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Abstract. In this paper, by aid of the derivative of a particular class of generating functions for Frobenius-
Euler type Simsek numbers and polynomials, we obtain some formulas. Moreover, we derive some
Riemann integral and p-adic integral formulas for the Frobenius-Euler type Simsek polynomials mentioned
above. We also construct a Szasz-type linear positive operator by using generating function for Frobenius-
Euler type Simsek polynomials. Finally, some numerical results of this operator with convergence properties
associated with the rate of modulus are presented.

1. Introduction

Throughout this study, the results are given by assuming that N, Z, N0 = N ∪ {0}, R, and C denotes
respectively the set of positive integers, the set of integers, the set of non-negative integers, the set of real
numbers, and the set of complex numbers.

The Stirling numbers of the first kind, S1 (n, k), are defined by the following generating function:

(ln (1 + t))k

k!
=

∞∑
n=k

S1 (n, k)
tn

n!
, (k ∈N0) (1)

so that,

(x)n =

n∑
k=0

S1 (n, k) xk (2)

(cf. [7, 8, 34, 35]; see also the references cited therein).
The Stirling numbers of the second kind, S2(n, k), are defined by(

et
− 1

)k

k!
=

∞∑
n=0

S2(n, k)
tn

n!
, (3)
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and an explicit formula for these numbers are given as follows:

S2(n, k) =
1
k!

k∑
j=0

(−1)k− j
(
k
j

)
jn (4)

which satisfy the following recurrence relation:

S2(n + 1, k) = S2(n, k − 1) + kS2(n, k)

with

S2(0, 0) = 1, S2(n, k) = 0 if k > n, S2(n, 0) = 0 if n > 0

(cf. [11], [24], [26], [35]; and the references cited therein).
The Apostol-Bernoulli numbers, denoted byBn(λ), are defined by the following generating function (cf.

[1]):

FB (ω, λ) :=
t

λet − 1
=

∞∑
n=0

Bn(λ)
tn

n!
, (5)

(λ ∈ C; |t| < 2π if λ = 1 and |t| < | ln (λ) | if λ , 1)

which, when λ = 1, reduces to the following generating function of the Bernoulli numbers of the first kind,
denoted by Bn:

t
et − 1

=

∞∑
n=0

Bn
tn

n!
, (t < |2π|) (6)

(cf. [1]-[36]).
The Apostol-Euler numbers of the first kind En(λ) , are defined by the following generating function (cf.

[35]).

FE (ω, λ) =
2

λet + 1
=

∞∑
n=0

En(λ)
tn

n!
, (7)

(λ ∈ C; |t| < π if λ = 1 and |t| < | ln (−λ) | if λ , 1)

which, when λ = 1, reduces to the following generating function of the Euler numbers of the first kind,
denoted by En:

2
et + 1

=

∞∑
n=0

En
tn

n!
, (t < |π|) (8)

(cf. [8]-[36]).
The Frobenius–Euler numbers and polynomials are defined by, respectively:

1 − u
et − u

=

∞∑
n=0

Hn (u)
tn

n!
, (9)

and

1 − u
et − u

etx =

∞∑
n=0

Hn (x; u)
tn

n!
,

where u ∈ C \ {1} (cf. [6, 17, 18, 20, 30–32]; and the references cited therein).
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1.1. Frobenius-Euler type Simsek numbers and polynomials
The Frobenius-Euler type Simsek polynomials ℓn(x; v) are defined by the following generating functions:

Fℓ (x; t, v) :=
tv

v−1∏
j=0

(
et − j

) etx =

∞∑
n=0

ℓn(x; v)
tn

n!
(10)

which were recently introduced and investigated by Simsek in [27].
Substituting x = 0 into (10) gives the generating function of the Frobenius-Euler type Simsek numbers

ℓn(v) as follows:

