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Abstract. In this paper, we present several new inequalities for (p,h)-convex functions in a way that
complements those known inequalities for (p, h)-convex functions. Further we mainly present multiple term

refinements of the well-known Jensen’s type inequality for (p, h)-convex functions. Our results improve
some celebrated results from the literature.

1. Introduction and preliminaries

Convex functions play a significant role in various fields of mathematics, including analysis, optimiza-

tion, mathematical physics, functional analysis, and operator theory. We recall that a convex function
f: I — Ris a function that satisfies

flax +By) < af(x) + Bf(y), (1)
for every x,y €  and «, § > 0 such that & + f = 1 and f is said log-convex function if f is positive and log f
is convex. As a research trend in mathematical inequalities, there is considerable interest in minimizing the
difference between the two sides of (1) by introducing specific terms. This inequality has been refined in
the literature, with numerous applications presented for both scalars and matrices. We refer the reader to
[1, 13, 17-19] for further discussion. Throughout this paper, we denote by I a p-convex subset of R. Recall

that a subset I C R is said p-convex if [ax? + ﬁy”]%’ €lforallx,y € Iand a,p € (0,1) such thata + g = 1.
In this paper, we will be interested by (p, h)-convex functions [3] and (p, h)-log-convex functions [8], wish
represents a generalization of the known concept of the convexity and the log-convexity as we will see. Let
h : ] — R be a non-negative and non-zero function where | is a subset of R and let f : I — R be a function,

recall that f is said (p, h)-convex function if for every x,y € I, p € R\ {0} and a, 8 > O such thata + f = 1, we
have

£ (o + BT ) < h@) ) + BB F). @
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Using the same notations above, we recall that f is said (p, h)-log-convex function, if it satisfies the following
inequality

f([axp + ﬁyl’]%) < h(a)(x)fh(ﬁ)(y).

Clearly, if h = id (id stands for the identity function) in (2) then we get the definition of the p-convexity
[21], if in addition p = 1 then we get the known definition of the convexity (1). We say that f : I = Risa
(G-A)-h-convex function if f is non-negative and

£(xyP) < h(@)f(x) + hB)f (). 3)

If the inequality sign in (3) is reversed, then f is said to be a (G-A)-h-concave function.
We say that f : I — R is a (G-G)-h-convex function if f is non-negative and

f (xayﬁ) < fh(a)(x)fh(ﬁ)(]/)- (4)

If the inequality sign in (4) is reversed, then f is said to be a (G-G)-h-concave function.

In [4], Ighachane and Bouchangour found a result that generalizes another important result due to Sababheh
[11], as follows. If f is a positive (p, h)-convex function for a non-negative super-multiplicative and super-
additive function h, then we have

y (g) _ (0 - f@) + hfy) ~ £ (@ - + ay”):’] i (1 - a)l -
BIZ (=) () + B F = £ = B + Byp)7 | 1=
for a positive (p, h)-convex function f, when A >1,p e R\ {0}and0 <a < < 1.
The known Jensen inequality extends (1) to n parameters in the following way
f [Z axi| < Y aif(x), (6)
i=1 i=1

where f : [ — R is a convex function, {xi,...,x,} € I and {a,...,a,} C [0,1] be such that Y./, a; = 1. By
applying Jensen’s inequality (6) to the function log f we get the following inequality

f (i axi] < ﬁ f (i), ?)
i=1

i=1

for the same parameters above, where f is log-convex.
The literature has devoted a great deal of attention to improving or reversing (6), and consequently, (7).
Chronologically, in [9], the following refinement of (6) was presented and proved.

n

f[i aixi] + Nmin (% i flxi) = f[i %J] < Z a;f (x:), (8)

i=1 ' i= i=1
where dmin = min{ay, ..., a,}. In the same reference, this inequality was reversed as follows.
n 1 n n X n
f [Z az-x,-] + Nt [; Y fe) - f [Z ;]] > )" aif(x), ©)
i=1 i=1 i=1 i=1

where ama = max{ay, ..., a,}.
In [13], Sababheh presented new refinements of Jensen’s inequality by adding as many refinements as we
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wish. Namely, for a convex function f : I — R, {xgl),...,xs)} cIand {a(ll),...,a,(})} C (0,1) be such that

Y agl) = 1. Then for every N € NN, the author proved the following inequality

n N n n n
1), ® |1 0 Ly o M £ (4
)2 19 A £ WIEURYI 5 38 | B oL ER Y @
i=1 k=1 i=1 i=1 i=1

where the construction of xjk), agk) and ag?in is given in Section 4.

