a) is not zero. In this paper we make a weaker than its topology and
we remove the condition p(x, x) ≤ p(x, y) in the following main definition of the partial metric. See the more
references in [1–9, 11]

Definition 1.1 ([10]). Let X be a nonempty set and p : X×X→ R+ be a self mapping of X such that for all x, y, z ∈ X
the followings are satisfied:

p1 x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y),

p2 p(x, x) ≤ p(x, y),

p3 p(x, y) = p(y, x),

p4 p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).

Then p is called partial metric on X and the pair (X, p) is called partial metric space (in short PMS).

At first, we show that the condition p2 is redundant in Definition 1.1 of partial metric. By p4 if we put y = x,
then

p(x, x) ≤ p(x, z) + p(z, x) − p(z, z).

p(x, x) + p(z, z) ≤ 2p(x, z).

Now we have two cases: p(x, x) ≤ p(z, z) or p(z, z) ≤ p(x, x). So in the each case

2p(x, x) ≤ p(x, x) + p(z, z) ≤ 2p(x, z)⇒ p(x, x) ≤ p(x, z)
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or

2p(z, z) ≤ p(x, x) + p(z, z) ≤ 2p(x, z)⇒ p(z, z) ≤ p(x, z).

So p(x, x) ≤ p(x, y), for every x, y ∈ X.
Note also that each partial metric p on X generates a T0 topology τp on X, whose base is a family of open

p-balls

{Bp(x, ε) : x ∈ X, ε > 0}

where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε},

for all x ∈ X and ε > 0.
It’s time to introduce new definition of partial metric.

Definition 1.2. Let X be a nonempty set and p : X ×X→ R+ be a self mapping of X such that for all x, y, z ∈ X the
followings are satisfied:

p1 p(x, x) = p(x, y) = p(y, y) ⇐⇒ x = y,

p3 p(x, y) = p(y, x),

p4 p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).

Then p is called partial metric on X and the pair (X, p) is called partial metric space.

Put

d(x, y) := p(x, y) −min{p(x, x), p(y, y)} + k|p(x, x) − p(y, y)|, (1)

where k ∈ (0, 1).

Proposition 1.3. d is a metric on X.

Proof. We see that,
1. If x = y, then

d(x, x) = p(x, x) −min{p(x, x), p(x, x)} + k|p(x, x) − p(x, x)| = 0.

2. And if d(x, y) = 0, then

p(x, y) −min{p(x, x), p(y, y)} + k|p(x, x) − p(y, y)| = 0.

So

p(x, y) ≤ p(x, y) + k|p(x, x) − p(y, y)| = min{p(x, x), p(y, y)} ≤ p(x, y).

Thus p(x, y) = p(x, x) or p(x, y) = p(y, y). Hence

p(x, y) + k|p(x, x) − p(y, y)| = p(x, y)⇒ p(x, x) = p(y, y).

Therefore p(x, y) = p(x, x) = p(y, y) which means x = y.
3. Symmetry is obvious.
4. For triangle inequality, by the following inequality

min{a, c} +min{c, b} ≤ min{a, b} + c ∀a, b, c ∈ R+,

we have
d(x, y) = p(x, y) −min{p(x, x), p(y, y)} + k|p(x, x) − p(y, y)|

≤ p(x, z) + p(z, y) − p(z, z)
− min{p(x, x), p(z, z)} −min{p(z, z), p(y, y)} + p(z, z)
+ k|p(x, x) − p(z, z)| + k|p(z, z) − p(y, y)|
≤ d(x, z) + d(x, z).
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2. Main results

We define weak topology τd by the balls

Bk
d(x, ε) = {y ∈ X : d(x, y) < ε},

for every k ∈ (0, 1).

∀x(x , y) put ε := p(x, y) −min{ρ(x, x), ρ(y, y)} + k|ρ(x, x) − ρ(y, y)|,

then y < Bk
d(x, ε), which means τd is T0.

Theorem 2.1. Balls Bk
d(x, ε) for every x ∈ X and ε > 0 makes a base for topology τd.