Fℓ (t, v) :=
tv

v−1∏
j=0

(
et − j

) =
∞∑

n=0

ℓn(v)
tn

n!
(11)

which is equivalent to the special case f (t) = et, −→xv = (0, 1, 2, . . . , v − 1) and −→yv = (1, 1, . . . , 1) of the following
meromorphic function:

F1

(
t;−→xv,

−→yv

)
=

tv

h
(
t;−→xv,

−→yv

) , (12)

where

h
(
t;−→xv,

−→yv

)
=

v−1∏
j=0

(
f (t) − x j

)y j
, (13)

f (t) is an analytic function such that t ∈ R (or C); −→xv = (x0, x1, . . . , xv−1) and −→yv = (y0, y1, . . . , yv−1) are v-tuples
such that v ∈N and x j, y j ∈ R with j = 0, 1, . . . , v − 1. See, for detail, [27].

Observe that

ℓn(v) = ℓn(0; v) (14)

and (10) and (11) gives the following other relation between the Frobenius-Euler type Simsek numbers ℓn(v)
and polynomials ℓn(x; v):

ℓn(x; v) =
n∑

j=0

(
n
j

)
x jℓn− j(v) (15)

(cf. [27]; and see also [3, 28]).
Some special values of the numbers ℓn(v) are given as follows:

ℓ0(v) = 0; (∀v ∈N) ,
ℓn(1) = (−1)n+1n; (n ∈N0) (16)
ℓ0(m + 1) = ℓ1(m + 1) = · · · = ℓm−1(m + 1) = 0, (m ∈N)
ℓm(m + 1) , 0, (m ∈N)

(cf. [27]; and see also [3, 28]).
Some properties of the numbers ℓn(v) and polynomials ℓn(x; v) are given below:
The recurrence relation for the numbers ℓn(v) is given as follows:
If v is an odd positive integer, then we have

v∑
j=0

(−1) j+1S1(v, j)
n∑

q=0

(
n
q

)
jn−qℓq(v) =

{
0 if n , v
v! if n = v, (17)
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and, if v is an even positive integer, then we have

v∑
j=0

(−1) jS1(v, j)
n∑

q=0

(
n
q

)
jn−qℓq(v) =

{
0 if n , v
v! if n = v, (18)

(cf. [27]).
Note that the numbers ℓn(v) can be computed recursively by the following computation formula, in-

volving the Apostol-Bernoulli numbers:

ℓn(v) =
1

v − 1

n∑
j=0

(
n
j

)
ℓ j(v − 1)Bn− j

( 1
v − 1

)
(19)

where n ∈N0 and v ∈N \ {1} (cf. [27]).
Note that the numbers ℓn(v) can also be computed recursively by the following computation formula,

involving the Apostol-Euler numbers:

ℓn(v) =
n∑

j=0

(
n
j

)
( j − n)ℓ j(v − 1)

2(v − 1)
En− j−1

( 1
1 − v

)
where n ∈N and v ∈N \ {1} (cf. [27]).

Simsek [27] also showed that the generating functions of the numbers ℓn(v) can be expressed in terms
of the Stirling numbers of the first kind, as follows:

∞∑
n=0

ℓn(v)
wn

n!
=


wv

v∑
j=0

(−1) j+1S1(v, j)e jw
if v is an odd positive integer ,

wv
v∑

j=0
(−1) jS1(v, j)e jw

if v is an even positive integer
(20)

(cf. [27]).

Remark 1.1. For the other relationships of the numbers ℓn(v) with the Bernoulli numbers, the Apostol-Bernoulli
numbers, the Apostol-Euler numbers, the Apostol-Genocchi numbers and polynomials, the Fubini numbers, and the
others, the readers may consult the recent paper [27] of Simsek.

The remainder of this article will be succinctly summarized. In section 2, by using the generating functions
for the special numbers and polynomials, we derive some identities. In section 3, we derive an identity for
special numbers. In section 4, we obtain some theorems between Frobenious-Euler type Simsek polynomials
and special numbers by using integral operators. The last section of this article (Section 5), we construct
Szász-type linear positive operators involving the generating functions of Frobenius-Euler type Simsek
polynomials for a special value. We also investigate convergence properties of these operators.

