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Abstract. In this work, we obtain some representations of set-valued solutions defined on an abelian
group G with values in a Hausdorff topological vector space of the generalized multiadditive functional
equations. We also investigate the Hyers-Ulam stability of the mentioned earlier set-valued functional
equations. Furthermore, we prove the Hyers-Ulam stability of the set-valued multiadditive mappings by
applying a fixed point theorem.

1. Introduction

It is well-known that among functional equation the additive (Cauchy) equation

A(x + y) = A(x) +A(y) (1)

plays a significant role in many parts of mathematics. More information about them (in particular, about
their solutions and their applications can be found for instance in [18] and [32].

Throughout this paper, N, Q and R are the sets of all positive integers, rationals and real numbers,

respectively, N0 := N ∪ {0},R+ := [0,∞). Moreover, for the set E, we denote

n−times︷            ︸︸            ︷
E × E × . . . × E by En. Let V

be a commutative group, W be a linear space over Q, and n ∈ N with n ≥ 2. A mapping f : Vn
−→ W

is called multiadditive if it satisfies (1) in each variable. It is shown in [10, Theorem 2] that a mapping f is
multiadditive if and only if it satisfies

f (x1 + x2) =
∑

i1,...,in∈{1,2}

f (xi11, . . . , xinn), (2)

where xi = (xi1, . . . , xin) ∈ Vn with i ∈ {1, 2}.
The stability problem of the functional equation, initiated by the celebrated Ulam’s question [37] about

the stability of group homomorphisms (answered by Hyers [16], Aoki [1], Th. M. Rassias [30] and Găvruţa
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[15] for additive and linear mappings) has been growing rapidly over the last decades and applied in
sciences and engineering. Recall that a functional equation Γ is said to be stable if any function f satisfying
the equation Γ approximately must be near to an exact solution of Γ. Here, we remember that the Ulam
query about the stability of group homomorphisms and functional equations on Banach spaces has been
studied and established for instance in papers and books [13], [14], [17], [19], [20], [26], [31], [33] and
moreover references therein. On the other hand, a lot of information about the structure of multiadditive
mappings and their Ulam stabilities are available in [9], [10] and [18, Sections 13.4 and 17.2].

In the last decades, the theory of set-valued functions in Banach spaces have been improved and
developed by the authors. In 1965 and 1966, the pioneering papers by Aumann [2] and Debreu [11] were
inspired by problems arising in control theory and mathematical economics. Next, some equations for set-
valued functions and set-valued solutions of miscellaneous functional equations have been investigated by
the authors which can be found for instance in [6], [22], [23], [24], [28], [34], [35] and [36].

In this paper, we introduce the generalized multiadditive functional equations and investigate some
set-valued solutions of the such functional equations. Moreover, motivated by some results in [27] and
[29], we prove the stability of the generalized multiadditive set-valued functional equations. Finally, we
establish the Hyers-Ulam stability of the set-valued multiadditive mappings by using a fixed point method.

2. Set-valued solutions of generalized multiadditive mappings

Throughout this section, (G,+) denotes a commutative group and X is a Hausdorff topological vector
space over R. Both the zero element of G and the origin of X will be denoted by 0. We also denote the
collection of all nonempty subsets of X by P∗(X).

Here, we have some sets which are necessary in this paper.

b(X) = {E|E ∈ P∗(X), E is bounded};

cc(X) = {E|E ∈ P∗(X), E is closed and convex};

bc(X) = {E|E ∈ P∗(X), E is bounded and convex};

bcc(X) = {E|E ∈ P∗(X), E is bounded, convex and closed}.

Let A,B ∈ P∗(X) and λ ∈ R. We consider the addition and scalar multiplication as follows:

A + B := {a + b| a ∈ A, b ∈ B}, λA := {λa| a ∈ A}.

It is easy to check that for λ, µ ≥ 0 and A ∈ P∗(X) which is convex, we have

(λ + µ)A = λA + µA.

Recall that C ∈ P∗(X) is called a (convex) cone in X if C+C ⊆ C and for each positive real number λC ⊆ C.
It is clear that every convex cone is a convex set. If the zero vector in X belongs to C, then we say that C is a
(convex) cone with zero. Next, we remind the following lemmas from [3] and [28] which will be useful in
the proofs of our main results.