The known Jensen’s type inequality for (p, h)-convexity, where h is a non-negative super-multiplicative
function, is as follows

i=1

i=1

Applying Jensen’s inequality to the (p, h)-convex function log f yields the following inequality

f [[Z aixf}PJ < H S (x;). (12)
P i1

In this paper, we aim to extend the inequalities for (p, h)-convex functions, complementing existing results for
convex, log-convex, (p, h)-convex, and (p, h)-log-convex functions. For example, we will extend inequality
(5) to include n parameters and modify inequality (10) by considering (p, h)-convex functions, allowing for
as many refinements as desired.

2. Preliminaries and auxiliary results

The main goal of this section is to prove Theorem 2.2 to help us to prove our main results presented in
the next section. First, recall that a function  : | — R is said super-multiplicative if for all x, y € ], we have
xy € J and

hh(y) < hxy). (13)

If the inequality (13) is reversed, then # is said to be a sub-multiplicative function. If the equality holds in
(13), then h is said to be a multiplicative function. On the other side, if we have x + y € | and

h(x) + h(y) < h(x + y), (14)

then £ is said to be a super-additive function. If the inequality (14) is reversed, we say that & is a sub-additive
function. If the equality (14) holds, we say that & is an additive function.

Example 2.1 ([4]). Let h: I — (0, 00) be given by h(x) = x*,x > 0. Then h is
(1) additive ifk =1,
(2) sub-additive if k € (—o0,—1] U [0, 1),
(3) super-additive if k € (—1,0) U (1, o0).
Let h : [1,+00) > R* be given by h(x) = x> — x* + x. We have
(4 h(xy) = kx)h(y) = xy(x + y)(1 = x)(1 -y) 20
(5) h(x+y)—h(x)—h(y) =xy(x+y+(x-1)+(@y-1)) > 0.
Then h is a super-multiplicative and super-additive function.

(6) Let h be a convex function with h(0) = 0. Then h is a super-additive function. In particular the following
function h(x) = exp(x*) — 1 for k > 0 is super-additive.
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We would like to emphasize that the following result provides one refining terms for inequality (11), which,
in turn, allows us to establish the general form of the first inequality in (5). This general form pertains to
inequality (8) for (p, h)-convex functions.

Theorem 2.2. Let h be a non-negative super-multiplicative and super-additive function on [0, +00), f be a positive
(p, h)-convex function on [a,b], {x1,...,x,} C [a,b] and {as,...,an,P1,..., B} C (0,1) be such that Y\, o; =
Y1 Bi = 1. We have

1

Zh ) f(x) >f[[2 l

i=1

- fa\\|v
+h|min § =
1<j<n ﬁ] pcy

Y npfe) - f [[Z ﬁixf’l p ]] .

Proof. Assume that & is super-multiplicative and super-additive. We have

I-th)f(xz) h(min {5 })[Zh(ﬁ)f(xz) f[Zﬁz H

z; (h(al)— (rggl{ }) ) xl”h(mm{ }) [[Zﬁ ”
B ool e 4]
-l 5

~—

\%

At this point remark that

.
O S TR

and
=z L7 4G\ _
- — + =
i=1 " 112]121 Bi § 1m<]1<r}1 ﬁ]

Using the definition of the (p, h)-convexity, we get that

’>f[2 - { e+ mn {5 e l] o

It comes that the right side of (15) is exactly equal to

f[[gmfr].

This close the proof. O
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As in [4], we have the following version of Theorem 2.2, for (G-A)-h-convex functions.

