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Fractional Hunkel transform of generalized function
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Abstract. In this paper, we introduce the fractional Hankel transform in the space of test functions, and
we prove some of its properties. In addition, we define this transform in slowly growing distributions
space,i.e., in dual space of test functions space. As application, some examples are given to illustrate the
theoretical results.

1. Introduction

In the mathematical literature, a generalization of the Hankel transform, known as the fractional
Hankel transform, was introduced a few years ago. This transform has found extensive application in di-
verse challenges within mathematical physics and applied mathematics. Notable applications span various
domains including signal processing, optics, and quantum mechanics, as comprehensively documented in
references [1, 4–8]. Kerr [2] introduced a fractional Hankel transform that depends on a parameter α in
L2(R+). This transform, which is a generalization of the classical Hankel transform, is defined by

hµ,α f (y) =
∫
∞

0
f (x)Kα(x, y)dx,

where the Kernel Kα(x, y) is given by

Kα(x, y) = Aµ,αe−
i
2 (x2+y2) cot α2

(
xy
| sin α2 |

)1/2

Jµ

(
xy
| sin α2 |

)
,

where Jµ is the Bessel function of the first kind and order µ and α̂ = s1nα, f ∈ L2(R+), α ∈ R \ {2kπ}, k ∈ Z,
Aµ,α = | sin α2 |

−
1
2 ei( π2 α̂−

α
2 )(µ+1) and µ > 1. For α = π, we get the classical Hankel transform

hµ f (y) =
∫
∞

0

√
xy f (x)Jµ(xy)dx

Zemanian investigated the Hankel transform on distributions of slow growth in [11] and on distributions
of rapid growth in [9], something that apparently had not been done before. To define the Hankel transform
on the distribution, Zemanian introduced the functional spaceHµ.
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Based on the work of Zemanian[11] and from the works cited before, we extend the fractional Hankel
transform to function test, i.e. in the spaceHµ. Additionally, we introduce the fractional Hankel transform
of generalized functions in H ′µ the dual space of Hµ. Our main achievement lies in the extension of this
transform to the space of distributionH ′µ. Furthermore, we prove some properties of this transform in the
framework of these spaces.

This article is structured as follows: section 2, recalls the definitions of the spacesHµ andH ′µ, together
with a discussion of their main properties. In section 3, our main objectives are divided into two steps: firstly,
to define the concept of fractional Hankel transform and, secondly, to prove that it is an homeomorphism
on the spaceHµ when µ ≥ − 1

2 . In section 4, we introduce the fractional Hankel transform in the context of
H
′
µ and some fundamental properties of this transform are proved.

2. Prelimanaries

In this section, we present the spaces of functions and generalized functions that we consider later.

2.1. The Testing-Function SpaceHµ
Let I = (0,∞). For each real number µwe define the spaceHµ as follows

Hµ =
{
ϕ : I→ C/ ϕ ∈ C∞(I), ∀m,n ∈N, γµm,k(ϕ) < ∞

}
,

where γµm,k(ϕ) = sup
x∈I

{
(1 + x2)m

|(
1
x

D)k[x−µ−1/2ϕ(x)]|
}
.

The spaceHµ is linear. Moreover, each γµm,k is a seminorm onHµ and since the γµm,0 are norms, so the set
{γ
µ
m,k}

∞

m,k=0 is a multinorm. The topology onHµ is produced by the set {γµm,k}
∞

m,k=0.

Lemma 2.1. [10, p:130-131] ϕ ∈ Hµ if and only if it satisfies the following three conditions:

i) ϕ ∈ C∞(I).

ii) For each nonnegative integer k,

ϕ(x) = xµ+
1
2

[
a0 + a2x2 + ... + a2kx2k + R2k(x)

]
,

where
a2k =

1
k!2k

lim
x→0+

(x−1D)kx−µ−
1
2ϕ(x) and (x−1D)kR2k(x) = Ox→0+ (1).

iii) For each nonnegative integer k, Dkϕ(x) is of rapid descent as x→ ∞ (i.e Dkϕ(x) tends to zero faster than any
power of 1

x as x→∞).

Remark 2.2. For any fixed y ∈ I, the function
(

xy
| sin α2 |

)1/2
Jµ

(
xy
| sin α2 |

)
satisfies conditions i) and ii) of Lemma 2.1.