Lemma 2.1. Let C ∈ P∗(X) be a convex set such that there exists 1 , λ > 0 with the property λC = C. Then, C is a
convex cone.

Lemma 2.2. Let B ∈ P∗(X) be a bounded set such that there exists 1 , λ > 0 with the property λB = B. Then,
B = {0}.

Lemma 2.3. Let A,B ∈ cc(X) and C ∈ P∗(X) be a bounded set. If A + C = B + C, then A = B.
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In this section, we investigate the set-valued solutions f : Gn
−→ P∗(X) of the following generalized

multiadditive functional equation

f (x1 + x2) =
∑

i1,...,in∈{1,2}

Ai1,...,in f (xi11, . . . , xinn), (3)

where Ai1,...,in are nonnegative numbers with i1, . . . , in ∈ {1, 2}. In the case that each Ai1,...,in is 1, equations (2)
and (3) coincide.

The first elementary result is for the constant mappings as follows.

Proposition 2.4. Suppose that each Ai1,...,in is a positive real number.

(i) If C ∈ P∗(X) is a convex cone, then the constant mapping f (x) = C is a solution of (3), for all x ∈ Gn;
(ii) If C ∈ P∗(X) is a convex set and

∑
i1,...,in∈{1,2} Ai1,...,in , 1, then the constant mapping f (x) = C is a solution of

(3), for all x ∈ Gn if and only if C is a convex cone.

Proof. (i) We have

f (x1 + x2) = C =

 ∑
i1,...,in∈{1,2}

Ai1,...,in

C
=

∑
i1,...,in∈{1,2}

Ai1,...,in f (xi11, . . . , xinn),

for all x1, x2 ∈ Gn.
(ii) Assume that f (x) = C is a solution of (3), for all x ∈ Gn, then

C =

 ∑
i1,...,in∈{1,2}

Ai1,...,in

C.
By Lemma 2.1, C is a convex cone in X. The other implication follows from part (i).

Put n := {1, . . . ,n}, n ∈ N. For a subset T = {l1, . . . , lk} of n with 2 ≤ l1 < · · · < lk ≤ m such that m ≤ n − 1,
denote

Bi1,...,il1−1,1,il1+1,...,ilk−1,1,ilk+1...,in

=
∑

i1,...,il1−1,il1+1,...,ilk−1,ilk+1...,in∈{1,2}

Ai1,...,il1−1,1,il1+1,...,ilk−1,1,ilk+1...,in .

Note that
Bi1,...,in =

∑
i1,...,in∈{1,2}

Ai1,...,in and B1,...,1 = A1,...,1.

We use these notations in the proof of the results in this paper. It is shown in the proof of Theorem 2
from [10] that for a commutative semigroup G and a linear space W, for every solution f : Gn

−→W of (2),
f (x) = 0 for any x ∈ Gn with at least one component which is equal to zero. However, the same proof can
be applied to show that for every solution f : Gn

−→ W of (3), f (x) = 0 for any x ∈ Gn with at least one
component which is equal to zero. In the next result, we prove a similar result when the image is set-valued.

Theorem 2.5. The only solution f : Gn
−→ bc(X) of (3) is zero set provided that

Bi1,...,il1−1,1,il1+1,...,ilk−1,1,ilk+1...,in , 1,

for all 1 ≤ lk ≤ n.
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Proof. Letting x1 = x2 = (0, . . . , 0) in (3), we have

f (0, . . . , 0) = Bi1,...,in f (0, . . . , 0).

It follows from Lemma 2.2 that f (0, . . . , 0) = {0}. Fix j ∈ {1, . . . ,n}. Letting x1p = 0 for all p ∈ {1, . . . ,n}\{ j} and
x2p = 0 for 1 ≤ p ≤ n in (3), we get

f (0, . . . , 0, x1 j, 0, . . . , 0) = Bi1,...,i j−1,1,i j+1,...,in f (0, . . . , 0, x1 j, 0, . . . , 0).