2. Formulas arising from the derivative of the generating function for the polynomials ℓn(x; v) and the
numbers ℓn(v)

In this section, we obtain some formulas by aid of the derivative of the generating function for the
polynomials ℓn(x; v) and the numbers ℓn(v).

Taking derivative of (10) with respect to x, we obtain the following ordinary differential equation:

d
dx
{Fℓ (x; t, v)} = tFℓ (x; t, v) . (21)
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Using (10), we get

∞∑
n=0

d
dx
{ℓn(x; v)}

tn

n!
=

∞∑
n=0

nℓn−1(x; v)
tn

n!
(22)

Equating coefficients of tn

n! on both sides of the above equation, we have

Theorem 2.1. Let n ∈N. Then we have

d
dx
{ℓn(x; v)} = nℓn−1(x; v). (23)

Remark 2.2. Theorem 2.1 shows that the polynomials ℓn(x; v) forms an Appell sequence. See, for details, [24,
Theorem 2.5.6, p.27].

Recall from [22, Eq. (9)] and [19] that

d
dx

{
x(v)

}
=


x(v)

v−1∑
j=0

1
x− j if v ∈N

0 if v = 0,
(24)

where x(v) denotes the falling factorial defined by

x(v) = x(x − 1)(x − 2) . . . (x − v + 1), (25)

where x ∈ C, n ∈N0 with x(0) = 1 (cf. [1]-[36]).
It is also known from [22, Eq. (11)] that

d
dx

{
x(k)

}
= (x)k Hk (x) ; (k ∈N) (26)

where

Hk (x) =
k−1∑
j=0

1
x − j

which is associated with the harmonic numbers.
Let v ∈N. Taking derivative of (11) with respect to t and also using (24), we obtain

d
dt
{Fℓ (t, v)} =

vtv−1
v−1∏
j=0

(
et
− j

)
− tv

v−1∏
j=0

(
et
− j

) v−1∑
j=0

1
et− j

v−1∏
j=0

(
et − j

)2

which gives the following ordinary differential equation:

d
dt
{Fℓ (t, v)} =

v
t
−

v−1∑
j=0

1
et − j

 Fℓ (t, v) . (27)

By combining the above equation with (11), we have

∞∑
n=0

nℓn(v)
tn−1

n!
=

v
t
−

v−1∑
j=0

1
et − j

 ∞∑
n=0

ℓn(v)
tn

n!
.
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Thus, by (5), we get

∞∑
n=0

nℓn(v)
tn−1

n!
=

v
t
−

 1
et +

1
t

v−1∑
j=1

1
j

∞∑
n=0

Bn

(
1
j

)
tn

n!


 ∞∑

n=0

ℓn(v)
tn

n!
.

Therefore, we have
∞∑

n=0

nℓn(v)
tn−1

n!
= v

∞∑
n=0

ℓn(v)
tn−1

n!
−

∞∑
n=0

(−1)n tn

n!

∞∑
n=0

ℓn(v)
tn

n!

−
1
t

v−1∑
j=1

1
j

∞∑
n=0

Bn

(
1
j

)
tn

n!

∞∑
n=0

ℓn(v)
tn

n!

which, when the Cauchy product is applied, gives

∞∑
n=0

nℓn(v)
tn−1

n!
= v

∞∑
n=0

ℓn(v)
tn−1

n!
−

∞∑
n=0

n∑
k=0

(−1)k
(
n
k

)
ℓn−k(v)

tn

n!

−
1
t

v−1∑
j=1

1
j

∞∑
n=0

n∑
k=0

(
n
k

)
Bk

(
1
j

)
ℓn−k(v)

tn

n!
.

