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The existence of best proximity points for cyclic quasi-p-contractions in
metric spaces

Akram Safari-Hafshejani®

?Department of Pure Mathematics, Payame Noor University (PNU), P. O. Box: 19395-3697, Tehran, Iran

Abstract. In this paper, we introduce the notion of cyclic quasi-@-contraction. We prove the existence and
uniqueness of best proximity points for this class of mappings on a metric space endowed with ultrametric
and UC properties. Also, iterative algorithms are furnished to determine such best proximity points. As a
result, we establish a fixed point result and a common fixed point theorem. Our results, while generalizing
a few existing results in the literature, unify and integrate them.

1. Introduction

Let A and B be nonempty subsets of the metric space (X, d). The self mapping T: AUB — A U Bis said
to be cyclic provided that T(A) € B and T(B) € A. A point x* € A U B is called a best proximity point for T
if d(x*, Tx*) = d(A, B) where d(A,B) = inf{d(a,b) : a€ A, b e B}. If d(A,B) = 0, x* is called a fixed point of T.
In 2006, the cyclic contraction mappings on uniformly convex Banach spaces were introduced and studied
by Anthony Eldred and Veeremani [4]. In 2009, cyclic @-contraction mappings on uniformly convex Banach
spaces as a generalization of cyclic-contractions, was introduced and studied by Al-Thagafi and Shahzad
[3]. Since then, the problems of the existence of best proximity points and fixed points of cyclic mappings,
have been extensively studied by many authors; see for instance [1, 2, 5, 6, 8-11, 13-15] and references
therein.

In order to extend the obtained best proximity results in uniformly convex Banach spaces to metric
spaces, the UC property were introduced by Suzuki et al. [15]. They also proved the existence of the best
proximity points for cyclic contraction type mappings in metric spaces. In 2022, Safari [12] introduced the
geometric concept of the ultrametric property and obtained more general result than Suzuki et al [15].

In this paper, we introduce the notion of cyclic quasi-@-contraction. We prove the existence and
uniqueness of best proximity points for this class of mappings on a metric space endowed with ultrametric
and UC properties. Also, iterative algorithms are furnished to determine such best proximity points. As a
result, we establish a fixed point result and a common fixed point theorem. The presented results extend
and improve some recent results in [3, 4, 12, 15] and some other articles.
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2. Preliminaries

Here, we recall some definitions and facts will be used in the next section.

Definition 2.1. [3] Let A and B be nonempty subsets of the metric space (X, d). The cyclicmap T: AUB - AUB
is said to be cyclic g-contraction if ¢ : [0, +00) — [0, +00) is a strictly increasing map and

d(Tx, Ty) < d(x,y) — e(d(x,y)) + (d(A, B)),

forallx € Aand y € B.

Theorem 2.2. [3, Theorem 8] Let A and B be nonempty convex subsets of a uniformly convex Banach space X such
that Ais closed. Let T : AUB — AU B be a cyclic p-contraction map. For xy € A, define x,.1 := Tx, foreachn > 0.
Then there exists a unique x € A such that x, — x, T?x = x and d(x, Tx) = d(A, B).

Definition 2.3. [12, 15] Let A and B be nonempty subsets of the metric space (X, d). Then (A, B) is said to satisfies

(i) the property UC, if {x,} and {x,,} are sequences in A and {y,} is a sequence in B such that lim,_,c d(x,, Yn) =
limy 0 d(x),, yn) = d(A, B), then lim,,_,o d(x,,, x,) = 0;

(ii) ultrametric property if either d(A, B) = 0 or there exists €4 p) > 0 such that for every 0 < € < €ap), X, x’ € A
and y € B

max{d(x, y), d(x’, y)} < e +d(A,B) = d(x,x") < e +d(A,B).

Suzuki et al. [15] proved that if A and B are nonempty subsets of a uniformly convex Banach space X
such that A is convex, then (A, B) has the property UC. In 2019, Safari et al. [12] proved that if A and B
are nonempty subsets of the metric space (X, d) such that (A, B) has the UC property, then (A, B) has the
ultrametric property.

Lemma 2.4. [15] Let A and B be nonempty subsets of the metric space (X,d). Assume that (A,B) has the UC
property. Let {x,} and {y,} are sequences in A and B respectively, such that either of the following holds

lim sup d(xy, y») = d(A,B) or lim sup d(x, y.) = d(A, B).
n—

M= yy>m ® m>n

Then {x,} is Cauchy.