By assumptions and Lemma 2.2, we get f (0, . . . , 0, x1 j, 0, . . . , 0) = {0}. The processing above can be repeated
to obtain

f (0, . . . , 0, x1l1
, 0, . . . , 0, x1lk

, 0, . . . , 0)

= Bi1,...,il1−1,1,il1+1,...,ilk−1,1,ilk+1...,in f (0, . . . , 0, x1l1
, 0, . . . , 0, x1lk

, 0, . . . , 0).

where 1 ≤ lk ≤ n. Lastly, by putting x2 = (0, . . . , 0) in (3), we get f (x1) = B1,...,1 f (x1) for all x1 ∈ Gn. Since
B1,...,1 , 1, we find the result.

Remark 2.6. Note that in Theorem 2.5, if Bi1,...,in = 1 but f (0, . . . , 0) = {0}, then the result is again valid.

Theorem 2.7. Let Bi1,...,in = 1 and each Ai1,...,in be positive real number. If f : Gn
−→ bcc(X) is a solution of (3), then

f (x) = f (0, . . . , 0) for all x ∈ Gn.

Proof. We first note that

Bi1,...,il1−1,1,il1+1,...,ilk−1,1,ilk+1...,in + B∗i1,...,il1−1,2,il1+1,...,ilk−1,2,ilk+1...,in
= 1, (4)

for all 1 ≤ lk ≤ n, where

B∗i1,...,il1−1,2,il1+1,...,ilk−1,2,ilk+1...,in
=

∑
i1,...,il1−1,il1+1,...,ilk−1,ilk+1...,in∈{1,2}

Ai1,...,il1−1,2,il1+1,...,ilk−1,2,ilk+1...,in .

Fix j ∈ {1, . . . ,n}. Letting x1p = 0 for all p ∈ {1, . . . ,n}\{ j} and x2p = 0 for 1 ≤ p ≤ n in (3), we get

f (0, . . . , 0, x1 j, 0, . . . , 0) = Bi1,...,i j−1,1,i j+1,...,in f (0, . . . , 0, x1 j, 0, . . . , 0)

+ B∗i1,...,i j−1,2,i j+1,...,in f (0, . . . , 0),

and hence(
1 − Bi1,...,i j−1,1,i j+1,...,in

)
f (0, . . . , 0, x1 j, 0, . . . , 0)

+ Bi1,...,i j−1,1,i j+1,...,in f (0, . . . , 0, x1 j, 0, . . . , 0)

= Bi1,...,i j−1,1,i j+1,...,in f (0, . . . , 0, x1 j, 0, . . . , 0)

+ B∗i1,...,i j−1,2,i j+1,...,in f (0, . . . , 0). (5)

It follows from Lemma 2.3 that (5) is equivalent to(
1 − Bi1,...,i j−1,1,i j+1,...,in

)
f (0, . . . , 0, x1 j, 0, . . . , 0)

= B∗i1,...,i j−1,2,i j+1,...,in f (0, . . . , 0).

Now, relation (4) implies that
f (0, . . . , 0, x1 j, 0, . . . , 0) = f (0, . . . , 0).

Similar to the above, one can show that(
1 − Bi1,...,il1−1,1,il1+1,...,ilk−1,1,ilk+1...,in

)
f (0, . . . , 0, x1l1

, 0, . . . , 0, x1lk
, 0, . . . , 0)

= B∗i1,...,il1−1,2,il1+1,...,ilk−1,2,ilk+1...,in
f (0, . . . , 0),

where 2 ≤ lk ≤ n. Therefore, by (4) we conclude that f (x) = f (0, . . . , 0) for all x ∈ Gn.
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3. A stability result for the generalized multiadditive functional equations

Here and subsequently, for a mapping f : Vn
−→W, we consider the difference operatorD f : Vn

×Vn
−→

W by

D f (x1, x2) := f (x1 + x2) −
∑

i1,...,in∈{1,2}

Ai1,...,in f (xi11, . . . , xinn),

for all x1, x2 ∈ Vn. We need the next result, indicated in [18, Theorem 13.4.3].

Theorem 3.1. Let 1 : RpN
−→ R be a continuous p-additive function. Then, there exist constants c j1... jp ∈ R,

j1, . . . , jp = 1, . . . ,N, such that

1(x1, . . . , xp) =
N∑

j1=1

. . .
N∑

jp=1

c j1... jp x1 j1 . . . xpjp ,

for all xi = (xi1, . . . , xiN) and i = 1, . . . , p.