Corollary 2.3. Let h be a non-negative super-multiplicative and super-additive function on [0, +00), f be a positive
(G-A)-h-convex function on [a,b), {x1,...,x,} C [a,b] and {ay, ..., an,B1,...,Bn} C (0,1) be such that Y.\, a; =
Y1 Bi = 1. Then, we have

gh(ai)f(xi) Zf[ﬁ xf]+h(gg}q{%}) [Z:‘ h(Bi)f(xi) —f[ n x?]l

i=1 / i=1
Now, let us present the reverse of the previous theorem.

Theorem 2.4. Let h be a non-negative multiplicative and super-additive function on [0, +o0), f be a positive (p, h)-
convex function on [a,bl, {x1,...,x,} C [a,b] and {a1,...,a,} C (0,1) and {f1,...,Bn} C (0,1) be such that
Yo=Y Bi = 1. Then we have

Zn" h(e) f(xi) < f [[Z aiﬂ Z

i i=1

=1
+h ({13% {%}) 2 h(Bi) f(xi) — f[ Z 51”‘?] ] :
<j< — P

Proof. Assume that h is multiplicative and supper-additive. We have

I:= ) h(p)fx) - ! Y e )
i=1 i=1

h Zi) s
[mex{5})

Since

=

a; 1

fo— [ — =1,
P &j &j

max<4 — max<4 —

1<j<n ‘8] 1<j<n ‘8]

it follows from the definition of the (p, h)-convexity that

m[{gﬁﬂfﬁ.
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Thus complete the proof. [

As a direct consequence of the previous theorem, we get the following result for (G-A)-h-convex functions.

Corollary 2.5. Let h be a non-negative multiplicative and super-additive function on [0, +o0), f be a positive (G-
A)-h-convex function on [a,b], {x1,...,x,} C [a,b], {a1,..., a4} € (0,1) and {B1,...,Bs} € (0,1) be such that
Yoiiai =Y. Bi = 1. Then we have

jlhav&0<f{flaj+hegg{ }H}:Mﬁvxo—an%Jl

i=1

3. Further inequalities for (p, h)-convex functions

The purpose of this section is to extend Theorem 2.2 and Theorem 2.4 to the more general setting using
the so called weak sub-majorization theory. Throughout this section, we denote by X* = (X;, ... ,X:l) the

vector obtained from the vector X = (Xj, ..., X,) € R" by rearranging the components of it in decreasing
order. Then, for two vectors X = (X3,..., Xy)and Y = (Y3,...,Y,)inR”, Yis said to be weakly sub-majorized
by X, written X >, Y, if

forallk=1,...,n
An important tool in the theory of weak sub-majorization, which will be used to prove our results, is
provided by the following lemma.

Lemma 3.1. [7, pp. 13] Let X = (X))i.;, Y = (Y))i.; € R" and | C R be an interval containing the components of
Xand Y. If X >, Yand 1 : | = R is a continuous increasing convex function, then

Zwm>2wm

i=1
The following lemma will allow us to derive the general form of Theorem 2.2.

Lemma 3.2. Let h be a non-negative super-multiplicative and super-additive function on [0, +00) and let f be a convex
function on [0,1]. Let {as,...,an,B1,--.,Bu} € [0,1] such that Y.\ i = Y.0'y Bi = Land {x1,...,x,} € (0,1). Let
X = (X1, Xp) and Y = (Y1, Y2) be two vectors in R? with components

X1 = ; h(ai)f(xi), Xa=h (1m<]1<1"’11{ }) {Z Bix }
Zn“ aixflp and Y, = h(mln { }) Z h(B) f(x.).
i=1

Then, we have X >, Y, namely, the vectors X* and Y* have components satisfying that

X, =Y, (16)
X +X; 2 Y+ (17)
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Proof. First of all remark that X] is exactly X;. Indeed, on one hand we have

X - Yz—Zh(a)f(xz)— (mm{ })Xh«f)f(xl
= Z [h(a ) - h(mm { 7, })h(ﬁ )] )
Lol ife) o

i=1

0.

