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Abstract. Given a compact Riemannian manifold (M, g) of dimension n > 3 without boundary, using the
variational methods, we study the existence of solutions for the elliptic equation

Pyu = flul™u + Ahlul"u,

1)
where P’; is the GJMS operator of order 2k < n, h,f € C*(M), 1 < g < 2, A > 0 and N is the critical

Sobolev exponent for the space HZ(M). We apply Ljusternik-Schnirelmann theory on C'-manifolds to prove
that under some conditions, the equation (1) admits infinitely many solutions. At the end, we give two
applications, one for Paneitz-Branson operator and the second is for the GJMS operator when k = 3.

1. Introduction and motivation

Let (M, g) be a compact and connected Riemannian manifold of dimension n > 3 without boundary. The
GJMS operators are a family of conformally covariant differential operators introduced for the first time by
Graham-Jenne-Mason-Sparling in their celebrated paper [10]. For any positive integer k < 1/2, there exists

a GJMS operator P’; : C*(M) — C*(M) with the following properties.

e The operator P’; can be written as

k-1
P= A+ Y (<)Y (Al(g), i Vi),
1=0
where, for 1 € {0,1, ...,k -1}, Ai(g) is a symmetric Tgl—tensor fields and A, = —div,(V,) (See [12]).

e The operator P’; is formally self-adjoint with respect to the L?-scalar product.

e For all smooth diffeomorphisms ¢ : C*(M) — C*(M), we have ¢p*P} = P
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e If §is a conformal metric to g, given by

N=2
k

g=uty,
where u € C*°(M), u >0and N = n%’ék, then V¢ € C*(M),

Py(pu) = uN"'Pio.
In particular, by taking ¢ = 1 in the equation above, we get

ko M=2k oo
Pgu—Tqu ,

where
2
Fo 2 _pk

The quantity Q’; is called the Q-curvature associated to PX. The problem of prescribing the Q-curvature
within the conformal class of g is equivalent to the problem of finding a positive solution to the equation

P’;u = flulN_zu,

for a given function f € C*(M). The fact that N is the critical Sobolev exponent for the space H,%(M)
makes this problem particularly hard. The most prominent difficulty appears when k > 1, i.e. the fact that
the absolute value of a function in HIE(M) does not necessarily belong to Hf(M), as well as the absence of a

maximum principle for the operator PZ . Therefore, the positivity of eventual solutions is difficult to prove.
However, if the scalar curvature of (M, g) is constant and positive, then P’; can be factorised as follows

k
e =[]y +asy),
=1

where S; denotes the scalar curvature of (M, g) and

(n+21-2)(n-2I)
4n(n —1)

c =

As a result of that, by applying the strong maximum principle k times, we get that
o If u € C¥*(M) satisfies P’;u > 0 then either u > 0 or u = 0.

The problem of prescribing the Q-curvature is particularly interesting in the case where k = 1, the
operator P} being none other than the conformal Laplacian and the Q-curvature being the scalar curvature
of the manifold multiplied by a constant. This problem of prescribing the scalar curvature has been
extensively studied in the literature (see for example [3]). In particular Aubin proved that it is always
possible to prescribe a constant scalar curvature on (M, g).

An other interesting case that has been extensively studied in the literature is when k = 2. The operator
P; is known as the Paneitz-Branson operator and is given by

2. _ A2 . # n-4
Pou = Aju — div, [A du] + Tqu,

where the symbol § stands for the musical isomorphism, A is the Schouten tensor :

. (n-2y+4 4
T - Dn-2" " u=2

Ricy,
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and . i
1 n3 —4n® + 16n — 16 2 5
2 _ 2 .
Qg - 2(1’1 — 1)A!]S!] + 8(” _ 1)2(71 _ 2)2 g (I’l — 2)2 |R1Cg‘g .
In [9], Esposito and Robert proved the following result:

Theorem 1.1. Let (M, g) be a compact Riemannian n-manifold, n > 5, f, h be two functions in C'(M),0 <n < 1,9 €
(1,2ﬁ - 1). We assume that P; is coercive, that f is positive and that there exists vy € H%(M)\{O} such that
2
sup E (tvg) < - parg
20 nK} (supM f) !

where . . .
— k _ - N _ q+1
E(u) : 2Lngu do, NfoIuI do, _q+1 jl\;hlul dog,

2 262 -1
Pou = Flul™ ™ u + hlu|™ u

then the equation

possesses a non-trivial solution u € C*(M).
In [4], by using the method of Nehari manifolds Benalili and Tahri proved the following result:

Theorem 1.2. Let (M, g) be a compact n-dimensional Riemannian manifold, n > 6. Let a,b, f € C*(M) with f
positive and x, € M such that f (x,) = maXeepm f(x). Let 0 <0 <2and 0 <y <4. 1 <g<2and A € R Denote
by L the operator defined on Ha(M) by u — L(u) = A?u — V' (ap™#Vu) + p~*bu. Suppose that the operator Py is
coercive and

{% + % <0and S;(x,) >0 incasen>6
Sy (x5) >0 incasen =6
Then there exists A, > 0 such that if A € (0, A.), the equation
Lu = Mul"%u + f(x)lulN‘zu
possesses at least two distinct non trivial solutions in the distribution sense.
Motivated by their works, we study in this paper the existence of solutions to the following equation
P’;u = flulN_Zu + Ahju|T%u,

where P’; is assumed to be coercive, f,h € C*(M) are positive, g € (1,2) and A > 0.
Under the assumptions above, we prove the following theorem:

Theorem 1.3. There exists A, > 0 such that if A € (0, A) then equation (1) admits infinitely many pairs of weak
solutions in Hy (M) with negative energies. Moreover if 3v € Hy(M)\{0} such that

k
sup Jo(tv) < T
>0 n(maxyepm f(x))* K

1 K 1 N
Jo(u) := ELngu do, — NJ}:Aflul do,.

Then equation (1) admits an other pair of non-trivial weak solutions in HZ (M) with positive energies.

where

This paper is organized as follows : In Sect. 2, we introduce some notations and definitions as well as
some results that will be useful later. In Sect. 3, we prove some useful properties of the Nehari manifold
corresponding to equation (1). In Sect. 4, we prove the existence of Infinitely many pairs of weak solutions
to equation (1), which have negative energies. In Sect. 5, we prove that under some condition, equation (1)
admits another pair of weak solutions with positive energies, completing this way the proof of Theorem
1.3. In Sec. 6, we apply Theorem 1.3 to the Paneitz-Branson operator using some well chosen test functions.
In the last section, we give an other application of our theorem for the GJMS operator of sixth order.
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2. Notations and preliminaries

The Sobolev space H]%(M) is defined as the completion of the space C’(M) with respect to the norm :

k 2
Ml : 14— {Z ||v;u||§] :

1=0

We denote by Kj the sharp constant for the Euclidian Sobolev inequality IIuIIIZ\,S KOIIV’;uII%. From [14], we

know that o ket
T2V T s o
e =7 ( () il:_[k(n+2z).

In [11], Mazumdar proved that for any € > 0, there exists a constant B > 0 such that for all u € H}%(M) one
has:

v 2
( fM IuINdvg) < (Ko +e) fM (A5u)" dvy + Belulf, - 2)

Throughout this paper P’; is assumed to be coercive i.e. there exists A > 0 such that

fM uPju do, > A||u||§{i(M), Yu € HA(M). (3)

1/2
. k
||'||p; U (j}\; ngu dvg)

is a norm on H}(M) equivalent to Il (See [12]).

As a consequence of that,

Also, it is easy to verify that for any sequence (u,,)men that converges weakly to u in H,%(M), we have

S
ol < Timn i .

Applicable examples of manifolds for which the operator P’; is coercive, are given in the following
proposition.

Proposition 2.1. Let k be a positive integer and (M, g) be a compact Riemannian manifold of dimension n > 2k. If
Sy is constant and positive then the operator P’; is coercive.

Proof. As mentioned in Sect. 1, if S, is constant and positive, then

k
Pk = H(Ag +0S,).
1=1

By expanding the expression of PX, we get

where

a) =
1<ii<ip<...<ij<k j=1
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Notice thata, > 0, VI € {0,2,...,k}. Thus, Yu € H}(M), we have

k
k I
f uP udo, = Zalllv u||2 > mmalllulle(M).

1=0
>0

In other terms, P’; is coercive. []
We recall the notion of Palais-Smale condition :

Definition 2.2. Let H be a Hilbert space, M be a C*-submanifold of H and let | € C1(M,R). We say that | satisfies
the Palais-Smale condition at level c if :

Any sequence (U )men in M, such that [(u,,) — cand dJ(u,,) — 0, admits a strongly convergent subsequence.
We recall, the definition of the Krasnoselski genus (in [2]).

Definition 2.3. Let H be a Hilbert space and let A be a subset of H symmetric with respect to the origin i.e. Yu € A,
—u € A. We define the (Krasnoselski) genus of A as

Y(A) = min{m € IN | there exists an odd continuous map ¢ : H — R"\{0}}.

By convention, we set y(0) = 0 and we set y(A) = 400 if Yn € IN, there exists no odd continuous map from H to
R™\{0}.
As in [2], we define
vk(A) = sup{y(K) | K € A, =K = K and K is compact}.

In particular, if S is the unit sphere inside an infinite dimensional Hilbert space H, then yx(S) = y(S) = +co.
The following lemma (in [2]) will be useful.

Lemma 2.4. Let H be a Hilbert space and let A be a subset of H symmetric with respect to the origin. If n: A — H
is odd and continuous, then y(n(A)) = y(A).

We will use the following well known theorem (in [2, 13]) to prove the existence of infinitely many weak
solutions to equation (1).

Theorem 2.5. Let H be a infinite dimensional Hilbert space and let M be a closed C'-submanifold of H. Let
J € CY(M,R) be an even functional bounded from below. If the following conditions are satisfied :

1. M is symmetric with respect to the origin of H.
2. Ye < sup,.r J(w), the functional | satisfies the Palais-Smale condition at level c.

then | admits at least y(M) distinct pairs of critical points in M.

Let’s now introduce the variational setting for this problem. The energy functional corresponding to
equation (1) is given by

Ta) = quudvg—l flulNdvg—& hlulido,, u € HA(M).
20m ! N Jm q JIm

We introduce the Nehari manifold for this problem

Ny = {u € HH(M)\{0} | @p(u) =

D)(u) = fuP udo; — fflulNdvy—/\f hlulidv,
M

where
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We also introduce the two subsets :
N ={ue Ny | D\ (u)u >0},
N ={ueN; | P} (u)u <0}
which are two C!-submanifolds of H]% (M) of codimension 1, and also the subset

NY = {u e Ny | @y (u)u = 0}.