Let f : Rn
−→ R be a solution of the inequality

|D f (x1, x2)| < δ. (6)

Similar to [4] and [10, Theorem 3] and using Theorem 3.1, one can show that there exists a multiadditive
function 1(r1, . . . , rn) = cr1 . . . rn, c ∈ R, such that | f (r1, . . . , rn)−1(r1, . . . , rn)| < ε for all (r1, . . . , rn) ∈ Rn, where
ε = 1

Bi1 ,...,in−1δ. Hence, inequality (6) can be written in the form

D f (x1, x2) ∈ B(0, δ),

where B(0, δ) := (−δ, δ), and thus

f (x1 + x2) + B(0, δ) ⊆
∑

i1,...,in∈{1,2}

[
Ai1,...,in f (xi11, . . . , xinn) + B(0, δ)

]
.

Putting F(x) = f (x) + B(0, δ) for all x ∈ Rn, we have

F (x1 + x2) ⊆
∑

i1,...,in∈{1,2}

Ai1,...,in F(xi11, . . . , xinn),

provided that Ai1,...,in ≥ 1 for all i1, . . . , in ∈ {1, 2}. Moreover, 1(x) ⊆ F(x) for all x ∈ Rn.
Let W be a real normed space. The family of all closed and convex subsets, containing 0, of W will

be denoted by cc(P∗0(W)). Recall that for a metric space (X, d), the diameter of a set E ⊂ X is defined to be
diamE =sup{d(x, y) : x, y ∈ E}.

In this section, let V be a real vector space, K ⊆ V be a convex cone with zero and W be a Banach space.

Theorem 3.2. Let F : Kn
−→ cc(P∗0(W)) be a set-valued mapping satisfying

F (x1 + x2) ⊆
∑

i1,...,in∈{1,2}

Ai1,...,in F(xi11, . . . , xinn), (7)

and
sup{diamF(x) : x ∈ Kn

} < ∞,

for all x1, x2 ∈ Kn and Bi1,...,in , 1. Then, there exists a unique multiadditive mapping A : Kn
−→ W such that

A(x) ∈ F(x) for all x ∈ Kn.
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Proof. Putting x1 = x2 = x in (7), we get

F(2x) ⊆
∑

i1,...,in∈{1,2}

Ai1,...,in F(x) = Bi1,...,in F(x), (8)

for all x ∈ Kn. Replacing x by 2mx with m ∈N, in (8), we obtain

F(2m+1x) ⊆ Bi1,...,in F(2mx),

for all x ∈ Kn and so

F(2m+1x)
2m+1 ⊆

Bi1,...,in

2
×

F(2mx)
2m ,

for all x ∈ Kn. Thus

F(2m+1x)
2m+1 ⊆

F(2mx)
2m ,

for all x ∈ Kn. Let m ∈ N0. Set Fm(x) = F(2mx)
2m for all x ∈ Kn. It is easily seen that {Fm(x)}m∈N0 is a decreasing

sequence of closed subsets of W. Moreover,

diamFm(x) =
1

2m diamF(2mx).

Since sup{diam(F(x)) : x ∈ Kn
} is finite, we find limm→∞diam(Fm(x)) = 0 for all x ∈ Kn. Applying the Cantor

theorem for the sequence {Fm(x)}m∈N0 , we see that the intersection
⋂

m∈N0
Fm(x) is a singleton set and we

denote it byA(x) for all x ∈ Kn which is in fact a mapA : Kn
−→W. In other words,A(x) ∈ F0(x) = F(x) for

all x ∈ Kn. Here, we show thatA is a generalized multiadditive mapping. We have

Fm(x1 + x2) =
F(2m(x1 + x2))

2m =
F(2mx1 + 2mx2)

2m

⊆

∑
i1,...,in∈{1,2} Ai1,...,in F

(
2m(xi11, . . . , xinn)

)
2m

=
∑

i1,...,in∈{1,2}

Ai1,...,in
F
(
2m(xi11, . . . , xinn)

)
2m

=
∑

i1,...,in∈{1,2}

Ai1,...,in Fm
(
xi11, . . . , xinn

)
.