Theorem 2.5. [12, Theorems 3.5 and 3.6] Let A and B be nonempty subsets of the metric space (X, d) such that A is
complete, (A, B) has the UC property and (B, A) has the ultrametric property. Let T : AUB — AU B be a generalized
cyclic quasi-contraction, i. e., for which there exists c € [0, 1) such that

d(x, Ty) + d(Tx, y)
2

d(Tx, Ty) <cmax {d(x, y),d(x, Tx),d(y, Ty), } + (1 —c)d(A,B), (1)

forall x € A and y € B. Then for every xo € A the sequence {T*"xy} converges to some best proximity point x* € A.
Also, every best proximity point of T in A is a fixed point of T?. Furthermore, if it is assumed that (Ao, Bo) has the
Pythagorean property and (B, A) has the UC property, then T has a unique best proximity point x* in A.
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3. Main results

Let (X, d) be a metric space for every (x, y) € X X X define d*(x, y) := d(x, y) — d(A, B). It is immediately
that

d'(x,y) <d(x,z) +d*(z,y)
and

d'(x,y) —d(A,B) <d*(x,2) +d*(z,y),
forall x,y,z € X.

Definition 3.1. Let A and B be nonempty subsets of the metric space (X, d). The cyclicmap T: AUB — AUB is
said to be a cyclic quasi-q-contraction if there exists a strictly increasing map @ : [0, +00) — [0, +00) such that I — ¢
is a strictly increasing map and

)

d'(Tx, Ty) <(I - ¢) (max (e, ), 0, T, ' (y, Ty, LTV TR Y }),

2
forallx € Aand y € B.
Remark 3.2. Note that with the conditions of the previous definition, if we have
d(x, Ty) +d(Tx, y)}
2
d(x, Ty) +d(Tx, y)
2

d(Tx, Ty) <max {d(x, V), d(x, Tx), d(y, Ty),

o (max {6 T, d(y,Ty) }) + p(d(A, B)),

since @ is is strictly increasing, it follows that

d'(x, Ty) + d*(Tx, y)
2

d(Tx, Ty) <max {d* o, y), & (x, Tx), 4" (v, Ty), } +d(A,B)

- max{p( (x,) + d(4, B) - p(d(A, B)

,(d*(x, Tx) + d(A, B)) — p(d(A, B))
,@(d(y, Ty) + d(A, B)) — p(d(A, B))
d*(x, Ty) + d*(Tx, y)

(T A, B) - oA, B) . ©
Define ¢* : [0, +00) — [0, +00) by @*(t) = @(t + d(A, B)) — @(d(A, B)) for all t > 0. Since @ is a strictly increasing
map, then @* is a strictly increasing map. Also (I — @*)(t) = (I — @)(t + d(A,B)) — (I — ¢)(d(A,B)), soas I — @ is a
strictly increasing map, I — @* is a strictly increasing map, too. Therefore, from (3), we get
d'(x, Ty) + d*(Tx, y)

2

AT, Ty) =max (@ (x, ), &', T, d' (3, Ty, b+ da,B)

d*(x, Ty) + d*(Tx, y)
)

— max {fp*(d*(x, ), @ (d'(x, Tx)), " (d"(y, Ty)), ¢(
d'(x, Ty) + d*(Tx, y)
2

d*(x, Ty) + d*(Tx, y)
;o).

= max {d* x, ), d"(x, Tx), d(y, Ty), } +d(A,B)

. (max {d*(x, ), d'(x, Tx), d'(y, Ty),

hence

d'(Tx, Ty) <(I - ¢") (max {d*(x, D), T, (g, Ty), DT+ ET0Y) }) :

2
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Example 3.3. Let T : AUB — AU B be a cyclic p-contraction that is
d(Tx, Ty) < d(x, y) - p(d(x, ¥)) + P(d(A, B)),
forall x € Aand y € B, then
d'(Tx, Ty) <(I = ")d (v, ¥)),

forall x € Aand y € B. Therefore as I — @ is a strictly increasing map, a cyclic p-contraction map is cyclic
quasi-@-contraction map.