\%

On the other hand, by the (p, h)-convexity we get that Y, > X5. This implies that X; > X;, hence X] = Xj.
Once again, by the (p, h)-convexity the inequality (16) is established. The second inequality (17) comes
directly from Theorem 2.2. [

Theorem 3.3. Let h be a non-negative super-multiplicative and super-additive function on [0, +00), f be a positive
(p, h)-convex function on [a, bl and y be a strictly increasing convex function defined on an interval J. Let {x1, ..., x,} C
[a,b], {on,..., a0} € (0,1) and {B1, ..., Bn} € (0,1) be such that Y.\ a; = Y.i_y Bi = 1. Then we have

(g} Mo
£1)

{2

Proof. Let us consider the vectors X = (X1, Xo) and Y = (Y1, Y>) defined in Lemma 3.2, by the same Lemma
we have X >, Y. This implies by Lemma 3.1 that

P(X1) + P(X2) = P(Y1) + P(Y2),
becomes
P(X1) = P(Y1) + P(Y2) — P(X2).
O

In order to give the reverse of the previous Theorem, let us show the following helpful lemma.

Lemma 3.4. Let h be a non-negative multiplicative and supper-additive function on [0, +0c0), f be a convex function
on [0,1], {a1,...,an,B1,...,Bu} € [0,1] such that Y/ a; = Yieq Bi = Land {xy,...,x,} € (0,1). Let X = (X4, X3)
and Y = (Y1,Y>) be two vectors in R* with components

X; = h(gﬁx{ })Zh(ﬁ V() Xo=f [Z ozixfr

i=1

Y, = ;h(ai)f(xi) and Y, = h(f’giﬁ{ﬂ] }) [ Zﬁl ]

i=1

~

<=

Then, we have X >, Y, namely, the vectors X* and Y* have components satisfying

X =Y, (18)
X +X; 2 Y+ (19)
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Proof. In order to prove (18) nothing that X = Xj. Indeed, using the multiplicativity of the function h
observe that

X1-Yy=h ({gja(x {%}) Z h(Bi) f(xi) — Z h(ai;) f (xi)
== AP i1

Y [h (max {ﬁ}) H) - h(a»] fx)
i | \isj=n ( B

k| max i Bi — a;|| fxi).
pcy 1<j<n ﬁ]

At this point remark that

= |l

max{—j}ﬁi—ai > %ﬁi—ai =0,
< i

foralli =1,...,n, hence X; > Y;. Beside, by the (p, h)-convexity we get that Y; > X,. This implies that
Xi = Xy, therefore X] = X;. On the other hand, one more time via the (p, h)-convexity we deduce easily that
X1 > Y,. The second inequality (17) follows directly from Theorem 2.4. [

Theorem 3.5. Let h be a non-negative multiplicative and super-additive function on [0, +00), f be a positive (p, h)-
convex function on [a, b] and ¢ be a strictly increasing convex function defined on an interval J. Let {x1,...,x,} C
[a,b], {o,..., ) € (0,1) and {B1, ..., Bn} C (0,1) be such that Y7y a; = Y.iy Bi = 1. Then we have

: o
= ]*¢[’1 (ﬁ‘g’;{ﬁ—j});hw»f(x»]
- max ﬂ Y . P ’
e £

Proof. Let us consider the vectors X = (X;,X») and Y = (Y73, Y>) defined in Lemma 3.4, through the same
Lemma we have X >, Y. This implies by Lemma 3.1 that

n

Y [Z”_: h(ai)f(xi)] <yo f[[z aix!
i=1

P(X1) + P(X2) 2 P(Y1) + P(Y2),
becomes
Y(Y1) < P(Xq) + P(X2) — Y(Y2).

O

Replacing f by log f, in Theorems 3.3 and 3.5 we state the log-convex version of the previous results as
follows.