By the above relation and the definition ofA, we arrive at

A(x1 + x2) =
⋂

m∈N0

Fm(x1 + x2) ⊆
⋂

m∈N0

 ∑
i1,...,in∈{1,2}

Ai1,...,in Fm
(
xi11, . . . , xinn

) , (9)

for all x1, x2 ∈ Kn. In addition, one can show that∑
i1,...,in∈{1,2}

Ai1,...,inA
(
xi11, . . . , xinn

)
∈

∑
i1,...,in∈{1,2}

Ai1,...,in Fm
(
xi11, . . . , xinn

)
. (10)

Fix now m ∈N and x1, x2 ∈ Kn. It follows from (9) that there exist Ai1,...,in ∈ Fm
(
xi11, . . . , xinn

)
such that

A(x1 + x2) =
∑

i1,...,in∈{1,2}

Ai1,...,inAi1,...,in . (11)
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On the other hand, relation (10) implies that there exist Bi1,...,in ∈ Fm
(
xi11, . . . , xinn

)
such that∑

i1,...,in∈{1,2}

Ai1,...,inA
(
xi11, . . . , xinn

)
=

∑
i1,...,in∈{1,2}

Ai1,...,inBi1,...,in . (12)

It follows from (11) and (12) that

A(x1 + x2) −
∑

i1,...,in∈{1,2}

Ai1,...,inA
(
xi11, . . . , xinn

)
=

∑
i1,...,in∈{1,2}

Ai1,...,in
(
Ai1,...,in −Bi1,...,in

)
. (13)

Since Ai1,...,in ,Bi1,...,in ∈ Fm
(
xi11, . . . , xinn

)
, we obtain∥∥∥∥∥∥∥A(x1 + x2) −

∑
i1,...,in∈{1,2}

Ai1,...,inA
(
xi11, . . . , xinn

)∥∥∥∥∥∥∥
≤

∑
i1,...,in∈{1,2}

Ai1,...,in

∥∥∥Ai1,...,in −Bi1,...,in

∥∥∥
≤

∑
i1,...,in∈{1,2}

Ai1,...,in diamFm
(
xi11, . . . , xinn

)
,

which goes to zero as m tends to infinity. Thus

A(x1 + x2) =
∑

i1,...,in∈{1,2}

Ai1,...,inA
(
xi11, . . . , xinn

)
.

This completes the proof.

4. Stability results for the multiadditive mappings

In this section, we prove the Hyers-Ulam stability for the multiadditive mapping (2) of the set-valued.
Let W be a Banach space. The dual space of W is denoted by W∗. For a given set A ∈ P(W), the distance
function d(·,A) and the support function s(·,A) are respectively defined by

d(x,A) = inf{∥x − y∥ : y ∈ A}, x ∈W,

s(x∗,A) = sup{⟨x∗, y⟩ : y ∈ A}, x∗ ∈W∗.

For each pair K,K′ ∈ b(W), the Hausdorff distance between K and K′ defined by

H(K,K′) = inf{λ > 0 : K ⊆ K′ + λBW , K′ ⊆ K + λBW},

where BW is the closed unit ball in W. For any C,C′ ∈ cc(W), we denote by C⊕C′ = C + C′. Some properties
of the Hausdorff distance is in the next proposition.

Proposition 4.1. Let C,C′,K,K′ ∈ bcc(W) and λ > 0. Then, the following properties hold:

(i) H(C ⊕ C′,K ⊕ K′) ≤ H(C,K) +H(C′,K′);
(ii) H(λC, λK) = λH(C,K).

Let W be a Banach space and (bcc(W),⊕,H) be endowed with the Hausdorff distance H. Then,
(bcc(W),⊕,H) is a complete metric semigroup; see [7]. Moreover, Debreu [7] showed that (bcc(W),⊕,H)
is isometrically embedded in a Banach space as follows.

Lemma 4.2. Let C(BW∗ ) be the Banach space of continuous real-valued functions on BW∗ endowed with the uniform
norm ∥ · ∥u. Then, the mapping j : (bcc(W),⊕,H) −→ C(BW∗ ) defined through j(K) = s(·,K) satisfies the following
properties:
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(i) j(A ⊕ B) = j(A) + j(B);
(ii) j(λA) = λ j(A);

(iii) H(A,B) = ∥ j(A) − j(B)∥u;
(iv) j(bcc(W)) is closed in C(BW∗ ).

for all A,B ∈ bcc(W) and all λ ≥ 0.

