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Abstract. In this paper, we provide original representation for the Drazin inverse of P + Q under the
conditions P2Q = 0, Q(PQ)2 = 0, Q2PQ2 = 0, QPQ3 = 0 and QPQ2PQ = 0. Then, we apply our results

to derive some new expressions for the Drazin inverse of a 2 × 2 complex block matrix M =

[
A B
C D

]
∈

Cn×n(where A and D are square matrices but not necessarily of the same size). Finally, several illustrative
numerical examples are given to demonstrate our results.

1. Introduction

For A ∈ Cn×n, where Cn×n denotes the set of n × n complex matrices and rank(A) is the rank of A, the
smallest non-negative integer k which satisfies rank(Ak+1) = rank(Ak) is called the index of A, and marked
by ind(A). The Drazin inverse of A ∈ Cn×n with ind(A) = k, denoted by Ad, is the unique matrix satisfying
the equations as follows:

AAd = AdA, AdAAd = Ad and Ak = Ak+1Ad.

We denote by Ae = AAd, and by Aπ = I − Ae the spectral idempotent of A corresponding to {0}, and define
A0 = I, where I is the identity matrix with proper sizes. In the case that ind(A) = 1, we called the Drazin
inverse of A as group inverse and denoted by A♯. The Drazin inverse is useful and its applications are
showed in various fields, such as singular linear differential equations and difference equations [17], finite
Markov chains [20], iterative methods [21]. And the relevant research about the Drazin inverse was widely
developed in [2, 23–28, 30, 31, 35, 36, 38, 39].

According to current papers, it is still an open problem to derive the formula for (P + Q)d without any
side conditions for matrices P and Q. Suppose that P,Q ∈ Cn×n. In 1958, Drazin [13] gave the explicit
representation of (P + Q)d under the conditions PQ = QP = 0. In 2001, Hartwig et al. [16] developed
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an expression of (P + Q)d when PQ = 0. Expressions of the Drazin inverse of the sum of two matrices
under the weaker conditions PQ2 = PQP = 0 and P2Q = QPQ = 0 were provided in [33] by Yang and
Liu. In 2018, Yousefi and Dana [34] presented a representation for (P + Q)d when P2QP = 0,P2Q2 = 0 and
QPQ = 0. In 2022, Shakoor et al. [29] gave some results of (P +Q)d under conditions P2QP = PQ2 = 0 and
QPQ2 = P2Q = 0.

Likewise, formulae for (P +Q)d are valuable in computing the representations of a n × n block matrix:

M =
[
A B
C D

]
, (1)

where A and D are square matrices. In 1979, Campbell and Meyer [4] proposed an open problem to find an
explicit representation for the Drazin inverse of M. Until now, there has been no formula for Md without
any side conditions for blocks of matrix M. Here we list some results below:

1. In [8], ABC = 0 and DC = 0;
2. In [11], BC = 0,BD = 0 and DC = 0;
3. In [12], BC = 0,BDC = 0 and BD2 = 0;
4. In [19], BDπC = 0,BDDd = 0,DDπCA = 0 and DDπCB = 0;
5. In [1], ABD = 0,CBD = 0,BCA = 0,DCA = 0,BCBC = 0 and DπCBC = 0.

Inspired by previous results, we continue to study additive results for the Drazin inverse. Under some
weaker conditions, we attain original result for (P +Q)d in this paper. Applying this result, we investigate
the Drazin inverse of arbitrary block matrix. By establishing several original results and combining various
facts known in the literature, the article reveals new expressions for the Drazin inverse of the sum and of
the block matrix.

We organize the article in five sections. In Sect. 2, we first introduce some lemmas about the results of
the Drazin inverse of an anti-triangular matrix. In Sect. 3, we derive a new explicit formula for the Drazin
inverse of a sum of two matrices P,Q ∈ Cn×n under conditions P2Q = 0, Q(PQ)2 = 0, Q2PQ2 = 0, QPQ3 = 0
and QPQ2PQ = 0. These results extend the formulae proved in [32] and [33], respectively. In Sect. 4, we
apply these formulae for (P + Q)d to attain the representations for the Drazin inverse of M given by (1)
under conditions weaker than those used in some recent papers. In Sect. 5, we demonstrate our results by
some numerical examples.