However, it does not satisfy the condition iii). On the other hand, from [3, p:134 and p:147] we get(
xy
| sin α2 |

)1/2

Jµ

(
xy
| sin α2 |

)
∼

√
2
π

cos(
xy
| sin α2 |

−
µπ

2
−
π
4

), x→∞.

Hence,
(

xy
| sin α2 |

)1/2
Jµ

(
xy
| sin α2 |

)
< Hµ.

Lemma 2.3. [10, p:131] The spaceHµ is complete and therefore a Frechet space.

From the previous discussion, the authors demonstrated thatHµ is a space of test functions.
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2.2. Distribution spaceH ′µ

H
′
µ denotes the dual ofHµ. According to [10, Theorem 1.8-3],H ′µ is also complete. The members ofH ′µ

are the generalized functions on which our fractional Hankel transform will be defined. Furthermore,Hµ
can be identified with a subspace ofH ′µ when µ ≥ − 1

2 .
Now, we list some other properties ofHµ andH ′µ, which will be useful for us in the future.

1. It is clear that D(I) is a subspace of Hµ for every choice of µ, and that convergence in D(I) implies
convergence inHµ. Consequently, the restriction of any f ∈ H ′µ toD(I) is a member ofD′(I). However,
D(I)is not dense inHµ.

2. If q is an even positive integer, thenHµ+q ⊂ Hµ and the topology ofHµ+q is stronger than that induced
on it byHµ.

3. For each µ,Hµ is clearly a subspace of C∞(I). Moreover, it is dense in C∞(I). Moreover, the topology
ofHµ is stronger than that induced on it by C∞(I).

Multipliers inHµ : Let O denote the linear space of all smooth functions θ defined on I such that for each

nonnegative integer ν, there is an integer nν for which (x−1D)νθ(x)
1+xnν is bounded for all x ∈ I. The product of any

two members of O is also in O.
Any θ ∈ O is a multiplier forHµ for every µ. Indeed, for ϕ ∈ Hµ, we have

(x−1D)kx−µ−
1
2 θϕ =

k∑
ν=0

(
k
ν

)
(x−1D)νθ
1 + xnν

(1 + xnν )(x−1D)k−νx−µ−
1
2ϕ.

Then,

γµm,k(θϕ) ≤
k∑
ν=0

(
k
ν

)
Bν[γ

µ

m,k−ν(ϕ) + γµm+nν ,k−ν
(ϕ)],

where the Bν are constants. This prove that the linear operator ϕ→ θϕ is a continuous mapping ofHµ into
itself.

Multipliers inH ′µ : The adjoint operator f → θ f ,which is defined onH ′µ by

⟨θ f , ϕ⟩ = ⟨ f , θϕ⟩, f ∈ H ′µ, ϕ ∈ Hµ, θ ∈ O,

is a continuous linear mapping ofH ′µ into itself.

3. Fractional Hankel tranform of generalized functions

In this section, our main objectives are divided into two steps: first, to introduce the concept of the
fractional Hankel transform, and second, to prove that it is an homeomorphism on the space Hµ. To
achieve the second objective, we will construct certain transform operations, namely the linear differential
operators Mµ and Nµ in the spaceHµ, and the linear operators Pµ and Qµ withinHµ+1. We will utilize these
operations to obtain specific properties of the fractional Hankel transform.

Let µ ≥ − 1
2 , we define the fractional Hankel transform hµ,α by

hµ,αϕ(y) =
∫ +∞

0
ϕ(x)Aµ,αe−

i
2 (x2+y2) cot α2

(
xy
| sin α2 |

)1/2

Jµ

(
xy
| sin α2 |

)
dx,

for every x ∈ I and ϕ ∈ Hµ.
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Now, we define the linear differential operators Mµ, Nµ, Pµ and Qµ by

Mµϕ(x) = xµ+
1
2 e

i
2 x2 cot α2 Dxx−µ−

1
2 e−

i
2 x2 cot α2 ϕ(x).