Let f : X −→ (bcc(W),H) be a set-valued function from a complete finite measure space (X,
∑
, ν) into

bcc(W). Then, f is said to be Debreu integrable if the composition j ◦ f is Bochner integrable [8]. In this case,
the Debreu integral of f in X is the unique element (D)

∫
X f dν ∈ bcc(W) such that j

(
(D)
∫

X f dν
)

is the Bochner
integral of j ◦ f . The set of Debreu integrable functions from X to bcc(W) will be denoted by D(X, bcc(W)).
Moreover, on D(X, bcc(W)), we define ( f + 1)(v) = f (v) ⊕ 1(v) for all f , 1 ∈ D(X, bcc(W)) and so we find that
((X, bcc(W)),+) is an abelian semigroup.

The upcoming theorem was presented in [12] which is useful to our goals for the rest of the paper.

Theorem 4.3. Let (Ω, d) be a complete generalized metric space and J : Ω −→ Ω be a mapping with Lipschitz
constant L < 1. Then, for each element x ∈ Ω, either d(Jnx,Jn+1x) = ∞ for all n ≥ 0, or there exists a natural
number n0 such that

(i) d(Jnx,Jn+1x) < ∞ for all n ≥ n0;
(ii) the sequence {Jnx} is convergent to a unique fixed point z of J which is in the set

Λ = {y ∈ Ω : d(Jn0 x, y) < ∞};

(iii) d(y, z) ≤ 1
1−L d(y,Jy) for all y ∈ Λ.

Definition 4.4. Let V be a vector space, W be a normed space and f : Vn
−→ bcc(W). The set-valued multiadditive

functional equation is defined by

f (x1 + x2) =
⊕

i1,...,in∈{1,2}

f (xi11, . . . , xinn),

for x1, x2 ∈ Vn. Every solution of the set-valued multiadditive functional equation is called a set-valued multiadditive
mapping.

Here, we present the main theorem of this section.

Theorem 4.5. Let β ∈ {−1, 1}, V be a topological vector space and W be a Banach space. Let φ : Vn
×Vn

−→ [0,∞)
be a function such that there exists an L < 1 with

φ(x1, x2) ≤
L

2nβφ
(
2βx1, 2βx2

)
,

for all x1, x2 ∈ Vn. Suppose that a mapping f : Vn
−→ (bcc(W),H) satisfying

H

 f (x1 + x2),
⊕

i1,...,in∈{1,2}

f (xi11, . . . , xinn)

 ≤ φ(x1, x2), (14)

for all x1, x2 ∈ Vn. If r and M are positive real numbers with r , n and diam f (x) ≤M
∑n

j=1 ∥x1 j∥
r for all x = x1 ∈ Vn,

then there exists a unique set-valued multiadditive mappingA : Vn
−→ (bcc(W),H) such that

H
(

f (x),A(x)
)
≤

L
β+1

2

2n(1 − L)
φ(x, x), (15)

for all x ∈ Vn.
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Proof. We first bring the proof for the case β = 1 and r > n. Putting x1 = x2 = x in (14) and using the
convexity of f (x), we have

H
(

f (2x), 2n f (x)
)
≤ φ(x, x), (16)

and so

H
(

f (x), 2n f
(x

2

))
≤ φ
(x

2
,

x
2

)
≤

L
2nφ(x, x), (17)

for all x ∈ Vn (and for the rest of this proof, all the equations and inequalities are valid for all x ∈ Vn). Set
Ω := { f : Vn

−→ bcc(W)| f (0, . . . , 0) = {0}}. Consider the generalized metric d on Ω as follows:

d(1, h) := inf{λ1,h ∈ (0,∞) : H(1(x), h(x)) ≤ λ1,hφ(x, x), x ∈ Vn
},

where as usual inf ∅ = ∞. Similar to the proof of [5, Theorem 2.2] and [21, Lemma 2.1] (see also the proof of
[25, Theorem 2.3]), one can show that (Ω, d) is a complete generalized metric space. We define a mapping
J : Ω −→ Ω via

J f (x) := 2n f
(x

2

)
.

for all x ∈ Vn. We show that J is a strictly contractive operator with the Lipschitz constant L. To do this,
take 1, h ∈ Ω and λ1,h ∈ (0,∞) with d(1, h) = λ1,h. Then, H(1(x), h(x)) ≤ λ1,hφ(x, x) and hence

H(J1(x),Jh(x)) = H
(
2n1

(x
2

)
, 2nh

(x
2

))
= 2nH

(
1

(x
2

)
, h
(x

2

))
≤ 2nλ1,hφ

(x
2
,

x
2

)
≤ λ1,hLφ(x, x).