Equating coefficients of tn

n! on both sides of the above equation, we have

nℓn(v) = vℓn(v) − n
n−1∑
k=0

(−1)k
(
n − 1

k

)
ℓn−k−1(v) −

v−1∑
j=1

1
j

n∑
k=0

(
n
k

)
Bk

(
1
j

)
ℓn−k(v).

After some arrangement at above equation, we arrive at the following theorem:

Theorem 2.3. Let n, v ∈N such that n , v. Then we have

ℓn(v) =
1

v − n

n
n−1∑
k=0

(−1)k
(
n − 1

k

)
ℓn−k−1(v) +

v−1∑
j=1

1
j

n∑
k=0

(
n
k

)
Bk

(
1
j

)
ℓn−k(v)

 .
On the other hand, if we rearrange the equation (27), we also get

d
dt
{Fℓ (t, v)} =

1
t

Fℓ (t, v − 1) FB
(
t,

1
v − 1

)
− Fℓ(t, v)

e−t +
1
t

v−1∑
j=1

1
j
FB

(
t,

1
j

) .
By multiplying with w both sides of above equation, we also have

t
d
dt
{Fℓ (t, v)} = Fℓ (t, v − 1) FB

(
t,

1
v − 1

)
− Fℓ(t, v)

te−t +

v−1∑
j=1

1
j
FB

(
t,

1
j

) .
By using (11) and (5), we get

∞∑
n=0

ℓn(v)
tn+1

n!
=

∞∑
n=0

ℓn(v − 1)
tn

n!

∞∑
n=0

Bn

( 1
v − 1

) tn

n!

−

 ∞∑
n=0

(−1)n tn+1

n!
+

v−1∑
j=1

1
j

∞∑
n=0

Bn

(
1
j

)
tn

n!

 ∞∑
n=0

ℓn(v)
tn

n!
.
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which, when the Cauchy product is applied, gives

∞∑
n=0

ℓn(v)
tn+1

n!
=

∞∑
n=0

n∑
k=0

(
n
k

)
ℓk(v − 1)Bn−k

( 1
v − 1

) tn

n!
−

∞∑
n=0

n∑
k=0

(−1)k
(
n
k

)
ℓn−k(v)

tn+1

n!

+

v−1∑
j=1

1
j

∞∑
n=0

n∑
k=0

(
n
k

)
Bk

(
1
j

)
ℓn−k(v)

tn

n!
.

Equating coefficients of tn

n! on both sides of the above equation, we have

ℓn−1(v) =

n∑
k=0

(
n
k

)
ℓk(v − 1)Bn−k

( 1
v − 1

)
−

n−1∑
k=0

(−1)k
(
n − 1

k

)
ℓn−k−1(v)

+

v−1∑
j=1

1
j

n∑
k=0

(
n
k

)
Bk

(
1
j

)
ℓn−k(v),

where n ∈N and v ∈N \ {1}.
Using (19) in the above equation, we arrive at the following theorem:

Theorem 2.4. Let n ∈N and v ∈N \ {1}. Then we have

ℓn−1(v) = (v − 1) ℓn(v) −
n−1∑
k=0

(−1)k
(
n − 1

k

)
ℓn−k−1(v) +

v−1∑
j=1

1
j

n∑
k=0

(
n
k

)
Bk

(
1
j

)
ℓn−k(v).

By combining (11) and (28), we also arrive at the following corollary:

Corollary 2.5. Let n, v ∈N \ {1}. Then we have

v−1∑
j=1

1
j

n∑
k=0

(
n
k

)
Bk

(
1
j

)
ℓn−k(v) =

(n − 1) ℓn(v) − ℓn−1(v)
1 − n

.