Lemma 2.6. Let ], N denote the restriction of | to N5. Any critical point of ], N is a critical point of ] in H2(M)
A

and a weak solution of‘(l).

Proof. Let u € NT be a critical point of J;| 1i.e there exists u € R such that
A p N=E H
A

Jy()o = pd (o, Vo € Hy(M).

By taking v = u, we get
H®, () = I (1) = (1) = 0,

and, as @/ (u)u # 0, we conclude that u = 0 and we have J (1) = 0.

In other terms, u is a critical point of [, in H]%(M) and a weak solution of (1). O
3. Properties of the Nehari manifold
Lemma 3.1. The following statements are true.

o Ifue NfUNY, then llullps < pa.

o Ifue Ny UNY, then ||u||P§ > p.

where

7

(N = @)A maxeem h(x) VM)~ max (Ko + €, B)? > A2\
pa= N-2

and

_ ( 2-9) ]
P (N — g) maxyepm f(X)A~N2max (Ko + €, B)N/? '

Proof. Letu € N7 UNY, we have

0< D) (uwu = 2||u||12,k - Nf quINdvg - q)\f hluldv,.
g M M

Using the fact that
@3 = Il - [ fluldo, ~A [ utide, =0,
g9 M M
we get

0< D (uwu=@2- N)Ilulllzjg + (N - q))\f hlu|7do,.
M
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Thus,
(N =2l < (N - fM Hulido,.

Using Holder and Sobolev’s inequalities and (3), we get

(N- 2)||u||12)§ < (N —g)Amax () V(M)' =¥ max (Ko + €, B> A1 Jull’, .

9

Hence, ||u|| P < pa, which proves the first statement.
Letu € Ny UN?Y, we have

0> (wu=@2- q)||u||12,§ -(N- q)f flulNdo,,
M
By the Sobolev inequality and (3), we get
02> 2= g)llull’ = (N = q) max f(x) max (Ko + €, B)N 2 A™N|[u] [N
4 xeM

Hence, [|u|lpr > p. The second statement is now proved.
g

Lemma 3.2. There exists Ao > 0 such that if A € (0, A,), then

1. pa <p.
2. NY=10
3. Yu € H}(M), there exists t* > 0 such that t*u € N
4. Yu € HI%(M), there exists t~ > 0 such that t ' u € N.

Proof. As py — 0 when A — 0, by taking A, > 0 small enough, we get

pr<p, YA€ A).

1553

Let A € (0, A.). From the previous lemma, we know that if u € N?, then ||u||p§ < pa but also ||”||P§ > p.

As p, < p, we conclude that N = 0. The first and second statements are now proved.

Let u € H(M)\{0}, consider the map

F,: Ry — R
t— O, (tu).
We have
Fu(t) = I[ul3, £ —( f quINdvg) tN—/\( f hlulqdvg) #.
7 M M
Naturally, we get
D’ (tu)(tu
Fyp = S0

Using Holder and Sobolev’s inequalities and (3), we get

| e, < max fA max (K + €5,
M
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and
fM hlul'do, < max h(x)V(M)"™~ max (Ky + €, Be)q/zA‘q/2||u||IZ :
Let’s assume, without loss of generality, that ||u]| pt = 1, we get
Fu(t) > — at™ — At

where

a = max f(x)A_N/2 max (Ko + €, Bo)N?  and B= max h(x)V(M)l_% max (Ko + €, Be)?A79/2.
XE. XE.

Put
Moo= L1 G
B B
where ¢y > 0 is taken small enough, this way we have Ng = (@ and F,(t,) > 0.

As F,(t) < 0 for t > 0 small enough, we infer that there exists t* € (0,t,) such that :
o F,(t*)=0.
o F,(t") > 0.

In other terms, t*u € Nj U N{. As N = 0, we conclude that t*u € N.
Also, as lim;_, ;o F,(t) = —co, we infer that there exists t~ € (f,, +c0) such that :

e F,(t7)=0.
o FI(t7)<0.

In other terms, t"u € Nj UN]. As N) = 0, we conclude that t"u € Ny.
The proof is now complete.
0

Lemma 3.3. Let A € (0, A,), there exists an odd C'-diffeomorphism * : S — N, where
S = {u € H2M) | llullgzqun) = 1
Proof. Consider the map
F:H}(M)xR, — R
(u,t) — Dy(tu).

Naturally, we have
d—F(u = @ (tu)(tu)
a7t

Let u € S. We claim that there exists a unique t* > 0 such that t*u € N}. The existence of t* is already
given by Lemma 3.2. Let’s prove its uniqueness.
Suppose that there exist t; and f, with ¢, > t; > 0 and such that

o tiue Niie F(ut) =0and & (u,tp) > 0.
o thu € Niie. F(u,t) =0and ’fi—f(u, t) > 0.

Therefore, there exists t3 € (t1, t2) such that :
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L] F(u, t3) =0
o Ly, t;)<0.