Therefore, d(J1,Jh) ≤ λ1,hL. This shows that d(J1,Jh) ≤ Ld(1, h), as claimed. Let us next observe that
from (17) it follows that

d(J f (x), f (x)) ≤
L
2n .

We can now apply Theorem 4.3 for the space (Ω, d), the operator J , n0 = 0 and x = f to deduce that
the sequence (J l f )l∈N is convergent in (Ω, d) and its limit, A is a unique fixed point of J in the set
Λ = {1 ∈ Ω : d(1, f ) < ∞}. In other words,A(x) = liml→∞J

l f (x) = liml→∞ 2nl f
(

x
2l

)
and

A(x) =
1
2nA(2x). (18)

Moreover, there exists a λ ∈ (0,∞) satisfying H( f (x),A(x)) ≤ λφ(x, x). Next, note that f ∈ Λ and therefore,
part (iii) of Theorem 4.3 implies that

d( f ,A) ≤
1

1 − L
d(J f (x), f (x)) ≤

L
2n(1 − L)

,

which proves (15). We now have

H

A(x1 + x2),
⊕

i1,...,in∈{1,2}

A(xi11, . . . , xinn)


= lim

l→∞
2nlH

 f
(x1 + x2

2l

) ⊕
i1,...,in∈{1,2}

f
( 1

2l

(
xi11, . . . , xinn

))
≤ lim

l→∞
2nlφ
(x1

2l
,

x2

2l

)
= 0,
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for all x1, x2 ∈ Vn. On the other hand, we have diam f (x) ≤M
∑n

j=1 ∥x1 j∥
r and so

diam
(
2nl f
( x

2l

))
≤M

2nl

2rl

n∑
j=1

∥x1 j∥
r.

Therefore,A(x) = 2nl f
(

x
2l

)
is a singleton set and

A(x1 + x2) =
⊕

i1,...,in∈{1,2}

A
(
xi11, . . . , xinn

)
,

for all x1, x2 ∈ Vn.
For the case β = −1 and r < n, from (16), we have

H
(

f (x),
1
2n f (2x)

)
≤

1
2nφ(x, x).

The rest of the proof is similar to the previous part.

Corollary 4.6. Let p be a positive real number such that p , n, θ ≥ 0 be real numbers, and V be a real normed space.
Suppose that f : Vn

−→ (bcc(W),H) is a mapping satisfying

H

 f (x1 + x2),
⊕

i1,...,in∈{1,2}

f (xi11, . . . , xinn)

 ≤ θ 2∑
i=1

n∑
j=1

∥xi j∥
p,

for all x1, x2 ∈ Vn. If r and M are positive real numbers with r , n and diam f (x) ≤M
∑n

j=1 ∥x1 j∥
r for all x = x1 ∈ Vn,

then there exists a unique set-valued additive mappingA : Vn
−→ (bcc(W),H) such that

H
(

f (x),A(x)
)
≤

2θ
|2n − 2p|

n∑
j=1

∥x1 j∥
p,

for all x ∈ Vn.

Proof. The proof follows from Theorem 4.5 by taking L = 2−|n−p| and φ(x1, x2) = θ
∑2

i=1
∑n

j=1 ∥xi j∥
p.

Questions and Remarks

The current work provides guidelines for further research and proposals for new directions and open
problems with relevant discussions. Here, we give some questions and information on the connections
between the fixed point theory and the Hyers-Ulam stability.

(1) What are the set-valued solutions of a multi-quadratic mapping?
(2) How to establish the Hyers-Ulam stability of the set-valued multi-Jensen and multi-quadratic map-

pings by applying a fixed point theorem? What about the multi-cubic mappings?
(3) Following Senasukh and Saejung [33], one can discuss the stability of multiadditive and multi-

quadratic mappings on certain groupoids.
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