Nµϕ(x) = xµ+
1
2 e−

i
2 x2 cot α2 Dxx−µ−

1
2 e

i
2 x2 cot α2 ϕ(x),

Pµϕ(x) = x−µ−
1
2 e

i
2 x2 cot α2 Dxxµ+

1
2 e−

i
2 x2 cot α2 ϕ(x),

Quϕ(x) = x−µ−
1
2 e−

i
2 x2 cot α2 Dxxµ+

1
2 e

i
2 x2 cot α2 ϕ(x).

Next, we need the following lemmas

Lemma 3.1. Nµ and Mµ are a continuous linear mappings ofHµ intoHµ+1.

Proof. for ϕ ∈ Hµ and any choice for m and k,

γµ+1
m,k (Nµϕ) = sup

0<x<∞
|xm(x−1D)k[x−1e−

i
2 x2 cot α2 Dxx−µ−

1
2 e

i
2 x2 cot α2 ϕ(x)]

= sup
0<x<∞

|i cot
α
2

xm(x−1D)k[x−µ−1ϕ(x)] + xm(x−1D)k+1[x−µ−
1
2ϕ(x)]

≤ | cot
α
2
|γµm,k(ϕ(x)) + γµm,k+1(ϕ(x))

Similarly, we prove that Mµ is a continuous linear mapping ofHµ intoHµ+1.

Lemma 3.2. Pµ and Qµ are a continuous linear mappings ofHµ+1intoHµ.

Proof. for ϕ ∈ Hµ+1 and any choice for m and k, sinceHµ+1 ⊂ Hµ−1, then

γµm,k(Pµϕ) = sup
0<x<∞

|xm(x−1D)k[x−2µ−1e
i
2 x2 cot α2 Dxxµ+

1
2 e−

i
2 x2 cot α2 ϕ]|

= sup
0<x<∞

|(2µ + 2)xm(x−1D)kx−µ−
3
2ϕ

+ i cot
α
2

xm(x−1D)kx2x−µ−
3
2 + xm(x−1D)kx2(x−1D)(x−µ−

3
2ϕ)|

≤ (2µ + 2)γµ+1
m,k (ϕ) + | cot

α
2
|γµ+1

m,k (ϕ) + γµ+1
m+2,k+1(ϕ)

Similarly, we prove that Qµ is a continuous linear mapping ofHµ+1 intoHµ.

Proposition 3.3. Let ϕ ∈ Hµ such that µ ≥ − 1
2 , then

i) Nµhµ,α(ϕ) = hµ+1,α(− x
| sin α2 |

ϕ(x)),

ii) hµ+1,α(Mµϕ) = − y
| sin α2 |

hµ,α(ϕ(x)).

If ϕ ∈ Hµ+1, then

iii) Qµhµ+1,α(ϕ) = hµ,α( x
| sin α2 |

ϕ)

iv) hµ,α(Pµϕ) = y
| sin α2 |

hµ+1,α(ϕ)
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Proof. i) From [3, p:154], we can get

Dy y−µ Jµ(xy) = −xy−µ Jµ+1(xy)

and differentiating under an integral sign as follows

Nµhµ,α(ϕ)(y) =
∫
∞

0
Aµ,α(

−x
| sin α2 |

)ϕ(x)e−
i
2 (x2+y2) cot α2 (

xy
| sin α2 |

)1/2 Jµ+1(
xy
| sin α2 |

)dx

= hµ+1,α(−
x

| sin α2 |
ϕ(x))

ii) According to [3, p:154], we obtain

Dxxµ+1 Jµ+1(xy) = yxµ+1 Jµ(xy)

and an integration by parts, we can get

hµ+1,α(Mµϕ)(y) =
[
Aµ,αe−

i
2 (x2+y2) cot α2 ϕ(x)(

xy
| sin α2 |

)1/2 Jµ+1(
xy
| sin α2 |

)
]∞

0

−
y

| sin α2 |

∫
∞

0
Aµ,αe−

i
2 (x2+y2) cot α2 ϕ(x)(

xy
| sin α2 |

)1/2 Jµ(
xy
| sin α2 |

)dx.