Proof. Let

y ∈ Bk
d(x, ε)⇒ p(x, y) −min{p(x, x), p(y, y)} + k|p(x, x) − ρ(y, y)| < ε.

Our claim is

∃δ > 0 Bk
d(y, δ) ⊆ Bk

d(x, ε).

It’s enough that, we put

δ := ε − (p(x, y) −min{p(x, x), p(y, y)} + k|p(x, x) − p(y, y)|).

z ∈ Bk
d(y, δ)⇒ p(z, y) −min{p(z, z), p(y, y)} + k|ρ(z, z) − ρ(y, y)| < δ,

thus

p(z, y) −min{p(z, z), p(y, y)} + k|p(z, z) − p(y, y)|
< ε − (p(x, y) −min{p(x, x), p(y, y)} + k|p(x, x) − p(y, y)|),

therefore

p(z, y) −min{p(z, z), p(y, y)} + k|p(z, z) − p(y, y)|
+ p(x, y) −min{p(x, x), p(y, y)} + k|p(x, x) − p(y, y)| < ε (2)

so we obtain

p(x, z) −min{p(x, x), p(z, z)} + k|p(x, x) − p(z, z)|
≤p(x, y) + p(y, z) − p(y, y) −min{p(x, x), p(z, z)} + k|p(x, x) − p(z, z)|
≤p(x, y) −min{p(x, x), p(y, y)} + k|p(x, x) − p(y, y)|
+p(y, z) −min{p(y, y), p(z, z)} + k|p(y, y) − p(z, z)| < ε

therefore by (2)

p(x, z) −min{p(x, x), p(z, z)} + k|p(x, x) − p(z, z)| ≤ ε⇒ z ∈ Bk
d(x, ε).

Theorem 2.2. Topology τd is weaker than topology τp.

Proof. Put y ∈ Bk
d(x, ε). Hence

p(x, y) −min{p(x, x), p(y, y)} + k|p(x, x) − p(y, y)| < ε

thus

p(x, y) − p(x, x) ≤ ρ(x, y) −min{ρ(x, x), ρ(y, y)} + k|ρ(x, x) − ρ(y, y)| < ε

p(x, y) − p(x, x) < ε⇒ y ∈ Bp(x, ε)

which means Bk
d(x, ε) ⊆ Bp(x, ε).
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3. Second weak topology

If we put

D(x, y) := p(x, y) −min{p(x, x), p(y, y)} (3)

and

BD(x, ε) = {y ∈ X : D(x, y) < ε},

then ⋂
k∈(0,1)

Bk
d(x, ε) = BD(x, ε).

Also, we know that

p(x, y) − p(x, x) ≤ D(x, y) := p(x, y) −min{p(x, x), p(y, y)}.

We define weak topology τD which is T0, by the balls

BD(x, ε) = {y ∈ X : D(x, y) < ε}.

Remark 3.1. Dis not a metric. Put X := {1, 2} and define p as follows:

p(1, 1) = 1, p(2, 2) = 2, p(1, 2) = p(2, 1) = 3,

So p is a partial metric and D(2, 2) = p(2, 2) −min{p(1, 1), p(2, 2)} = 2 − 1 = 1.

Theorem 3.2. Balls BD(x, ε) for every x ∈ X and ε > 0 makes a base for topology τD.

Proof. It’s similar to proof Theorem 2.1.

Theorem 3.3. Topology τd is weaker than topology τD and topology τD is weaker than topology τp.

Proof. Put y ∈ Bk
d(x, ε). Hence

p(x, y) −min{p(x, x), p(y, y)} + k|p(x, x) − p(y, y)| < ε

thus

p(x, y) − p(x, x) ≤ p(x, y) −min{p(x, x), p(y, y)} + k|p(x, x) − p(y, y)| < ε

p(x, y) − p(x, x) ≤ D(x, y) ≤ d(x, y) < ε⇒ y ∈ BD(x, ε) ⊆ Bp(x, ε).

which means Bk
d(x, ε) ⊆ BD(x, ε) ⊆ Bp(x, ε).