Example 3.4. A cyclic contraction map in the sense of Suzuki et al. [15], is a cyclic quasi-@-contraction with
pt) =1 -0t fort>0andcel0,1).

Example 3.5. A generalized cyclic quasi-contraction in Theorem 2.5, is cyclic quasi-q-contraction with o(t) = (1—c)t
fort>0andce0,1).

Example 3.6. Let X := R with the usual metric. For A = B =[0,1], defineT: AUB - AUB by Tx := 2= and

1+x
) = f—it fort > 0. Note that | — @ is a strictly increasing map, then from Example 2 of [3] T is a cyclic g-contraction
map, so from Example 3.3 it is a cyclic quasi-p-contraction map. Suppose that for all x € A and y € B and some
c €[0,1), T obey in relation (1). Then we have

ITx - TO| = —
x —TO| + -0
< cmax | I |2|1+" |}+(1—c)d(A,B)
B "1+x" 720 +x))

forall x € A. So = < c forall x € (0,1). Then ¢ > 1is a contradiction. Hence T is not a generalized cyclic
quasi-contraction map.

Lemma 3.7. Let A and B be nonempty subsets of the metric space (X,d) and let T : AUB — A U B be a cyclic
quasi-@-contraction. For xo € AU B define x,41 := Tx,, for each n > 0. Then d*(xy,, Xy41) — 0 as n — oo.

Proof. From (2), for every n € IN we have

d*(xn, xXns1) =" (Tx-1, Txy)

S(I - (P) (max {d*(xn—l, xn), d*(xy, Xn+1), d (xnil'x'”lz) +d (x,,, xn) })

== (max & (ot %), G ), (""-1"‘"+21> —d(4,B) })

2

{
<(I-¢) (max {d*(xn—h Xn), (X, Xut1), A" (X1, %) + d (Xn, Xn11) })
=(I-¢) (max {d* (X1, Xn), d*(xn,xn+1)})- @)

Assume that for some ny € IN,
max{d* (xng—ll xn() )I d*(xnor xn0+1)} = d* (x}’l()/ xn0+1 )/
so by (4) we get @(d"(xu,, Xny+1)) = 0. As @ is strictly increasing, we have d*(x,,, X4,+1) = 0 and so

d*(xng—llxng) = d*(xnglxﬂ()+1) = 0,
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hence

max{d" (Xny-1, Xng), & (Xng, Xng+1)} = A (Xig—1, Xy )-
Thus, we may assume that for each n € IN,

max{d” (Xn-1, Xn), d"(Xn, Xn+1)} = d" (Xn-1, Xn)-
Hence, from (4) for every n € IN, we obtain

d"(xn, Xp+1) <= @)(d (Xn-1, Xn))- ()
Let d}, := d*(xy-1,x,) for every n € N. From (5) for every n € N, we obtain d;, | < d;,. So {d;} is decreasing.
Also, {d,} is bounded below by 0, thus lim, . d}, = ty for some ty > 0. If 4, = 0 for some ny > 1, there is
nothing to prove. So assume that d;, > 0 for each n € IN. Since (5), we have

dyq < dy = @(dy)
and hence

0< oW, <d,—d,, (6)
for each n > 1. Since @ is strictly increasing and d;, > t, > 0 for each n > 1, it follows from (6) that

0 = lim p(d;) > p(to) = p(0) 2 0, ?)
so @(to) = @(0). As @ is strictly increasing, we get tp = 0. [

Lemma 3.8. Let A and B be nonempty subsets of the metric space (X, d) such that (A, B) has the UC property. Let
T :AUB — AU B be a cyclic quasi-p-contraction map. For xo € A, define x,41 := Tx, for each n > 0. Then
d(x2n, Xon42) — 0 as 1 — 0.

Proof. From Lemma 3.7, we get
d(x2n, Xon1) = d(A,B) and  d(xans2, Xone1) — d(A, B),
as n — oo. Because (A4, B) has the UC property, we get d(x2,, X2n42) = 0asn — co. [

Lemma 3.9. Let A and B be nonempty subsets of a metric space (X,d) and let T : AUB — A U B be a cyclic
quasi-@-contraction map. Then

(a) @(0)=0;

(b) I-@)t)=0forallt>0;

(c) for every t > 0 we have (t) > 0;

(d) for every t > 0 we have (I — p)(t) < t;

(e) @ and I — @ are continuous.