Theorem 3.6. Let h be a non-negative function on J, f be a positive (p, h)-log-convex function on [a, b] and 1 be a
strictly increasing convex function defined on an interval [0, +o0). Let {x1,...,x,} C [a,b], {o1,..., a4} € (0,1) and
{B1,...,Bn} € (0,1) be such that Y\, a; = Y.iy Bi = 1. Then we have
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1. If h is a super-multiplicative and super-additive function on [0, +o0), then
1
n n 4
Po 10%[1_[ fh(“i)(xi)] 2o logf[[z aixf} ]
i=1 i=1

" Hminnci{ 3 )
+¢kgﬁ]ﬂwwﬂ
i=1

L i)
-y bgfﬂ}lﬁﬂd ] :
i=1

2. If his a multiplicative and super-additive function on [0, +o0), then

Y olog [ﬁ fh(ai)(x,-)] <yo logf[[i aixf}P]
i=1 i=1

. mavsi )
+¢kgﬁlﬂwaﬂ
i=1

Zﬁ]
=1

1 h(maxmjsn{%})
—1 logf[ ] '

Now, by considering ¢(x) = x* for A > 1, in Theorems 3.3 and 3.5 we get the following results that extends
the inequality (5) to n parameters.

Theorem 3.7. Let h be a non-negative function on [0, +c0), f be a positive (p, h)-convex function on [a,b] and
be a strictly increasing convex function defined on an interval J. Let {x1,...,x,} C [a,b], {a1,...,a,} C (0,1) and
{B1,...,Bn} € (0,1) be such that Y,/_; a; = ¥.iL; i = 1. We have

1. If h is a super-multiplicative and super-additive function on [0, +o0), then

n A n ;
[Z h(az-)f(x,-)] > f)\ [[Z ainl ]

i=1

e ) oo [0 )

2. If his a multiplicative and super-additive function on [0, +o0), then

[Zn: h(ai)f(xi)] <f [[i aixf} ”]
P

i=1

sl (S )
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By taking 1(x) = exp(x), in Theorem 3.6, we get the following results. Which presents one refining term
of inequality (12).

Theorem 3.8. Let h be a non-negative function on [0, +00), f be a positive (p, h)-log-convex function on [a, b] and
Y be a strictly increasing convex function defined on an interval J. Let {x1,...,x,} C[a,b], {a1,...,an} € (0,1) and
{B1,...,Bn} € (0,1) be such that Y7y a; = Y.iy Bi = 1. Then we have

1. If h is a super-multiplicative and super-additive function on [0, +oo), then

Hfh(“’)(x) >f [Zax l
i=1
¥ [H £1() A [Z i }
i=1

2. If his a multiplicative and super-additive function on [0, +o0), then

ﬁfh(ai)(xi) < f [i ozl-xf ;
i=1 i=1
D el
+ [H fh(ﬁi)(xi)] _f l</<n [Z ﬁz l

i=1

]h(mi“1<f<"{§§})

4. Refining Jensen’s type inequality for (p, h)-convex functions

(11),...,04;1)} Cc (0,1) a convex sequence, satisfying

Throughout this section, we denote by aV = {a
Y al(.l) = 1. Define

1= {z a(l) a(l).},

min

where a( ) = min {a 11<i< n} The quantity |J;| stand for the cardinality of J;.

For k 2 2 let ® be a sequence defined inductively in the following way

“ 26D L 01 4 a(k NN (k 1) )
—_— 1 min . - — -
G =Y Lt g glen - G where Jicy = ={iraf ™ = a0}, (20)
= X min
and fork > 1, ag? = mm{ ® ..,aqu)}. Now, let us set x® = {xgl), . (1)} c I, we provide a new sequence
x® defined by
" 2 if D # oD ‘ |
v [l DA 1)] if a7V = gD [1<isnand peR\{0}. 1)
n i=1 min

We point out that the order of the { (1)} follows the order in which they are associated with the { (1)} That

is, xg ) is the value multiplied with a; @, and so on. Bearing those notations in mind, we present the main

result of this section, extending mequahty (10) to the notion of (p, h)-convex functions.
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Theorem 4.1. Let h be a non-negative super-multiplicative and super-additive function on [0, +00), f : I — IR be

(p, h)-convex, {x(l .. (1)} c Iland { (1) ..,a,(})} c (0,1) be such that y;_, aﬁl) = 1. Then for every N € IN, we
have
1 1
| . ®) ISR ) Iy |
f Zo‘i (o) + Zh(”amm) h(;) : f(xi )_f Ez(xi)
i=1 k=1 i=1 i=1
< (V) £ (), (22)
i=1
where afk) and xl(.k) are as in (20) and (21).