Definition 3.4. Let (X, p) be a partial metric space. Then

• a sequence {an} in (X, p) is said to be convergent to a point a ∈ X if and only if

lim
n→∞

d(an, a) = 0 ⇐⇒ an
τd
−→ a.

( lim
n→∞

D(an, a) = 0 ⇐⇒ an
τD
−→ a).
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• a sequence {an} is called a Cauchy sequence if

lim
m,n→∞

d(am, an) ( lim
m,n→∞

D(am, an))

exists and finite;

• (X, p) is said to be complete if every Cauchy sequence {an} in X converges to a point a ∈ X with respect to τd.
Furthermore,

lim
m,n→∞

d(am, an) = lim
n→∞

d(a, an) = 0

• A mapping f : X→ X is said to be continuous at a0 ∈ X if for

∀ε > 0 ∃δ > 0 f (Bk
d(a0, δ)) ⊆ Bk

d( f (a0), ε).

(∀ε > 0 ∃δ > 0 f (BD(a0, δ)) ⊆ BD( f (a0), ε)).

Example 3.5. Let X := {1, 2, 3}, xn := 1 and x = 3. Hence xn → x in τp but xn ̸→ x in τd, when p(x, y) = max{x, y}.

Example 3.6. Let X := { n+1
n : n ∈ N} ∪ {1}, xn := n+1

n and x = 1. Hence xn → x in τd, so xn → x in τp, when
p(x, y) = max{x, y}.

Lemma 3.7. Let (X, p) be a partial metric space. If {an} be a sequence in (X, p) such that p(an, an+1)→ 0 as n→ ∞.
Then d(an, an+1)→ 0 as n→∞.

Proof. By p(an, an) ≤ p(an, an+1) so p(an, an) → 0 as n → ∞ with respect τp. Therefore d(an, an+1) → 0 as
n→∞.

The next lemma states that converse convergent conditions in τd and τp topologies.

Lemma 3.8. Let (X, p) be a partial metric space. If an
τp
−→ a and lim

n→∞
p(an, an) exists. Then

lim
n→∞

d(an, a) = lim
n→∞

D(an, a) = (k + 1)(p(a, a) − lim
n→∞

p(an, an)).

Further more lim
n→∞

p(an, an) = p(a, a), then

lim
n→∞

d(an, a) = 0, and lim
n→∞

D(an, a) = 0,

or

an
τd
−→ a, and an

τD
−→ a.

Proof. According to

d(an, a) = p(an, a) −min{p(a, a), p(an, an)} + k|p(a, a) − p(an, an)|

and

p(an, an) ≤ p(an, a) + p(a, an) − p(a, a)

assertion is clear.

About the condition lim
n→∞

p(an, an) = p(a, a), in Lemma 3.8, look at Examples 3.5 and 3.6.
The next theorem is an application in fixed point theory as base on Banach’s theorem.
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Theorem 3.9. Let (X, p) be a complete partial metric space. T a self mapping on X and

p(Tx,Ty) −min{p(Tx,Tx), p(Ty,Ty)} + k|p(Tx,Tx) − p(Ty,Ty)|
≤ l(p(x, y) −min{p(x, x), p(y, y)} + k|p(x, x) − p(y, y)|),

for some l ∈ [0, 1) and for every x, y ∈ X. Then T has a unique fixed point on X.

Proof. By Proposition 1.3, d is a metric and d(Tx,Ty) ≤ ld(x, y).

By the new topology and metric d, many complicated contractions could be verified in the same way.

Corollary 3.10. Let (X, p) be a complete partial metric space. T a self mapping on X and

p(Tx,Ty) −min{p(Tx,Tx), p(Ty,Ty)} ≤ l(p(x, y) −min{p(x, x), p(y, y)}),

for some l ∈ [0, 1) and for every x, y ∈ X. Then T has a unique fixed point on X.

Proof. By Definition 3, D(Tx,Ty) ≤ lD(x, y).

Conclusion

We introduce a weak topology for partial metric spaces with applying to fixed point theorem. Some
illustrated examples are included. Also, we showed that the condition p(x, x) ≤ p(x, y) is redundant in the
initial definition of partial metric.
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