In other terms, t3u € NA‘UNE. Thus, we getlltzullpg > ||t3u||p5 > p, whichis absurd giventhatlltzullpz <pr<p.
We conclude that Yu € S, there exists a unique t*(«) > 0 such that t*(u)u € NY
This gives us a map

PrS — NY
ur— t(u)u

Obviously, ¢* is odd.
As Fis C! and ’il—f(u, t*(u)) > 0, Yu € S, we know from the implicit function theorem that u — *(u) is a
C'-map. Hence, y* € C'(S,Ny).
Also, Y™ possesses an obvious inverse which is the projection onto the sphere : u - ;

_u
Wlzan
|
4. Solutions on N;'
Lemma 4.1. Let A € (0, Ao), then Jy(NY) is a subset of R* and bounded below.
Proof. Letu € N}, as ®,(u) =0, we have

N-2 N—qf g
o il = A= | oy,

Also, as @’A(u)u =2- N)||M||i§ +(N-gA fM hlul’dv, > 0, we get

Ja(u) =

N-2
A hulfido, > —=||ull?..
fM ubdo, > Sl

We infer that
1 1 )
Ja(u) < (ﬁ - qTI)(N - 2)||u||p§ <0.
————

<0

We know from Lemma 3.1 that ||u|| P < pa. Using Holder and Sobolev’s inequalities and (3), we find that

/\f hlul'dv, < A max h(x)V(M)l—% max (Ko + €, Be)l]/zA—q/Zp?\'
M x€

This implies that
AN ax h) VMY max (Ko + €, B)I2A2)]
Ja(u) > - TN max (V(M)™V max (Ko + €, Be) Py

which completes the proof. [

Lemma 4.2. There exists A1 € (0, Ao) such that YA € (0, A1) the following statement is true.

e For any sequence (m)men in N such that Jy(u,) — c, where ¢ <0, we have

Him inf & (s, )it > 0
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Proof. Let (um)men in Ny such that Jy(u,) — ¢ <0.
As [, is continuous over le(M), we infer that there exists € > 0 such that Vm € IN, ||u,,|| pk>€ (otherwise

0 would be an accumulation point for (Jx(4m))meN)-
As O(u,,) = 0, we have

O (it = 2 = Pl = (N = ) fM fluldo,.

Using the Sobolev inequality and (3) we get

@ @)t 2 (2 = @)ltnl? = (N = gy max f)A™N max (Ko + € Be)"llundl™,
X€E
and, as [|u,|| < pr, we obtain
it > P (2 = 4) = (N = @) max FA™ max (Ko + €, B2} 2.
X€

Let

. ( 2-9 )
(N = 9)A~N2max (Kp + €, Be)N/2 maxyem f(x) '

By taking A € (0, A1), where

2-q(N —
A =min[)\o, BTN ~2) ],

maxyen h(x) VM)V max (Ko + €, Be)>A=9/2(N — q)

we get

1

((N — )4 max.ew H)V(M)'# max (Ko + €, Beﬁ/z”q/z]zq <B

pr = ’
N-2

and thus,

O (i )it > € ((2 — )~ (N = ) max FOA N2 max (Ko + ¢, BE)N/Zp;V-2) 0.

>0

The proof is now complete. [

Proposition 4.3. There exists A} € (0, A1) such that YA € (0, A}), the restriction of Jy to N, satisfies the Palais-
Smale condition at level c, Vc < sup, N Ja(uw)

Proof. Suppose that A € (0,A;). We know from Lemma 4.1 that SUP e p+ Ja(u) < 0. Let (uy)men be a
Palais-Smale sequence at level c < 0in N} i.e.

1. Jaltty) — c.
2. J () = i@’ (u) — 0, where
_ <I;\(um)rq);\(um)>
o = 10, () P
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Given that the sequence (1) men is bounded (from Lemma 3.1) and the space H]f(M) is reflexive, we may
assume (u,,;)meN to be weakly convergent to u in H,f(M). Thus, (1) men converges strongly to u in LP (M) for
p <N.

As (Unm)men converges weakly to u and [ (um) — pm @’ (um) — 0 strongly in (HIE(M))* , we have

im0 ()it = T | T3 Gttt = [T te) = ) o) | 1 | = 0,
=0

and we know from Lemma 4.2 that lim inf,,—,co @ (t4sn) 1, > 0. We conclude that p,, — 0.
We can now prove that @, (1) = 0, we have

—00

Dp(u) = [ (w)u = (mim f uP’;um dvy — f flumIN_zu,,,udvg - /\f hlumlq_zumudvg),
M M M

and as

11_1’)1(‘)[0 J () = 11_1’)1;0 Ty () = Ty (oYt — pn @)y oYtk + i @) ()t |,
m m —_— — —_————
=0 =o0(1) =@ (u)u+o(1)
we get

Dy (u) = r}lgrolo ];\(”m)“ = y}llir(}o (];\(um) - .umq):\(”m))(u —up) = 0.