3. A further identity on the numbers ℓn(v)

On the reciprocal of (25), the Cauchy product of the geometric series, for |x| < 1, gives

1
x(v)

=
1

x(x − 1)(x − 2) . . . (x − v + 1)

=
(−1)v−1

(v − 1)!x

∞∑
m=0

xm
∞∑

m=0

(x
2

)m ∞∑
m=0

(x
3

)m
...
∞∑

m=0

( x
v − 1

)m

=
(−1)v−1

(v − 1)!x

∞∑
m=0

 ∑
n1+n2+...+nv−2=m

1
(v − 1)nv−2

1
(v − 2)nv−3

...
1

3n2

1
1n1

1
2m−n1−n2−...−nv−2

 xm,

where ∑
n1+n2+...+nv−2=m

=

m∑
nv−2=0

m−nv−2∑
nv−3=0

· · ·

m−n1−n2−...−nv−2∑
n1=0

.

Setting

α(m, v) =
∑

n1+n2+...+nv−2=m

1
(v − 1)nv−2

1
(v − 2)nv−3

...
1

3n2

1
1n1

1
2m−n1−n2−...−nv−2

, (28)
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we have

x
x(v)
=

(−1)v−1

(v − 1)!

∞∑
m=0

α(m, v)xm.

Substituting x = et into the above equation, we have

et

(et)(v)
=

(−1)v−1

(v − 1)!

∞∑
m=0

α(m, v)
(
et
)m
. (29)

By combining the above equation with (11), we have

et

tv

∞∑
n=0

ℓn(v)
tn

n!
=

(−1)v−1

(v − 1)!

∞∑
m=0

α(m, v)
(
et
)m

=
(−1)v−1

(v − 1)!

∞∑
m=0

α(m, v)
(
et
− 1 + 1

)m

=
(−1)v−1

(v − 1)!

∞∑
m=0

α(m, v)
m∑

k=0

m(k)

(
et
− 1

)k

k!
.

Thus, by (3), we have

et

tv

∞∑
n=0

ℓn(v)
tn

n!
=

(−1)v−1

(v − 1)!

∞∑
m=0

α(m, v)
m∑

k=0

m(k)

∞∑
n=0

S2(n, k)
tn

n!

=
(−1)v−1

(v − 1)!

∞∑
n=0

 n∑
m=0

m∑
k=0

α(m, v)m(k)S2(n, k)

 tn

n!
.

Therefore, by the Cauchy product, we get

∞∑
n=0

n∑
k=0

(
n
k

)
ℓk(v)

tn

n!
=

(−1)v−1

(v − 1)!

∞∑
n=0

n(v)

n−v∑
m=0

m∑
k=0

α(m, v)m(k)S2(n − v, k)

 tn

n!
.

Equating coefficients of tn

n! on both sides of the above equation, we arrive at the following theorem:

Theorem 3.1. Let n, v ∈N. Then we have
n∑

k=0

(
n
k

)
ℓk(v) =

(−1)v−1 n(v)

(v − 1)!

n−v∑
m=0

m∑
k=0

α(m, v)m(k)S2(n − v, k),

where α(m, v) is as defined in the equation (28).

4. Formulas arising from the integrals of the polynomials ℓn(x; v)

4.1. Riemann integral formulas
By applying the Riemann integral to both-sides of (15) with respect to x from 0 to 1, we get

1∫
0

ℓn(x; v)dx =
n∑

j=0

(
n
j

)
ℓn− j(v)

1∫
0

x jdx (30)

which gives a formula for the definite integral of the polynomials ℓn(x; v), given by the following theorem:
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Theorem 4.1. Let n ∈N0. Then we have

1∫
0

ℓn(x; v)dx =
n∑

j=0

(
n
j

)
ℓn− j(v)
j + 1

. (31)

It is known from [28] that the polynomials ℓn(x; v) satisfy the following equality, for n, v ∈N:

n(v)xn−v =

v∑
k=0

n∑
j=0

(
n
j

)
kn− jS1(v, k)ℓ j(x; v), (32)

(cf. [28]).
By applying the Riemann integral to both-sides of (32) with respect to x from 0 to 1, we get

n(v)

1∫
0

xn−vdx =
v∑

k=0

n∑
j=0

(
n
j

)
kn− jS1(v, k)