Proof. (a) follows from (7). (b) Since I — ¢ is strictly increasing we get (I — @)(t) = (I = )(0) =0. (c) If t > 0
and ¢(t) = 0 then 0 < (p(%) < @(t) = 0 leads to a contradiction. (d) It follows directly from (c). (e) Let t; < t,.
Since I — ¢ is strictly increasing, we get t; — @(t1) < t» — @(t2) so @(t2) — @(t1) < t, —t;. Hence ¢ and I — ¢ are
continuous. [
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Lemma 3.10. Let A and B be nonempty subsets of the metric space (X, d) such that d(A,B) = 0. Let T : AUB — AUB
be a cyclic quasi-@-contraction map. For xo € A define x,41 := Tx,, for each n > 0. Then for each € > 0 there exists a

positive integer Ng such that for all m > n > N

d(me/ x2n+1) <e€.

roof. Suppose the cotrary, then there exists €y > 0 such that for each k > 1, there is my > n; > k satisfyin
P Suppose the cotrary, then th ist 0 such that f h k > 1, there i k satisfying

d(X2m, Xome+1) = €0
and
A(X2(m-1), X2m+1) < €.
It follows from (8), the triangle inequality and (9) that

€ < d(mek/ x2nk+1)
< d(Xomy, Xome—2) + A(X20m—1), X2m,+1)
< d(Xom,, Xom—2) + €0,

letting k — oo, Lemma 3.8 implies
Lim d(cam,, X2u,+1) = €o-
Applying the triangle inequality, we obtain

A(X2my, Xom+1) < AXomg, Xom+1) + A(X2my+1, Xon+2) + A(X2n42, X2n,41)
< 2d(Xom,, Xom+1) + A(X2my, Xon41) + 2d(Xope42, Xon41),

so from Lemma 3.7
lim d(xom,, Xan+1) = im d(xom,+1, Xan+2)-
k—o0 k—o0

On the other hand from Lemma 3.8 and triangle inequality, we have

. AXomy, Xon+2) + d(Xom+1, Xom+1)
lim
k—o0 2
< lim 2d(Xom,, Xom+1) + A(X2n41, Xon+2) + A(X2m 41, X2m, )
T ko 2
= lim d(x2m,, Xon+1)-
k—oo

Now, by using (2), we get

A(X2m 41, X2 +2) < Max {d(x2mk/ Xone+1) — PA(X2um,, Xon,41)), A(X2m, s Xomy+1)

A(Xomy s Xon+2) + Ao 41, X2m41)

s d(xan+1/ xan+2)/ 2

d(x2mk/ x2nk+2) + d(mek+1, xan+1)

< max {d(xzmk, Xone+1)r AX2me s Xom+1), A(Xon, 41, X2, 42)

d(mek/ x2nk+2) + d(x2mk+1/ x2nk+l) }
7 .
2

(®)

©)

(10)

(11)

(12)

(13)
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Letting k — oo in (13) and using (10), (11) and (12), since ¢ is continuous, we get
€ <€ — %LI?O @d(X2m,, X2 +1)) < €0
and hence
lim (d(x2n,, 120,01)) = 0. (14)
Since ¢ is strictly increasing, it follows from (8) and (14) that
@(eg) < I}gg @(d(xXom,, X2n,4+1)) = 0 < @(eo),

a contradiction. [

Theorem 3.11. Let A and B be nonempty subsets of the metric space (X, d) such that A is complete, (A, B) has the
UC property and (B, A) has the ultrametric property. Let T : AUB — AU B bea cyclic quasi-@-contraction. Then for
every xo € A the sequence {T*"xo} converges to some best proximity point x* € A. Furthermore, every best proximity
point of T in A is a fixed point of T?.