Proof. We prove this by induction on N. For N = 1, the result follows from Theorem 2.2. Now assume that
(22) holds for some N € IN. We point out here that this means, given any convex sequence {ﬁl(.l) 11<i< n}

and any elements {y 11<i< n} C I, we have the inductive step

1

f [iﬁﬁ”(yf)“)]p +

i=1

=

=

h(anﬁ)m)[h(,lq) F7)- 5 [% (yf’)“‘)]p]

1 i=1 i=1

=~
S|

< Y h(B")F(u). (23)

i=1

Then

n

A = Z h (aﬁl))f<x§1)> —-h (nag)m) [h(

i=1

)
()1 ) Mol )2 )

i=1 i=1

A
; h(Ull niin) [[ Z(x’”%”” 24)

Y, (el —all) £ (") + ”'[h(m Sﬂ“)f {[%Ii‘(xf)mﬂ]

=

Il
=

>
i=1 1
n ’
— ®_ @ (1) @ Py(1)
- ; h (ai amin)f(xi ) + (12 h ( |h| mm) ( Z(x ) ]
aWzq® o =al,

n

- L)), @

i=1

where the last line comes from the definitions of (ozjk)) and (xgk)) in (20) and (21). For convenience, we denote
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0:52) by ﬁfl) and x;z) by yl(.l). Nothing that

n n
m_V 4@

(¢9)
no._ .
a® (1) " min
i} ; o) * 2T
1 i€l
n
— @) (©) o @)
- Z &= Z &~ Z Cnin T M
i=1 i€]1 i¢h

(1)

1 1
~ il = =11 ah +nald

Consequently, we may apply the inductive step (25) on (23) to get

n

I = ;h (1) (1)) (26)
- ® 1 (k) wl
+ Y n(ma)|n(5) 2 £ (v ZW)
k=1 i

f { - ﬁ(l)(]/ (1)]
i= i=1

P n

\%

Now,

_ 1
n r
1 2
S| - [ ><xf><z>]
| i=1
_ 1
n (1) n (P)(l) !
X
_ 1 _ (1 1) min i
- Ll E [ 3
i=1 ie] =
| i¢]h
1
— 1) 1) P\ (1) A
- Z(X (X Zamm(x )()+Z mm )()
_zezh 1$]1
1
I
n
a 1
_ Z )(xp) 1)+Z inin(xp)(l)
,léh 15]1
_ 1
n P
1
= ) a0 (27)
| i=1

Moreover, since 51(,1) - 0(52) @) (k+1)

and yl(.l) =x,”, we have ﬁ(k) =a; "’ and ygk) = xﬁkﬂ) for k > 1. Therefore, invoking



M. A. Ighachane, M. Bouchangour / Filomat 38:5 (2024), 1793-1806 1805
(27) in (26), we get

h<a;“)f<x;”>—h< o) ()5 ) o] [+ S

a<1>(xp)<1>

1\
ﬁ‘" i g

1

f (k+1)) f [1i(xﬁ)(k+l)}
n 1

i=1

=

h (k+1) I 1
n

mm

qu

=~

i=

() (5
= f {[Z a<”(x’”)<”]

N+1 n n %
S TN Ty (e
k=2 i= i=1
Thus
e p(l):; v ® I ) 1y P(k)’%
Al |+ Yo |n(5) £ 60)- 7| |5 Yah
i=1 k=1 i=1 i=1
< Y h(a®) £ (), 28)

completing the proof. [
Remark 4.2. Notice that when n = 2 in the previous theorem, we obtain a version similar to [5, Theorem 2.1].

Replacing f by log f, in Theorem 4.1 we get the following refinement of (p, h)-log-convex functions.

Corollary 4.3. Let h be a non-negative super-multiplicative and super-additive function on [0, +o0) and f : I — R*
be (p, h)-log-convex, { W x (1)} C Iand{ W, oc,(})} c (0,1) be such that Y, al(.l) = 1. Then for every N € IN,
we have

h(nag?i“)

ﬁ e, /G) ( (k)) e, fih(aiv) (xl@)

M ,,z:;l(xfrk))%] e o)
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