1∫
0

ℓ j(x; v)dx (33)

where n, v ∈N
Using (31) in the above equation, we arrive at the following theorem:

Theorem 4.2. Let n, v ∈N. Then we have

n(v)

n − v + 1
=

v∑
k=0

n∑
j=0

j∑
r=0

(
n
j

)
kn− jS1(v, k)

(
j
r

)
ℓ j−r(v)
r + 1

. (34)

4.2. p-adic bosonic and fermionic integral formulas

Let Zp denote a set of p-adic integers. Let f (x) be a uniformly differentiable function on Zp. The
Volkenborn integral (or p-adic bosonic integral) of the function f (x) is given by:

∫
Zp

f (x)dµ1(x) = lim
N→∞

1
pN

pN
−1∑

x=0

f (x), (35)

where,

µ1(x) = µ1(x + pNZp) =
1

pN

(cf. [25]; see also [14, 15]).
The p-adic fermionic integral of the function f (x) is given by (cf. [15]):

∫
Zp

f (x) dµ−1 (x) = lim
N→∞

pN
−1∑

x=0

(−1)x f (x) (36)

where p , 2 and,

µ−1(x) = µ−1

(
x + pNZp

)
= (−1)x

(cf. [13, 15]).
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It is known that the p-adic bosonic integral of the function f (x) = xn gives the Bernoulli numbers as
follows (cf. [14, 25]):

Bn =

∫
Zp

xndµ1 (x) . (37)

The p-adic fermionic integral of the function f (x) = xn gives the Euler numbers as follows (cf. [14]):

En =

∫
Zp

xndµ−1 (x) . (38)

For more p-adic integral formulas and their obtaining techniques, the reader consult the papers [13–
15, 25, 29].

In [28], by applying the p-adic integrals to (32), Simsek obtained some formulas involving the numbers
ℓn (v), the Bernoulli numbers, the Euler numbers and the Stirling numbers of the first kind. For details, see
[28].

By applying p-adic bosonic integral at (15), we obtain

∫
Zp

ℓn(x; v)dµ1 (x) =
∫
Zp

n∑
j=0

(
n
j

)
x jℓn− j(v)dµ1 (x) . (39)

By using (36) in the above equation, we arrive at the following theorem:

Theorem 4.3. Let n, v ∈N. Then we have∫
Zp

ℓn(x; v)dµ1 (x) =
n∑

j=0

(
n
j

)
ℓn− j(v)B j. (40)

By applying the p-adic fermionic integral to (15), we obtain

∫
Zp

ℓn(x; v)dµ−1 (x) =
∫
Zp

n∑
j=0

(
n
j

)
x jℓn− j(v)dµ−1 (x) (41)

By using (37) in the above equation, we arrive at the following theorem:

Theorem 4.4. Let n, v ∈N. Then we have∫
Zp

ℓn(x; v)dµ−1 (x) =
n∑

j=0

(
n
j

)
ℓn− j(v)E j. (42)

5. Convergence Properties of a Szász-Type Operator Including Generating Function of the polynomials
ℓn(x; 2)

In this section, we give Szász-type linear positive operators which involve the generating function of the
polynomials ℓn(x; 2). The methods to be applied in this section are the Korovkin-Bohman theorem, which
shows the uniformly convergence of the operator, and the concept of the modulus of continuity, which
estimates the rate of convergence of the operator, respectively.
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Theorem 5.1. (cf. [23], P. 8, Theorem 1.2.2) Let a sequence of linear positive operators (Ln)n, Ln : V → F [a, b]
where F [a, b] is space of all real-valued functions in the interval [a,b] and V is a linear subspace of F [a, b]. Suppose
that φ0, φ1, φ2 ∈ V ∩ C[a, b] forms a Chebychev system on the interval [a, b], if we have

limn→∞Ln(φ j) = φ j,

uniformly for j = 0, 1, 2, then

limn→∞Ln( f ) = f ,

uniformly, for any f ∈ V ∩ C[a, b].