2. Key lemma

To prove the main results, we need the following lemmas. Then, we begin with the well-known Cline’s
formula.

Lemma 2.1. [6] (Cline’s Formula) For A ∈ Cm×n and B ∈ Cn×m, (BA)d = B(AB)2dA.

The next representation about the Drazin inverse of the sum of two matrices proved in [16] is valuable
for our results.

Lemma 2.2. [16] Let S,R ∈ Cn×n. If SR = 0, then

(S + R)d =

iR−1∑
i=0

RπRi(Sd)i+1 +

iS−1∑
i=0

(Rd)i+1SiSπ, (2)

where ind(S) = iS and ind(R) = iR.

We need the next lemma about the Drazin inverse of block triangular matrices.
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Lemma 2.3. [15, 22] Let U =
[

A B
0 D

]
and V =

[
D 0
B A

]
∈ Cn×n, where A and D are square matrices such that

ind(A) = iA and ind(D) = iD. Then

Ud =

[
Ad X
0 Dd

]
and Vd =

[
Dd 0
X Ad

]
,

where

X =
iD−1∑
i=0

(Ad)i+2BDiDπ + Aπ
iA−1∑
i=0

AiB(Dd)i+2
− AdBDd. (3)

Furthermore, we provide some results about the Drazin inverse of
[
A B
I 0

]
and

[
A B
C 0

]
, which are

extremely useful in Section 4.

Lemma 2.4. [37, Theorem 3.1] Assume that A and B of a matrix N̄ =
[
A B
I 0

]
are square matrices of the same size

and obey AB2 = 0, A2BA = 0, ABA2 = 0 and (AB)2 = 0. Then

N̄d =

[
E1 E2
E3 E4

]
, (4)

where ind(A) = iA and ind(B) = iB,

E1 = −BdAdB +
iB−1∑
i=0

BπBiA(2i+3)dB +
iB−1∑
i=0

BπBiA(2i+1)d +

[
iA
2 ]−1∑
i=0

B(i+2)dA2i+1AπB

+

[
iA
2 ]−1∑
i=0

B(i+1)dA2i+1Aπ,

E2 =

iB−1∑
i=0

BπBiA(2i+2)dB +
[

iA
2 ]∑

i=0

B(i+1)dA2iAπB,

E3 = B3dABA − BdA2dB − Bd +

iB−1∑
i=0

BπBiA(2i+2)d +

[
iA
2 ]∑

i=0

B(i+1)dA2iAπ +
iB−1∑
i=0

BπBiA(2i+4)dB

+

[
iA
2 ]∑

i=0

B(i+2)dA2iAπB,

E4 = −BdAdB +
iB−1∑
i=0

BπBiA(2i+3)dB +
[

iA
2 ]∑

i=0

B(i+2)dA2i+1AπB.

Lemma 2.5. [37, Theorem 3.2] Assume that A and BC of a matrix N =
[
A B
C 0

]
are square matrices of the same size

and obey A(BC)2 = 0, A2BCA = 0, ABCA2 = 0 and (ABC)2 = 0. Then

Nd =

[
F1 F2
F3 F4

]
,
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where ind(A) = iA and ind(BC) = iBC,