Proof. Take xy € A and consider the sequence {x,} given by xy,4+1 := Tx,, for n > 0. First, we show that {x,,} is
a Cauchy sequence. When d(A, B) = 0 the claim follows from Lemma 3.10. To prove the claim, it is enough
to assume that d(A, B) > 0. From Lemma 3.7 and 3.8 we have

lim d*(xy, X411) =0 and  lim d(xo,, X2042) = 0.

n—oo

Fix € > 0 such that € < min{e ), €3,.4)}. (I — @) is strictly increasing and continuous, therefore there exists
its inverse (I — @)™, which is strictly increasing and since (I — )(€) < €

e={I-9)" (-p)e) <T-p) (o),
so€’ := (I - @) }(e) — e > 0. We choose L € N satisfying

d"(Xn, Xu1) <€ and  d(xan, Xous2) < € (15)
forall n > L. Fix n € N with n > L. We shall show that

d*(X2n11,X2p) <€, (16)
for all p > n. We assume that

d"(Xon+1, Xom) <€, (17)
holds for some m > n. Then since d* (X241, X2) < € and (B, A) has the ultrametric property, we obtain

d*(Xon+1, Xoms1) < € (18)
and since d* (X441, X2442) < € and (A, B) has the ultrmetric property we get

d*(xXon12, Xom) < €. (19)

Also, we have

d* (x2p42, Xom+1) < — §0)( max {d*(x2n+11x2m)/ d"(X2n+1, X2n+2), A" (X2m, X2m+1)

& (Xon+1, Xome1) + A" (X2n42, Xom) })
7 2 .
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Now, by relations (15), (17), (18) and (19) we obtain
d'(X2n42, Xom+1) < (I = @)(€) <e. (20)
Since d*(Xom+2, X2m+1) < € and (A, B) has the ultrmetric property we obtain

A" (X242, Xome2) < €. (21)

Hence, we have

d* (X2p41, Xoma2) < — (P)( max {d*(x2n/x2m+l)/ d*(Xon, Xon4+1), A" (Xome1, Xom+2)

a*(xon, Xom+2) + d" (X241, X2m+1) })
! 2

<I- (P)( max {d(xZn/ Xons2) + d (Xons2, Xom+1), 4 (X2n, X2n+1)

" (X241, Xom+2)
d(Xan, Xon+2) + d' (Xans2, Xoms2) + A" (X2n41, Xom+1) })
, :
2

Now, by relations (15), (18) and (20) and (21) we obtain

d*(x2n+1,x2m+2) = (I - (P) (max {e’ + €€, : ;25})/
where ¢’ = (I - (P)—l(e) — ¢, 50 we have
d'(Xans1, Xoms2) < [ = )€ +€) = [ =) - @) (e) —e +e) =€

By induction, we obtain (16) holds for all p > 1 and so we get

lim sup d*(x2,41,%2p) =0 or  lim sup d(x2,41, X2) = d(A, B),
n—oo pen n—oo p=n

that by using the UC property of (A, B) and Lemma 2.4 imply {x,,} is a Cauchy sequence.

Hence, in both cases d(A, B) = 0 and d(A, B) # 0, we get the sequence {xp,} is Cauchy and so convergent
to some x* € A. But we have

d'(Tx", x25) <(I — (p)( max {d*(x*,xZn_l), d'(x*, Tx"), d" (x2n-1, X2n)

d*(X*/ xZn) + d*(XZn—lr T-X*) })
! 2

<(I- (p)(max {d*(x*,xzn_l), d'(x*, Tx"), d" (xon-1, X2n)

d*(X*/ xZn) + d(x2n—1/ x*) + d*(x*r Tx*) })
7 2 .

Letting n — oo and taking lim sup, because I — ¢ is continuous, we obtain
4", T') < (I = p)(d" (7, TX)),

so @(d*(x*, Tx*)) = 0 and from Lemma 3.9(c) we obtain 4*(x*, Tx*) = 0. Therefore d(x*, Tx") = d(A, B).
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Furthermore, if z* be an arbitrary best proximity point of T in A then we have

* * * % (o 2 %
d*(TZZ*, TZ*) S(1 _ (P) (max {d*(TZ*, Z*), dx—(TZx-’ TZZ*), d (TZ 7 TZ ) ;‘ d (Z ’ T z )})

—_ % (% 2 %
< - ¢) (max (#(T=,2),d (T2, T2, 24 D) +2d (', T >})
% (% % ” % Do«
<(I-9) (max {d*(z*, Tz),d (Tz', T%2"), 4z, Tz) +2d (Tz", Tz )})

=(I - ¢) (max{d'(z', T2), d'(Tz', T*2")})
=(I - ) (d*(Tz*, Tzz*)) :

since ¢ is strictly increasing, from Lemma 3.9(c) we obtain d*(T?z*, Tz*) = 0 and so d(T?z*, Tz") = d(A, B).
Because d(z*, Tz") = d(A, B) and (A, B) has the UC property, we get T?z* = z*. [

LetAg:={xeA: d(x,y)=d(A B) forsomeyeB}landBy:={yeB: d(x,y)=d(A B) forsomexeA}.
Exactly similar to Theorem 3.6 of [12], it can be proved that if (Ao, By) has the Pythagorean property [6] and
(B, A) has the UC property, then the best proximity point of T in A is unique, which we omit to prove it here.