Moreover, as @, (1) = 0, we have
@ = @ = Nl + (N = ) f Hulido,
M

Thus,

@’ (u)u > lim sup ((2 — N\l + (N = q))\f hlumlqdvy)
M

m—+oo

> lim sup @/, (1)1, > 0.

m—+co

We conclude that u € N/f:.
As u,, —u — 0 in HZ(M), we have

Tim (] un) = J30) i = 10) = B T (o)t = 10) = 0t = 10).
N——
=0(1)
Using again the fact that

WD ) iy = 1) = @) )tk + i P (U)u = 0(1),
———— —_——
=0(1) =@’ (w)u+o(1)

we get

im (] Gun) = J30) a = 10) = W [T 0t) = 1)y 4 (e = 10) = 0.
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Thus,
0(1) = (3 (ttm) = J4 ) (1t — 1)
= f Vit — u)Pdo, — f Oy — ulNdo, + o(1).
M M
Then, using Holder and Sobolev’s inequalities, we get

0(1) 2 [IVi(ttn — )l — max f(x) max (Ko + €, Be)" |V (utn — )lly
XE.

> [V (u = 1B (1= max f) max (Ko + €, BOV2Vi(un = w1 2),

Thus, in order to prove that ||V’;(um - u)ll% = 0(1), we just have to show that

1
lim sup||V (i, — w)|f} < -
m—oo (maxxeM f(x))ﬂf Kék

Using Brezis-Lieb lemma and (4), we find that

1) =130 = 5. [ 19300 = 0oy = 5 [ £ e + o1

N
_N-2
- N
From which we derive that

IV (1t — 0)]12 + 0(1).

lim suplV(u, — I < £ lim (Ja(at) = J2 ().

m—00

As J)(um) < 0, we get

lim suplIV];(um —u) < _%]A(”)-

m—o0

Now, if we are able to prove that
k

s
1 (Maxyem f(x))ﬁf1 Kgnk

—Ja(u) <
we will be able to conclude that u,, — u strongly in HZ(M).
We know from Lemma 4.1 that ||”||p§ < pa. As @) (u) = 0, we have

_N-2 N_Qf q
Ja(u) = N ||U||P§ A N Mhlul do,.

Using Holder and Sobolev’s inequalities, (3) and the fact that ||u]| pk < pa, we get

N-q 1-4 /2 A—q/2 4
Ja(u) > —/\q—ernE%(h(x)V(M) v max (Ko + €, Be)"? A2l

As py = 0when A — 0, we infer that there exists A} € (0, A1) such thatif A < A}, then

k

1 (maxyem f(x))ﬁ_l Kélk ,

—Ja(u) <

1558

and thus,IIV’;(um - u)II% = 0(1). In other terms, if A < A}, then u,, — u strongly in Hi(M). The proof is

now complete.
O
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Theorem 4.4. There exists A} > 0 such that if A € (0, A}), then equation (1) admits infinitely many pairs of weak
solutions with negative energies.

Proof. It is enough to take A} as in Proposition 4.3.
We know that N} is a C!-submanifold of H?(M), symmetric with respect to the origin and that ], is even.
If A € (0,A), then we know from Lemma 3.3 that there exists an odd diffeomorphism ¢ : S — N7.
Using Lemma 2.4, we find that

YNT) = y@*(S)) = p(S) = +oo,

and that
YeNT) = sup{y(K) | K € N}, =K = K and K is compact} > yi(S) = +co.

We know from Lemma 4.1 that the restriction of ]y to N} is bounded below.

Finally, we know from Proposition 4.3 that Yc < sup,. Nt Ja(u), the restriction of J) to Ny, satisfies the
Palais-Smale condition at level c. /

All the conditions of Theorem 2.5 are satisfied. We conclude that the restriction of J; to N, admits
infinitely many pairs of critical points. By Lemma 2.6, we infer that those critical points are in fact weak
solutions to equation (1). O

We remark that, as py — 0 when A — 0, the solutions given by Theorem 4.4 go to 0 when A — 0. One
cannot construct solutions to the prescribed Q-curvature problem this way.

5. Solutions on N/\_

Lemma 5.1. There exists A} € (0, A,) (where A, is as in Lemma 3.2) such that such that VA € (0, A}) the following
statements are true.

e There exists a > 0 such that Vu € N7, Ja(u) > 6V||u||123k-
g
® SUp,cy- @ (w)u < 0.

Proof. Let A € (0, A,). Letu € N7, as ®,(u) = 0, we have

= (5 - ) = (3 = ) [ e,

Using Holder and Sobolev’s inequalities and (3), we get
Ja(u) 2 (1 - l) 2, (= L) A maxh(x)V)=F max (Ko + e, B)T2A 2!
M= TN T g TN e 07 € Be P

As ||u||p§ > p, we get

N-2 N-g 1-4 a2 N-4/2 32
Ta(u) 2( N Ng )\Izé%(h(x)V(M) N max (Ko + €, Be)""A™1p17=|.

Thus, by taking A € (0, A}), where

N-2
(N — g) maxyem h(x)V(M)l‘% max (Ko + €, Be)q/zA‘q/zp‘l‘2 J ’

- . q
A, = min (Ao, 2

() 2 aliuly,,
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where

_N-2 N-gq 1-1 12 A=q/2 42
T N7 Al}cqe;lad(h(x)V(M) ¥ max (Ko + €, Bo)""A™"pT= > 0.