F1 =

iBC−1∑
i=0

(BC)π(BC)iA(2i+1)d +

[
iA
2 ]−1∑
i=0

(BC)(i+1)dA2i+1Aπ +
iBC−1∑
i=0

(BC)π(BC)iA(2i+3)dBC

+

[
iA
2 ]−1∑
i=0

(BC)(i+2)dA2i+1AπBC − (BC)dAdBC,

F2 =

iBC−1∑
i=0

(BC)π(BC)iA(2i+2)dB +
iBC−1∑
i=0

(BC)π(BC)iA(2i+4)dBCB +
[

iA
2 ]∑

i=0

(BC)(i+1)dA2iAπB

+

[
iA
2 ]∑

i=0

(BC)(i+2)dA2iAπBCB + (BC)3dABCAB − (BC)dA2dBCB − (BC)dB,

F3 = C
[

iA
2 ]∑

i=0

(BC)(i+1)dA2iAπ + C
iBC−1∑
i=0

(BC)π(BC)iA(2i+2)d + C
[

iA
2 ]∑

i=0

(BC)(i+2)dA2iAπBC

+ C
iBC−1∑
i=0

(BC)π(BC)iA(2i+4)dBC − C(BC)dA2dBC − C(BC)d,

F4 = C
[

iA
2 ]−1∑
i=0

(BC)(i+2)dA2i+1AπB + C
[

iA
2 ]−1∑
i=0

(BC)(i+3)dA2i+1AπBCB + C
iBC−1∑
i=0

(BC)π(BC)iA(2i+3)dB

+ C
iBC−1∑
i=0

(BC)π(BC)iA(2i+5)dBCB − C(BC)dAdB − C(BC)dA3dBCB − C(BC)2dAdBCB.

Lemma 2.6. [10, Theorem 3.3] and [37, Corollary 3.3] Let N =
[
A B
C 0

]
, where A and BC are square matrices of

the same size. If ABC = 0, then

Nd =

[
YA YB
CY C[YAd + (BC)d(YA − Ad)]B

]
,

where

Y =

[
iA
2 ]∑

i=0

(BC)(i+1)dA2iAπ +
iBC−1∑
i=0

(BC)π(BC)iA(2i+2)d (5)

such that ind(A) = iA and ind(BC) = iBC.

3. Main results

In this section, we present the explicit formula for (P +Q)d, under the conditions P2Q = 0, Q(PQ)2 = 0,
Q2PQ2 = 0, QPQ3 = 0 and QPQ2PQ = 0, which extends the consequences proved in [32] and [33]. Now, we
are in position to state the main result.
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Theorem 3.1. Let P2Q = 0, Q(PQ)2 = 0, Q2PQ2 = 0, QPQ3 = 0 and QPQ2PQ = 0, where P,Q ∈ Cn×n are such
that ind(Q) = iQ and ind(P) = iP. Then

(P +Q)d =

iP−1∑
i=0

Q(i+1)dPiPπ +
iP−1∑
i=0

Q(i+3)dPQPiPπ +
iQ−1∑
i=0

QπQiP(i+1)d +

iQ−1∑
i=0

PQπQiPQP(i+4)d

+

iP−1∑
i=0

PQ(i+2)dPiPπ +
iP−1∑
i=0

PQ(i+4)dPQPiPπ +
iQ−1∑
i=0

PQπQiP(i+2)d +

iQ−1∑
i=0

QπQiPQP(i+3)d

+ QPQ2P5d
− PQP3d

−QdPQP2d
−Q2dPQPd + PQPQ2P6d

− PQdPQP3d
− Pd

− PQ2dPQP2d
− PQdPd

− PQ3dPQPd.

Proof. We denote that P +Q =
[
Q I

] [ I
P

]
. Due to Lemma 2.1, we have

(P +Q)d =
[
Q I

] [ Q I
PQ P

]2d [
I
P

]
, (6)

The next splitting of
[

Q I
PQ P

]
will be used:[

Q I
PQ P

]
=

[
Q I

PQ 0

]
+

[
0 0
0 P

]
:= R + S.