The limit terms are equal to zero since ϕ(x) is of rapid descent as x→∞ and as x→ 0+(From Lemma 2.1),
( xy
| sin α2 |

)1/2 Jµ+1( xy
| sin α2 |

) = O(x) and ϕ(x) = O(1) when µ ≥ − 1
2 . Then,

hµ+1,α(Mµϕ)(y) = −
y

| sin α2 |
hµ,α(ϕ(x)).

iii) From [3, p:154], we can get

Dy yµ+1 Jµ+1(xy) = xyµ+1 Jµ(xy).

Then,

Qµhµ+1,α(ϕ)(y) = y−µ−
1
2 e−

i
2 y2 cot α2

∫
∞

0
Aµ,α(

x
| sin α2 |

)1/2e−
i
2 x2 cot α2 Dy[yµ+1 Jµ+1(

xy
| sin α2 |

)]dx

=

∫
∞

0
Aµ,α(

x
| sin α2 |

)ϕ(x)e−
i
2 (x2+y2) cot α2 (

xy
| sin α2 |

)1/2 Jµ(
xy
| sin α2 |

)dx

= hµ,α(
x

| sin α2 |
ϕ(x))

iv) From [3, p:154], we can get

Dxx−µ Jµ(xy) = −yx−µ Jµ+1(xy)

and an integration by parts ,we obtain

hµ,α(Pµϕ)(y) =
∫
∞

0
Aµ,αxµ+

1
2 e−

i
2 y2 cot α2 Dx[xµ+

1
2 e−

i
2 x2 cot α2 ϕ(x)](

xy
| sin α2 |

)
1
2 Jµ(

xy
| sin α2 |

)dx

=
[
Aµ,αe−

i
2 (x2+y2) cot α2 ϕ(x)(

xy
| sin α2 |

)1/2 Jµ(
xy
| sin α2 |

)
]∞

0

+
y

| sin α2 |

∫
∞

0
Aµ,αe−

i
2 (x2+y2) cot α2 ϕ(x)(

xy
| sin α2 |

)1/2 Jµ+1(
xy
| sin α2 |

)dx.

According to Lemma 2.1, the limit terms are equal to zero since ϕ(x) is of rapid descent as x → ∞ and as
x→ 0+, ( xy

| sin α2 |
)1/2 Jµ(

xy
| sin α2 |

) = O(x) and ϕ(x) = O(1) when µ ≥ − 1
2 .

Then,

hµ+1,α(Pµϕ)(y) =
y

| sin α2 |
hµ+1,α(ϕ(x)).
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Theorem 3.4. For µ ≥ − 1
2 , the fractional Hankel transform hµ,α : Hµ −→ Hµ is an homeomorphism .

Proof. Let ϕ ∈ Hµ, and let m and k be two non-negative integers. By applying i) of Proposition 3.3 k times
and ii) of Proposition 3.3 m times, we obtain

(
−y
| sin α2 |

)m(Nµ+k+m−1...Nµ+mhµ,α(ϕ))(y) = (
−y
| sin α2 |

)mhµ+k+m(
−x
| sin α2 |

)kϕ(x))

= hµ,α[Mµ+m+k...Mµ+k)((
−x
| sin α2 |

)kϕ(x)].

Noting that,

Nµ+k+m−1...Nµ+m+1Nµ+mxkϕ(x) = xkNµ+k−1...Nµ+1Nµϕ(x)

and

Mµ+m+k−1...Mµ+k+1Mµ+kxkϕ(x) = xkMµ+m...Mµ+1Mµϕ(x).

Then,

(
−y
| sin α2 |

)m(Nµ+k−1...Nµhµ,α(ϕ))(y) =
∫
∞

0
(
−x
| sin α2 |

)k[Mµ+m...Mµϕ(x)]Aµ,αe−
i
2 (x2+y2) α2 (

xy
| sin α2 |

)
1
2 Jµ+k+m(

xy
| sin α2 |

)dx.

Since,

Nµ+k−1...Nµhµ,α(ϕ))(y) = yµ+k+ 1
2 e−

i
2 y2 cot α2 (y−1Dy)k[y−µ−

1
2 e

i
2 y2 cot α2 hµ,α(ϕ)]

and

Mµ+m...Mµϕ(x) = xµ+m+ 1
2 e

i
2 x2 cot α2 (x−1Dx)m[x−µ−

1
2 e−

i
2 x2 cot α2 ϕ(x)].