The first statement is now proved.
Let’s prove the second statement. As ®,(u) = 0, we have

) (wu = (2 - N)||u||123,; +(N-g)A fM hluldv,.
Using Holder and Sobolev’s inequalities and (3), we get
@) ()u < (2 = N)llulff, + (N = 9)A max () V(M)' =¥ max (Ko + €, B)"> A1 [ull?,
g X€E. g

As IIullpg > p,with A € (0,A}), we get

O, (< p? ((2 = N) + (N = )A max h(x)V(M)'F max (Ko + ¢, Be)WzA-szq-z) <0,

<0

which proves the last statement. [

Theorem 5.2. If there exists v € Hy (M)\{0} such that

k
sup Jo(tv) < n_] A
>0 n (maXxEM f(x)) * Kék

then there exists A* > 0 such that YA € (0, A*), equation (1) admits a weak solution u € H}f(M) with positive energy.
Proof. First, Notice that there exists € > 0 independent of A, such that
k

sup Jo(tv) < 7 €
£>0 n (maxyem f(x))* K

Suppose that A € (0,A}). Let ¢ = inf,e N; Ja(v), we know from Lemma 5.1 that c is finite and positive.
Then consider (14,)men @ minimizing sequence for J; on N;.
By Ekeland’s variational principle, we may assume that ]’A(um) - ymcl);\(um) — 0, where

_ (J (), @ ()
= 0 )P

Given that the sequence (u,)en is bounded (from Lemma 5.1) and the space H,f(M) is reflexive, we can
assume (Uy;)meN to be weakly convergent to u in H,% (M). Thus, (4y)men converges strongly to u in LP(M) for
p <N.

As (Up)men converges weakly to u and [ (um) — pm @’ (un) — 0 strongly in (H]%(M))* , we have

lim qu)i\(um)um = lim _];\(um)um +‘Umq);\(um)um
m—00 m—-00
=0

= lim - (],,\(um) - [/lmq);\(um)) Uy = 0.

m—oo

and we know from Lemma 5.1 that limsup,,_, ., @’ (ttm)un < 0. We conclude that p,, — 0.
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We can now prove that ®,(u) = 0, we have

m—oo

Dy (u) = JH(wyu = (lim f uP’;um do, — f flumlN‘zumudvg - )\f hlum|"‘2umudvg),
M M M

and as

lim ];\(um)u = lim ];\(um)u - ]:\(um)um - [qu)j\(um)um +Um q):\(um)u /
m—0o0 m—00
=0 =o0(1) =P’ (wu+o(1)
we get
Dp(u) = lim J)(up)u = lim (] (thn) = i @) () = t4) = 0.
Let’s now prove that there exists A* > 0 such that if A < A*, then u,, — u strongly in H;(M).

As iy, —u — 0 in H (M), we have

Tim (77 t) = J500)) Gt = 0) = T T () ot = 10) = J5.00) 1ty = ):
N e’
=0(1)

Using again the fact that
[vlmq);\(um)(um —u) = [vlmq);\(um)um +Um q)j\(um)u =o(1),

———— ————
=0(1) =@’ (w)u+o(1)

we get

Jim (73 an) = T30) (= 0) = T [ ) = pt)) 4] a1 = 10) = 0.
Hence,

0(1) = (I () = T}, (1)) (ot — 1)

= L |V’;(um - u)do, — fo(x)Ium —uNdv, + o(1).
Then, using Holder and Sobolev’s inequalities, we get
0(1) 2 IV (ttn = )l — max f(x) max (Ko + €, Be)" IV (utn — )lly
> 11V = 1) (1 = max ) max (Ko + &, BVt — 03 2).
xeM

Thus, in order to prove that IIV’;(um —u)|l; = o(1), we just have to show that

1
lim supl |V (1, — u)|[} < P
0o (maxyem f(x)* K

Using Brezis-Lieb lemma and (5), we find that

) = 130 = 5 [ 95~ 0P, = [ 7o, + 01

N
N-2

= T”V];(um - u)”% +o(1).
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From which we derive that

lim supV(u, = )l < T lim (Ja(at) = ]2 ().

m—00

As (Um)meN 18 @ minimizing sequence on N and, as we know (see 3.2), for a well chosen ¢ > 0 we have
tv € Ni, we have

lim ] (u) < sup J(t0) < sup Jo(to).
m—eo 0 >0

Hence,

Lim J)(uy) < k - — — €.
e n (maxyem f(x))ﬁ_1 KJ

From which we infer that

. 1 n_n
lim supl |V} (1, — )]} < 7€~ .

m—oo (maxxeM f(x))ﬁ_l Kélk k

Now, if we can prove that J;(u) > —e, we will be able to conclude that u,, — u strongly in H,f(M). We
distinguish two cases.

e In the case where @ (1)u < 0, we have u € N and thus, Jy(u) > 0.

e In the case where @'(1) > 0, we know from Lemma 3.1 that ||“||p{; < par. As D, (u) = 0, we have

_N-2 N-q q
T = 5 il ~ A= fM Hulido,.

Using Holder and Sobolev’s inequalities, (3) and the fact that ||u]| P < pa, we get

N-q -1 a2 A—q/2 4
Ja(u) > —/\q—N max h(x)V(M)" "~ max (Ko + €, Be)"“"A™p).

As py = 0when A — 0, it is clear that, by taking A small enough, we get J1(1) > —e.

We conclude that there exists A* > 0 such that if A € (0,A*), then u, — u strongly in H}(M) and
consequently, we get that:

° ||u||P§ = limm_mllumllpg >p>0.

o ©,(u) = limy—e Pi(uy) = 0.

o [a(u) =limy—e Ja(uy) =c>0.