Since P2Q = 0, we are able to obtain SR = 0. Hence, Lemma 2.2 can be utilized. Now, for H =
[
0 I
I −Q

]
and

H−1 =

[
Q I
I 0

]
, we calculate Rd as follows:

[
Q I

PQ 0

]d

=

(
H

[
Q PQ
I 0

]
H−1

)d

= H
[
Q PQ
I 0

]d

H−1

=

[
E3Q + E4 E3

E1Q −QE3Q + E2 −QE4 E1 −QE3

]
=

[
Qd + PQ2d + PQ4dPQ +Q3dPQ Q2d + PQ3d + PQ5dPQ +Q4dPQ

PQd + PQ3dPQ PQ2d + PQ4dPQ

]
,

where
[
Q PQ
I 0

]d

and En, n = 1, 4 can be expressed by Lemma 2.4. In addition, we attain the expression for

Rπ as

Rπ =
[
Qπ −Q2dPQ − PQd

− PQ3dPQ −Qd
−Q3dPQ − PQ2d

− PQ4dPQ
−PQQd

− PQ2dPQ I − PQd
− PQ3dPQ

]
.

Then, we prove, for n ≥ 7,

Rn =

[
Qn +Qn−2PQ + PQn−1 + PQn−3PQ Qn−1 +Qn−3PQ + PQn−2 + PQn−4PQ

PQn + PQn−2PQ PQn−1 + PQn−3PQ

]
,

and for n ≥ 1,

Rnd =

[
Qnd +Q(n+2)dPQ + PQ(n+1)d + PQ(n+3)dPQ Q(n+1)d +Q(n+3)dPQ + PQ(n+2)d + PQ(n+4)dPQ

PQnd + PQ(n+2)dPQ PQ(n+1)d + PQ(n+3)dPQ

]
.

Consequently, the proof is finished by substituting the above expressions into (2) and (6).
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Now, we have strengthened the conditions of Theorem 3.1 and obtained the following corollaries
represented in [32] and [33].

Corollary 3.2. [32, Theorem 3.2] Let P2Q = 0, QPQ2 = 0 and (QP)2 = 0, where P,Q ∈ Cn×n are such that
ind(Q) = iQ and ind(P) = iP. Then

(P +Q)d =

iP−1∑
i=0

Q(i+1)dPiPπ +
iQ−1∑
i=0

QπQiP(i+1)d +

iP−1∑
i=0

PQ(i+2)dPiPπ +
iQ−1∑
i=0

PQiQπP(i+2)d

+ Q3dPQ + PQ4dPQ − Pd
− PQdPd.

Corollary 3.3. [33, Theorem 2.2] Let P2Q = 0 and QPQ = 0, where P,Q ∈ Cn×n are such that ind(Q) = iQ and
ind(P) = iP. Then

(P +Q)d =

iP−1∑
i=0

Q(i+1)dPiPπ +
iQ−1∑
i=0

QπQiP(i+1)d +

iP−1∑
i=0

PQ(i+2)dPiPπ +
iQ−2∑
i=0

PQi+1QπP(i+3)d

− PQdPd
− PQQdP2d.

We illustrate by the following example that Theorem 3.1 is an extension of Corollary 3.2 and Corollary
3.3.

Example 3.4. Consider 4 × 4 complex matrices

P =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 and Q =


a1 a2 a3 a4
0 0 b3 b4
0 0 0 0
0 0 0 0

 ,
where a1, a2, a3, a4, b3, b4 ∈ C\{0}. Since

QPQ =


0 0 a1b3 a1b4
0 0 0 0
0 0 0 0
0 0 0 0

 , 0 and (QP)2 =


0 0 0 a1b3
0 0 0 0
0 0 0 0
0 0 0 0

 , 0.

The assumptions of Corollary 3.2 and Corollary 3.3 do not hold. Then ind(P) = 4, Q(PQ)2 = (QP)2Q = 0, P2Q = 0
and QPQ2 = 0. So, Q2PQ2 = 0, QPQ3 = 0 and QPQ2PQ = 0, that is, the conditions of Theorem 3.1 are satisfied
and we obtain

(P +Q)d =

3∑
i=0

Q(i+1)dPi +

3∑
i=0

Q(i+3)dPQPi +

3∑
i=0

PQ(i+2)dPi +

3∑
i=0

PQ(i+4)dPQPi. (7)