The theorem of Bohman is the particular version of above theorem when φ j = e j, j = 0, 1, 2. The monomial
functions denoted by e j are defined to be as:

e j(x) = x j

where x ∈ [a, b] and j ∈ N ∪ 0. e j(x) functions are also called moment functions. Furthermore the j- order
central moment function of the operator Ln is defined as follows:

Ln((e1 − e0x) j),

(cf. [12]).
The concept of modulus of continuity is the primary tool in positive linear operators’ approximation

theory. This concept is effective for producing quantifiable estimates.

Definition 5.2. (cf. [10], P. 40) Let f be uniformly continuous function on [0,∞) and δ > 0. The modulus of
continuity, ω( f , x), of function of f is defined to be

ω( f , δ) := sup| f (x) − f (y)|, (43)

where x, y ∈ [0,∞) and |x − y| < δ.

Then for any δ > 0, and each x ∈ [0,∞) the following relation holds

| f (x) − f (y)| ≤ ω( f , δ)
(
|x − y|
δ
+ 1

)
(44)

(cf. [2, 10]).
By means of generating function method, ℓn(x; 2) are given as follow:

t2

et − 1
et(x−1) =

∞∑
n=0

ℓn(x; 2)
tn

n!
. (45)

The Taylor expansion of the generating function of ℓn(x; 2) is defined by the following expression:

t
et − 1

+
t2(x − 1)

et − 1
+

t3(x − 1)2

2(et − 1)
+

t4(x − 1)3

6(et − 1)
+

t5(x − 1)4

24(et − 1)
+

t6(x − 1)5

120(et − 1)
+O((x − 1)6). (46)

This series converges everywhere and is positive at x ∈ (1,∞).
The Szász-type linear positive operators which involving the generating function of ℓn(x; 2) are defined

to be as:

Ln( f , x) = (e2
− e)e−nx

∞∑
k=0

ℓk(x; 2)
k!

f
(

k
n

)
(47)
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where f ∈ C[0,∞).
Let f (x) = e0(x) = 1, and be x→ nx at Eq. (44). We have,

Ln(1, x) = (e2
− e)e−nx

∞∑
k=0

ℓk(nx; 2)
k!

= (e2
− e)e−nx 1

(e2 − e)
enx = 1

By taking the first derivative of Eq. (42), we give

∞∑
k=1

ℓk(x; 2)
ktk−1

k!
=

tet(x−1)(t(−x) + et(t(x − 2) + 2) + t − 2)
(et − 1)2 . (48)

Let f (x) = e1(x) = x, and be x→ nx at Eq. (44). We get,

Ln(x, x) = (e2
− e)

e−nx

n
e(nx−1)(−nx + e(nx − 1))

(e − 1)2 = x −
e

(e − 1)n

where t = 1 and x→ nx.
By taking the second derivative of Eq. (45), we obtain

∞∑
k=1

ℓk(x; 2)
k(k − 1)tk−2

k!
=

et(x−1)(−et(t2(2x2
− 6x + 3) + 4t(2x − 3) + 4) + t2(x − 1)2 + e2t(t2(x − 2)2 + 4t(x − 2) + 2) + 4t(x − 1) + 2)

(et − 1)3 .

(49)

Similarly, If the mathematical operations applied for f (x) = 1 and f (x) = x are applied for f (x) = x2, the
following equation is obtained:

Ln(x2, x) = x2 + (2 − 2e)
x
n
+

4e − 2e2

(e − 1)2

1
n2 .

With the help of the above equations, the moment functions for Ln( f , x) are given in the following
theorem (cf. [12]):

Theorem 5.3. For all x ∈ (1,∞) and n ∈N the operators L satisfy the following:

Ln(e0(x), x) = 1, (50)

Ln(e1(x), x) = x −
e

(e − 1)n
, (51)

and

Ln(e2(x), x) = x2 + (2 − 2e)
x
n
+

4e − 2e2

(e − 1)2

1
n2 . (52)

By using (50), (51), and (52) we give uniformly convergence of L with the aid of the Korovkin-Bohman
theorem.