Then,

(−1)m+k ym(y−1Dy)k[y−µ−
1
2 e

i
2 y2 cot α2 hµ,α(ϕ)] = Aµ,α(

1
| sin α2 |

)µ+2k−m+ 1
2

×

∫
∞

0
x2µ+2k+m+1(x−1Dx)m[x−µ−

1
2 e−

i
2 x2 cot α2 ϕ(x)]

Jµ+k+m( xy
| sin α2 |

)

( xy
| sin α2 |

)µ+k
dx.

Assume that n is an integer no less than µ + k + 1
2 (m + 1), then

x2µ+2k+m+1 < (1 + x2)n,

for x > 0. Since µ ≥ − 1
2 , so

Jµ+k+m( xy
| sin α2 |

)

( xy
| sin α2 |

)
is bounded on 0 < xy < ∞ by the constant Ck,m. Then,

γµm,k
(
e

i
2 y2 cot α2 hµ,α(ϕ)

)
≤ Aµ,α(

1
| sin α2 |

)µ+2k−m+ 1
2

×

∫
∞

0
(1 + x2)n+1(x−1Dx)m[x−µ−

1
2 e−

i
2 x2 cot α2 ϕ(x)]

Ck,m

1 + x2 dx

≤
π
2

Aµ,αCk,m(
1

| sin α2 |
)µ+2k−m+ 1

2

n+1∑
p=0

(
n + 1

p

)
γµ2p,m(e−

i
2 x2 cot α2 ϕ).

Since ϕ ∈ Hµ, the last term is finite. This prove that e
i
2 y2 cot α2 hµ,α(ϕ) ∈ Hµ.

We multiply by e−
i
2 y2 cot α2 , we can find that hµ,α(ϕ) ∈ Hµ and this linear mapping is also continuous from

Hµ intoHµ.
Furthermore, the classical inversion theorem [2, Theorem 3.2] applies in this case sinceHµ ⊂ L2(0,∞) when
µ ≥ − 1

2 . Also, hµ,−α = h−1
µ,α.

Hence, hµ,α is an homeomorphism onHµ.
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Example 3.5.

hµ,α(yµ+
1
2 ) =

∫
∞

0
xµ+

1
2 Aµ,αe−

i
2 (x2+y2) cot α2

(
xy
| sin α2 |

)1/2

Jµ

(
xy
| sin α2 |

)
dx

= Aµ,αe−
i
2 y2 cot α2

(
y

| sin α2 |

)1/2 ∫
∞

0
e−

i
2 x2 cot α2 xµ+

1
2 Jµ

(
xy
| sin α2 |

)
dx

= Aµ,αe−
i
2 y2 cot α2

(
y

| sin α2 |

)1/2 yµ

(i cot α2 )µ+1 e
−y2

2i cot α2

= Aµ,αe−
i
2 y2 cot α2

( y
| sin α2 |

)µ+
1
2

(i cot α2 )µ+1 e
i
2 ( y

sin α2
)2 cot α2

4. A distributional fractional Hankel transform

In this section, we define the fractional Hankel transform for some slowly growing distributions. Let µ
be a real number such that − 1

2 ≤ µ < ∞, the fractional Hankel transform h∗µ,α onH ′µ as the adjoint of hµ,α on
Hµ is defined by

⟨h∗µ,α( f ), hµ,α(ϕ)⟩ = ⟨ f , ϕ⟩, for all ϕ ∈ Hµ, f ∈ H ′µ. (1)

From this equality we immediately obtain the uniquness of h∗µ,α.

Lemma 4.1. Let f , 1 ∈ H ′µ, such that ⟨h∗µ,α( f ), hµ,α(ϕ)⟩ = ⟨h∗µ,α(1), hµ,α(ϕ)⟩ for all ϕ ∈ Hµ. Then, f = 1 in the sense
of distributions.

Theorem 4.2. The fractional Hankel transform h∗µ,α : H ′µ −→ H ′µ is an homeomorphism.