According to Lemma 2.3, we get

Qd =


a−1

1 a−2
1 a2 a−2

1 a3 + a−3
1 a2b3 a−2

1 a4 + a−3
1 a2b4

0 0 0 0
0 0 0 0
0 0 0 0

 .
Substituting the above matrices into (7), we get

(P +Q)d =


a−1

1 0 0 0
a−2

1 a2 + a−2
1 0 0 0

a−2
1 a3 + a−3

1 a2b3 + a−3
1 a2 + a−3

1 + a−3
1 b3 0 0 0

a−2
1 a4 + a−4

1 a2 + a−4
1 + a−3

1 b4 + a−4
1 b3 + a−3

1 a2b4 + a−3
1 a3 + a−4

1 a2b3 0 0 0


⊤

.
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4. Applications to the Drazin inverse of block matrix

In this section, we apply our explicit formulae proved in Section 3 to present the formulae for the Drazin
inverse of a block matrix M given by (1). The Drazin inverse of anti-triangular matrices given by lemmas
in Section 2 are extremely valuable for us to derive the specific expressions of Md in this part.

Theorem 4.1. Let M be defined in (1), if

BCA = 0, DCA = 0, CBCB = 0, DCBD = 0 and BCBD = 0,

then

Md =



Ad + AdXC + XDdC X + (A2dX − A2dBD2d + XD2d)CB
+(A3dX − A3dBD2d

− A2dBD3d + XD3d)CBC

(I + CX)D2dC + (D4d + CA4dX − CA4dBD2d Dd + CAdX + CXDd + (D3d + CA3dX
−CA3dBD3d

− CA2dBD4d + CXD4d)CBC −CA3dBD2d
− CA2dBD3d + CXD3d)CB

+CA2d(I + XC − BD2dC)


,

where X is given by (3).

Proof. We consider the splitting

M =
[
0 0
C 0

]
+

[
A B
0 D

]
:= K +U,

and we can obtain K2 = 0, Kd = 0 and Kπ = I. After applying Lemma 2.3, the Drazin inverse of U can be
gained as follows:

Ud =

[
Ad X
0 Dd

]
.

According to Theorem 3.1, we get

Md = (Ud + KU2d)(I +UdK +U2dKU +U3dKUK).

We have K2U = 0,

U(KU)2 =

[
BCBCA BCBCB
DCBCA DCBCB

]
= 0, UKU3 =

[
BCA3 BCA2B + BCABD + BCBD2

DCA3 DCA2B +DCABD +DCBD2

]
= 0,

U2KU2 =

[
ABCA2 + BDCA2 ABCAB + ABCBD + BDCAB + BDCBD

D2CA2 D2CAB +D2CBD

]
= 0,

UKU2KU =
[

BCABCA + BCBDCA BCABCB + BCBDCB
DCABCA +DCBDCA DCABCB +DCBDCB

]
= 0.

Obviously, the conditions are hold. After a series of calculations, we get the new formula for Md.

On the basis of Theorem 4.1, after strengthening the conditions, we can obtain the following result,
which is given in [19, Theorem 3.2].

Corollary 4.2. Let M be defined in (1), if

BCA = 0, DCA = 0, CBC = 0 and CBD = 0,

then

Md =


Ad + AdXC + XDdC X + (A2dX − A2dBD2d + XD2d)CB

(I + CX)D2dC Dd + CAdX + CXDd + (D3d + CA3dX
+CA2d(I + XC − BD2dC) −CA3dBD2d

− CA2dBD3d + CXD3d)CB

 ,
where X is given by (3).
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Remark 4.3. Theorem 4.1 generalizes some known results for Md under the assumptions:

1. CA = 0 and CB = 0 (see [9, Theorem 2.1]);

2. BD = 0, CA = 0 and CB = 0 (see [12, Case (b3)]);

3. BCA = 0,BCB = 0,DCA = 0 and DCB = 0 (see [33, Theorem 3.1]);

4. BC = 0 and DC = 0 (see [18, Corollary 3.3]);

5. ABD = 0,CBD = 0,BCA = 0,DCA = 0 and CBC = 0 (see [1, Corollary 3.2]);

6. DCA = 0,BCA = 0,CBD = 0,ABD = 0,CBCB = 0 and AπBCB = 0 (see [1, Theorem 3.3]).

Now, another theorem for calculating Md is proved.