We have evidence that,

limn→∞Ln(ei(x); x) = xi

for i = 0, 1, 2 at Theorem 5.1 and then we can use the Korovkin-Bohman theorem to obtain at the following
theorem (cf. [4, 23]):
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Theorem 5.4. Let f ∈ C[0,∞). Then

limn→∞Ln( f ; x) = f (x) (53)

uniformly on each compact subset of [0,∞).

By using Theorem 5.3 and linearity property of Ln , we obtain second-order central moment function
for L as follows:

Ln((e1 − e0x)2; x) =
(−2e2 + 5e − 2)

(e − 1)
x
n
+

2e(2 − e)
n2(e − 1)2 . (54)

According to Theorem 5.3 and monotonicity property of operators L, we have

|Ln( f ; x) − f (x)| ≤ Ln(| f (x) − f (y); x)|. (55)

Applying (44), we get the following from (55)

|Ln( f ; x) − f (x)| ≤ ω( f , δ)
(
1 +

1
δ
Ln(|x − y|; x)

)
. (56)

Applying the Cauchy–Schwarz inequality to the right side of (56), we get

|Ln( f ; x) − f (x)| ≤ ω( f , δ)
(
1 +

1
δ

√
Ln((x − y)2, x)

)
. (57)

Assuming that δ := δn(x) = Ln((x − y)2, x) in (57), the following theorem is given as follows:

Theorem 5.5. Let f ∈ CB[0,∞) ∩ E. The following inequality holds:

|Ln( f ; x) − f (x)| ≤ 2ω( f , δn), (58)

where E = { f (x) : limx→∞
f (x)

1+x2 exists and is finite and 0 ≤ x < ∞ } and δn(x) = Ln((x − y)2, x).

We construct error estimation tables analyzing the convergence of the operator Ln( f ; x) to a few example
functions. The following examples contain functions from the exponential, trigonometric and fractional
function families, respectively. The numerical values of Ln’s approximation errors to these functions are as
follows:

Example 1 In Table 1, we demonstrate the numerical results of the approximation of Ln( f ; x) to the
function f (x) = x2e−2x.

n Estimation by ω( f , δ)
10 0.2706705664
102 0.04649728780
103 0.004682218110
104 0.0004683039334
105 0.00004683092196
106 0.000004683125408
107 0.0000004682160322

Table 1: Error of approximation of the operators Ln( f ; x) to f (x) = x2e−2x



E. Agyuz / Filomat 38:5 (2024), 1531–1545 1544

Example 2 In Table 2, we show the numerical results of the approximation of Ln( f ; x) to the function
f (x) = sin(πx).

n Estimation by ω( f , δ)
10 3.999974312
102 0.6345392848
103 0.06379521134
104 0.006380536830
105 0.0006380614300
106 0.00006380621810
107 0.000006380622558

Table 2: Error of approximation of the operators Ln( f ; x) to f (x) = sin(πx)) for n = 1..7

Example 3 In Table 3, we show the numerical results of the approximation of Ln( f , x) to the function
f (x) = x

√

1+x2
.

n Estimation by ω( f , δ)
10 1.415824119
102 0.2018018226
103 0.02030646068
104 0.002030987768
105 0.0002031012610
106 0.00002031015002
107 0.000002031015240

Table 3: Error of approximation of the operators Ln( f ; x) to f (x) = x
√

1+x2
for n = 1..7

In these examples, we numerically find the approximation of Ln( f ; x) to function f (x) = x2e−2x, f (x) =
sin(πx), and f (x) = x

√

1+x2
,respectively, by using the modulus of continuity. When we examine the tables in

three examples, we notice that the approximation errors of the operators Ln( f ; x) decrease as n increases.
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