From which we infer that u € N} and J,(u) = ¢. Thus, by Lemma 2.6, u is a weak solution of equation

).
O

Theorem 1.3 follows immediately from Theorem 4.4 and Theorem5.2.
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6. Application to the Paneitz-Branson operator

By choosing an appropriate function v in Theorem 1.3, one can obtain more practical corollaries. For
instance, we have the following corollary.

Corollary 6.1. Let (M, g) be a compact and connected Riemannian manifold of dimension n > 7, f be a smooth
positive function on M and h a smooth positive function on M. We assume that P; is coercive. If there exists x, € M
such that f(x,) = maxyem f(x) and

Agf(xo)  4n® —40n —48
f(xO) " 3(n—6)n(n+2) 59(x°) <0,

then there exists A, > 0 such that YA € (0, Ay), the equation
Plu= flul™u + Ahlul"?u (6)

admits a pair of weak solutions with positive energy and infinitely many pairs of weak solutions with negative energies.

Proof. Let B, (x.,6) be the ball centred at x, of radius 6 with 0 < 26 < d and let 1 be a smooth function equal
to 1 on B, (x,,6) and equal to 0 on M\B, (x,, 20).
Put

1—4

ve(x) = [(” 4 (v -4) 64]'8 ()

f (x0) (2 +€2)'7
We will prove that
2
sup Jo(tve) < P
t>0 n (maxeem f(x))* K

First, as Jo(0) = 0 and lim;—,+« Jo(tve) = —00, we must have

sup ]O(tve) = ]O(tmaxve)r
t>0

where tnay > 0 is such that % Jo(tve) , = 0. By a simple calculation, we find that

=Imax

[[vell N
fmax = _—
[ fodav,

Tl
NI

Thus, we have

2

TR T e
ot = 2 [ | el - f floNdo
0= 2| T pdny | "M N\ T av, ’

2

o loell ) o
== Ue
n{ fy flocNdv, g

We will evaluate each factor in this last expression separately. Through the same calculations as in [5, 16],
we get

N 1 _ Agf (x0) Sy (xo) ) ) ) )
fo(vae(x)l o ™ (1 (2(n—2)f(xo) sz )
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also,

1 dn-NtryAxo) , 2)
A(Vy0e, Vyve)do, = 7 = ’
fM (Vove Varelity K (f())T \n0P =9 (-0 +o(€)

and

s

nggdvg =0 (62) ,

Sg(xo)) e +o (62) ,

and
2 1 n? +4n-20
Ayve| dvy = — —|1- Sy (xe)e* +0 62).
fz\;{) 7 ’ 7 Ké(f(xo))4( 6(n2—-4)(n-6)"7 ( )
Thus,
2 2 55 1
|Agv€| +A(ngE,ng€) |Vyvs( + ngedvg =07
M Ky (f(x)) *
n2 + 4n — 20 4n—-1) R )
(1 - (msg (xo) - m tl'gA (xo) € +o0 (6 )
Keeping in mind that
(n—2)%*+4 4 ) (n—-22-8
trgA (xo) = (msg trgg - m trg Rlcg (xo) = ng(xb),
we get
oo, = 1 _( n® — 8n® + 28n + 48
ellp2 Kg (f (xo))% 6(n —6)(n—2)n(n +2)
>0
and

”7’6”1235 1 1 (Agf (x0) . 4n® — 40n — 48
fM flocNdV, B 2m—-2)\ fxo,)  3m—6mmn+2)77

<0

Thus, for € > 0 small enough, we have

2
loell2, <

v
TR (f)T

and s
”Ue”Pz
7

—_— <
Jyy floeNav,

7

and consequently,
2

7 (MmaXyepm f(JC)):‘l_1 K8/4 ’

]O(tmaxve) <

which completes the proof. [

S (xo)) €2 + 0(e?).

1564
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7. Application to the GJMS Operator of Sixth Order:

For k = 3, the sixth order GJMS operator P; is given by

P = Adu + Ay (divy (Tou)) + divy (T2 (Vyu)) Agu - ”T_zAg (01 (Ag) Agu)

. n—=6

+div, (T4 (Vgu)) + 5 2,

where
8 . n* —4n + 12
T, = nTRlC’g + msg.g,
Z-12n-4 2
Ty = —3%01 (As) g+4m-]A[ g+80-201(4,)A,
, 16

+ (11— 6) Ago1 (Ag) g — 48A2 — — By,

and
1 1
U6 = —503 (Ag) - m <B1A>gl

where A, and B, denote respectively the Schouten and the Bach tensors and are defined by

1 Sq
Ai =2 (R“ T 2(n- 1)9“)’

Bij =4, (Aij) - VA = A" Wi,

and
Q2 = —312%0 — ”T”Ag (01 (A,J,)Z) +4A, (|A5,|2) +8divy (A,V,01 (4,)) + A2 (01 (A))
n-=6

2

01 (A0) 8y (01 (45)) ~ 4~ 0 1 (A) [ + =2V (4,7

while oy (Ag) is the K symmetric function of the eigenvalues of the Schouten tensor A,.
For every € > 0, we define the test function

Ve (%) 1= [n(nz ~4)(n* - 16) (n - 6) e6]”{2 .

n—6 7/

f(x0) (2+1r)7
where 1 € C? (M) with 0 < n(x) < 1, such that
] 1 if xe€B(x,,0),
)= { 0 if xe M~ B(x,20).