Proof. Since hµ,−α = h−1
µ,α onHµ and from [10, Theorem 1.10-2.p29], we obtain that (h∗µ,α)−1 = h∗µ,−α

The fractional Hankel transform hµ,α of order µ ≥ − 1
2 , when acting on a function f ∈ L2(R+), is a special

case of our generalized fractional Hankel transform. Indeed, let

Fc(y) = hµ,α f =
∫ +∞

0
f (x)Aµ,αe−

i
2 (x2+y2) cot α2

(
xy
| sin α2 |

)1/2

Jµ

(
xy
| sin α2 |

)
dx,

where µ ≥ − 1
2 and f ∈ L2(R+). It is clear that Fc is both continuous and bounded on I.

According to [10, Note V. p133], Fc generates a regular generalized function in H ′µ. Morover, let F = h∗µ,α f
and Φ = hµ,αϕ = h−1

µ,−αϕ, by the formula (1) we can get

⟨F,Φ⟩ = ⟨ f , ϕ⟩ =
∫
∞

0
f (x)ϕ(x)dx, for all ϕ ∈ Hµ.

Since Φ ∈ Hµ ⊂ L2(R+) when µ ≥ − 1
2 , we may invoke Parseval’s equation [10, Eq(3). p127] to write∫

∞

0
f (x)ϕ(x)dx =

∫
∞

0
Fc(y)Φ(y)dy.

Therfore,

⟨F,Φ⟩ =
∫
∞

0
Fc(y)Φ(y)dy.

Then, we can identify F = h∗µ,α with Fc = hµ,α under suitable conditions on f when µ ≥ − 1
2 . Thus, the

definition (1) of the generalized fractional hankel transform becomes

⟨hµ,α( f ), hµ,α(ϕ)⟩ = ⟨ f , ϕ⟩, for all ϕ ∈ Hµ, f ∈ H ′µ.
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4.1. Some operations on transform formulas:
In H ′µ we introduce the differential operators descried in section 3, when they are acting on certain

generalized functions. In order to establish certain properties cited in Proposition 3.3 for the generalized
fractional Hankel transform inH ′µ.

Let ϕ ∈ Hµ+1, then P∗µϕ,Q∗µϕ ∈ Hµ. The operators N∗µ and M∗
µ are defined onH ′µ as follows

⟨N∗µ f , ϕ⟩ = ⟨ f ,−P∗µϕ⟩, for all f ∈ H ′µ.

⟨M∗

µ f , ϕ⟩ = ⟨ f ,−Q∗µϕ⟩, for all f ∈ H ′µ.

By Lemma 3, f → N∗µ f and f →M∗
µ f are a continuous linear mapping ofH ′µ intoH ′µ+1.

Similary,for ϕ ∈ Hµ we define Q∗µ and P∗µ onH ′µ+1 by

⟨Q∗µ f , ϕ⟩ = ⟨ f ,−M∗

µϕ⟩, for all f ∈ H ′µ+1.

⟨P∗µ f , ϕ⟩ = ⟨ f ,−N∗µϕ⟩, for all f ∈ H ′µ+1.

It is clear that M∗
µϕ,N∗µϕ ∈ Hµ+1 and by Lemma 3.2, f → Q∗µ f and f → P∗µ f are a continous linear mapping

ofH ′µ+1 intoH ′µ.

From [10, Note V,p133], we haveHµ ⊂ H ′µ when µ ≥ −1
2 ; in this case, the generalized fractional Hankel

transformation h∗µ,α, the generalized operators M∗
µ and N∗µ when acting on Hµ, can be identified with hµ,α,

Mµ and Nµrespectively. Similary for the generalized operators P∗µ and Q∗µ when acting onHµ+1.

h∗µ,αϕ = hµ,αϕ, ∀ϕ ∈ Hµ.

M∗

µϕ =Mµϕ, ∀ϕ ∈ Hµ.

N∗µϕ = Nµϕ, ∀ϕ ∈ Hµ.

P∗µϕ = Pµϕ, ∀ϕ ∈ Hµ+1.

Q∗µϕ = Qµϕ, ∀ϕ ∈ Hµ+1.