The Example 3.7 of [12] shows that the Pythagorean property of the pair (Ao, By) is necessary to guarantee
the uniqueness of best proximity of T. Also, it shows that Theorem 3.11 is stronger than Theorem 2 of [15].

Example 3.12. Let X := R with the usual metric. For A = [1,2] and B = [-2,-1], defineT: AUB — AUB by

_f 2+1 ifxea,
T(x)_{ 2+1 ifxeB.

If p(t) = %for t > 0. Then for all x € A and y € B, we have

d'(Tx, Ty) =2+ ]11/ - Jl—c
_ 2xy-x+y
= -
< —2xy—x+y
x—y-1
_x—y-2) -2 -Dy+1)
x-y-1
o (x—1-y-1)?
< (x-y-2)+—
x—y-1
22—y -2)+(x—y—2)7?
B 2+2(x—y—-2)
_2d(x,y) +d(x, y)?
B 2 +2d*(x, y)
= ([= ) (x,y)).
Hence T is a cyclic quasi-q-contraction map. So, all conditions of Theorem 3.11 are satisfied and x = 1 is unique best

proximity point T in A and for every x, € A the sequence T*"x, converges to it as n — co. Note that T is not a cyclic
@-contraction map, because

AT TN =5 > o

9 4 3 -3 3 -3
=3- g + g = d(i, 7) - @(d(zl 7)) + ﬁo(d(A, B))
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Corollary 3.13. Let A and B be nonempty, closed and convex subsets of a uniformly convex Banach space X. Let T
be a cyclic mapping on A U B such that

. . . LA =Tyll" + ITx = yII
ITx = Tyl <( - @) (max{nx =yl e = Tl My = Tyl = }),
forall x € Aand y € Bwherec € [0,1) and ||Tx — Tyl|" := |[Tx — Tyl|| — d(A, B). Then T has at least a best proximity

point x* in A that is a fixed point of T?.

Note that when d(A, B) = 0, then the pairs (A, B) and (B, A) have the UC property, and (Ao, Bo) has the
Pythagorean property. So as a result of Theorems 3.11 we get the following theorem that is the extention of
Corollaries 2.3 and 2.10 in [7].

Theorem 3.14. Let A and B be nonempty and closed subsets of a complete metric space (X,d). Let T be a cyclic
mapping on A U B such that

(1,19 = 1= ) max e, ), Tty 7, “ETL LTI,
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forall x € Aand y € B. Then T has a unique fixed point x* in A N B such that the Picard iteration {x,}, defined by
Xn+1 := Tx, for each n > 0, converges to x* for any starting point xo € AU B.

Proof. It can be proved exactly like the proof of Lemma 3.7 d(x,, x,+1) — 0, since
0<d(A,B)=inf{d(a,b): ac€ A, be B} <inf{d(x,,x,+1): n €N} =0,

then d(A, B) = 0. So from Lemma 3.10, {x,} is a Cauchy sequence and thus there exists x* € A U B such that
X, — x*. Now {xy,} is a sequence in A and {x2,+1} is a sequence in B and both converges to x*. Since A and B
are closed x* € A N B and by the proof of Theorem 3.11 x" is a fixed point of T. Since d(A, B) = 0, fixed point
of Tin A and so in A N B is unique. O

From Theorem 3.14, we obtain the following common fixed point result which is the extention of Corollary
3.11 in [13], immediatelly.

Corollary 3.15. Let (X, d) be a complete metric space and let T : X — Xand S : X — X be two mappings satisfying

d(x,Sy) +d(y, Tx)
),

d(Tx,Sy) < (I - ) (max {d(x, y),d(x, Tx),d(y, Sy),

forall x,y € X. Then T and S have a unique common fixed point in X.
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