The aim of this section is to compute the expansions of

f ve.P3 (ve) dog and f F @) loe? do,.
M M

We will analyse these computations for the cases n > 10 and for n = 10. For instance, we have the following
corollary.
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Corollary 7.1. Let (M, g) be a compact and connected Riemannian manifold of dimension n > 10, f be a smooth
positive function on M. Assuming that P; is coercive and if there exists x, € M such that f (x,) := maXsem f (%),

the Weyl tensor is nonzero (i.e. Wy (xo) # 0) ;and Vi f (xo) = Ay f (x0) = A; f (xo) = 0, then there exists A. > 0, such

that for all A € (0, A.), the equation

P; ) = fluNu+ Ah|ul"2y,

admits a pair of weak solutions with positive energy and infinitely many pairs of weak solutions with negative energies.

7.1. Taylor’s Expansion of ], forn > 10 :

Proof. We compute each terms separately, we strat with the important term fM ve.Pg (ve) dvy, and taking into

account that

26 §
Wn = [n(n2 —4)(n2-16)(n — 6)K0]
and
Wy = w12

we have
fM ve.P3 (ve) dvy = fM Ve [ASve + Ay (divy (Tooe)) + div (T2 (Vs0e)) Agve

n-—2

8y (01 (Ag) Agee) + divy (e (Vy20)) + 25203 o,

Then,
2 1

V, (Agve)| dv, = — (1 4),

fM' o8] oy (maxxer(x))"EKg( #o(ef)

- > : fM o1 (A) (M) doy =

where

W, @)
(max M-"f )% Kb X Any (64 +o (64)),
XE. K

22715 (n - 6) (n — 6n2 + 81— 32) 2
6m2(n—-1)(n—-8)(n—-10)(n +2)(n +4) 12*1'

An,l =

) f T, (nge, VgAgvg) do, = |Wg (XO))Z — X Ao (64 +0 (64)) ,
M (maxyem f (x))% Kg '

where

16 (n? — 4n - 4) (n - 28) (n - 6) I,
An = - n_n ’
2T TR 10) (-8 (-2 (- (1 +4) on-1pz !

And

W, (x|

— Ty (nge, nge) dv, = —
fM (maxen f (1) 7 K¢

o

(10)
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where
Ao (n—6)>(n-23) I,
T 3n-10)(n=8) (R —4) (n - n(n+4) I
And also,

fM ngzdvg =0 (64).

Plugging (7), (8),(9), (10) and (11), it comes that

1
f Ue~P; (ve) dvg = =6 X
M

(maxyem f (x)) & K§

[1 +(An1 +Aup +Au3) |Wg (xo)(2 et+o (64)] )

1567

(11)

(12)

Using the same computation and taking into account that V, f (x,) = A, f (x,) = A; £ (x,) =0, we have that

[ do, = 1 1 4).
| r@ ek i, e )

Then, we obtain from (12) and (13),

1 3 _l 2 _
ELUG.Pg(ve)dvg zﬁj};{f(x)lvel dvy =

3
n-6 _ 1
n (maxyem f (x)) © K§

Since the constant A, 1 + Anp + Az < 0, consequently

X (1 + % (Anj + Auz + Ang) [W, (xo)(2 et +o <e4)).

3

n—6 ot
n(maxyeym f (x)) © K§

Jo (ve) <

O

7.2. Taylor’s Expansion of ], for n = 10 :
Proof. We the same technique, we obtain

[ (o) L (1+ofe)),

2
do, = —
(maxyem f () ¢ K

T
0
and
n-=2 2 _ |Wg (xo)|2 4 1 4
- [\4 o1 (Ag) (Agve) dv, = (maxxer(x))”T_ﬁ Kg X By 1 (166 In 2 + o(e )),
where

(n—2)(n?- 4) (n2 - 16) (n - 6)°
48(n—1)1" '

nl =

(13)
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And also,
|Wg (xo))2 1
-2 f T2 (Vye, VoAgve) dog = X By, (464 In— +o (64)),
M (maxyen f (x)) © K¢ €
where
(n2 = 28) (n = 4) (n — 6)° (n — 2) (n? - 16)
Bn,2 = - 1 .
12m-1)1I
And
W, (o) 1
- f Ty (nge, nge) dv, = — X B3 (64 In —+o (64)),
M (maxyem f (¥)) © K €
n—6)
Bn,3 = ( ) Tl
12(n—-1)nn2-4)(n2-16)I2
And also,
325 _ (4
LQgUEdUg = o(e )
f F@) ool do, = LI [1 retln— + 0(64)].
M (maxyen f (x)) © K¢ €

Summing the above estimations, we get that

% f ve.Pg (ve) dvy — lﬁ f f(x) |U€|2” dv, = 3 ——— X

M 28 Im n(maxyem f (x)) © K§
n—6\ 4, 1 4

[1 + (Bn,4 - )e lng +o(e )]

where

1 2
By = (8 X By1+2X B+ EB,,,g) |W, (o)

Since By, 4 — % < 0 when n = 10, it is clear that

3

e 17
n (maxyeym f (x)) © K

Jo (ve) <
which completes the proof. [
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