We use these equalities and the properties of Proposition 3.3 to prove the following theorem

Theorem 4.3. Let µ ≥ − 1
2 and f ∈ H ′µ,then

i) h∗µ+1,α(N
∗
µ f ) = − y

| sin α2 |
h∗µ,α( f )

ii) N∗µh∗µ,α( f ) = h∗µ+1,α(−
x

| sin α2 |
f )

If f ∈ H ′µ+1, then

iii) h∗µ,α(Q∗µ f ) = y
| sin α2 |

h∗µ+1,α( f )

iv) Q∗µh∗µ+1,α( f ) = h∗µ,α(
x

| sin α2 |
f )

Proof. i) Let ϕ ∈ Hµ+1 and Φ = hµ+1,α(ϕ). SinceH ′µ−1 ⊂ H
′

µ+1. Then,

⟨h∗µ+1,α(N
∗

µ f ),Φ⟩ = ⟨N∗µ f , ϕ⟩

= ⟨ f ,−P∗µϕ⟩

= ⟨h∗µ,α( f ),
−y
| sin α2 |

Φ⟩

= ⟨
−y
| sin α2 |

h∗µ,α( f ),Φ⟩.
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ii) Let F = h∗µ,−α( f ) and note that h∗µ,αh∗µ,−α is the identity operator. Then,

N∗µh
∗

µ,αF = h∗µ+1,αh
∗

µ+1,−αN
∗

µ f

= h∗µ+1,α(−
y

| sin α2 |)
h∗µ,−α( f )

= h∗µ+1,α(−
y

| sin α2 |
F).

So we get the result, just take F= f and y=x.
iii) Let ϕ ∈ Hµ+1 and hµ,α(ϕ) = Φ. Then,

⟨h∗µ,α(Q
∗

µ f ),Φ⟩ = ⟨Q∗µ f , ϕ⟩

= ⟨ f ,−M∗

µϕ⟩

= ⟨h∗µ+1,α( f ),
y

| sin α2 |)
Φ⟩

= ⟨
y

| sin α2 |)
h∗µ+1,α( f ),Φ⟩.

iv) Let F = h∗µ+1,−α f . Then,

Q∗µh
∗

µ+1,α(F) = h∗µ,αh
∗

µ,−αQ
∗

µ f

= h∗µ,α(
y

| sin α2 |
h∗µ+1,−α( f ))

= h∗µ,α(
y

| sin α2 |
F).

By replacing F by f and y by x, we obtain the result .

Example 4.4. Let τ be a real positive number and ϑ a nonnegative integer. The generalized function δϑ is defined on
Hµ by

⟨δϑ(x − τ), ϕ(x)⟩ = (−1)ϑϕϑ(τ), ϕ ∈ Hµ

Clearly, δϑ(x − τ) ∈ H ′µ for µ ≥ − 1
2 and

h∗µ,αδ
ϑ(x − τ) = (−1)ϑDϑτ [Kα(x, τ)].

where Dϑτ is a conventional differentiation of ϑ th order. Indeed, for ϕ ∈ Hµ and Φ = hµ,αϕ,

⟨δϑ(y − τ),Φ(y)⟩ = (−1)ϑDϑτ [h
∗

µ,αϕ(τ)] = ⟨(−1)ϑDϑτ [Kα(x, τ)], ϕ(x)⟩.

Thus, we have

h∗µ,αD
ϑ
τ [Kα(x, τ)] = (−1)ϑδϑ(y − τ).

Since h∗µ,α = (h∗µ,α)−1, then

h∗µ,αδ
ϑ(x − τ) = (−1)ϑDϑτ [Kα(y, τ)].

For α = π, we obtain

h∗µ,πδ
ϑ(x − τ) = (−1)ϑDϑτ [

√
τyJµ(τy)],
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Example 4.5. The function f is defined onHµ by

⟨ f , 1⟩ =
+∞∑
n=1

∫
∞

0
ϕ(x)Kα(x,nT)dx,

where µ ≥ − 1
2 , ϕ ∈ Hµ and T is a real positive number. We prove that f ∈ H ′µ. For ϕ ∈ Hµ andΦ = hµ,αϕ, we have

⟨ f , 1⟩ =
+∞∑
n=1

⟨Kα(x,nT), ϕ(x)⟩

=

+∞∑
n=1

hµ,αϕ(nT)

=

+∞∑
n=1

Φ(nT)

= ⟨

+∞∑
n=1

δ(y − nT),Φ(y)⟩.

Then, f ∈ H ′µ and h∗µ,α f (x) =
∑+∞

n=1 δ(y − nT).
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