Theorem 4.4. Let M be defined in (1), if

A(BC)2 = 0, A2BCA = 0, ABCA2 = 0, (ABC)2 = 0, BDCA = 0, BDCB = 0 and D2C = 0,

then

Md =

iD−1∑
i=0

N(i+1)d
[
0 0
0 D

]i [
I 0
0 Dπ

]
+N3d

[
0 0

DC 0

]
+

iN−1∑
i=0

NπNi
[
0 0
0 D(i+1)d

]

+

iD−1∑
i=0

[
0 0
0 D

]
N(i+2)d

[
0 0
0 D

]i [
I 0
0 Dπ

]
+

[
0 0
0 D

]
N4d

[
0 0

DC 0

]

+

iN−1∑
i=0

[
0 0
0 D

]
NiNπ

[
0 0
0 D(i+2)d

]
−

[
0 0
0 Dd +DF4Dd

]
,

where Nd and F4 are given by Lemma 2.5 such that ind(N) = iN and ind(D) = iD.

Proof. We consider the splitting

M =
[
0 0
0 D

]
+

[
A B
C 0

]
:= P +N.

We have N(PN)2 = 0,

P2N =
[

0 0
D2C 0

]
= 0, N2PN2 =

[
ABDCA ABDCB
CBDCA CBDCB

]
= 0,

NPN3 =

[
BDCA2 + BDCBC BDCAB

0 0

]
= 0, NPN2PN =

[
BDCBDC 0

0 0

]
= 0.

By applying the result in Lemma 2.5, Nd is given and we can prove the following representation

Nπ =
[
I − F1A − F2C −F1B
−F3A − F4C I − F3B

]
.

Analogously, using Lemma 2.3, we note that

Pd =

[
0 0
0 Dd

]
and Pπ =

[
I 0
0 Dπ

]
.

After that ind(P) = iD, because, for i ≥ 1,

PiPπ =
[
0 0
0 DiDπ

]
.

Consequently, applying Theorem 3.1, we finish the proof.
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In order to facilitate the application, we give the following deduction, and the conditions about D are
strengthened on the basis of Theorem 4.4.

Corollary 4.5. Let M be defined in (1), if

A(BC)2 = 0, A2BCA = 0, ABCA2 = 0, (ABC)2 = 0, BDC = 0 and D2C = 0,

then

Md =

iD−1∑
i=0

N(i+1)d
[
0 0
0 D

]i [
I 0
0 Dπ

]
+

iN−1∑
i=0

NπNi
[
0 0
0 D(i+1)d

]

+

iD−1∑
i=0

[
0 0
0 D

]
N(i+2)d

[
0 0
0 D

]i [
I 0
0 Dπ

]

+

iN−1∑
i=0

[
0 0
0 D

]
NiNπ

[
0 0
0 D(i+2)d

]
−

[
0 0
0 Dd +DF4Dd

]
,

where Nd and F4 are given by Lemma 2.5 such that ind(N) = iN and ind(D) = iD.

After strengthening the conditions about the Drazin inverse of anti-triangular matrix N of Theorem 4.4,
we can obtain the result represented in Corollary 4.6.

Corollary 4.6. Let M be defined in (1), if

ABC = 0, BDCA = 0, BDCB = 0 and D2C = 0,

then

Md =

iD−1∑
i=0

N(i+1)d
[
0 0
0 D

]i [
I 0
0 Dπ

]
+Q3d

[
0 0

DC 0

]
+

iN−1∑
i=0

NπNi
[
0 0
0 D(i+1)d

]

+

iD−1∑
i=0

[
0 0
0 D

]
N(i+2)d

[
0 0
0 D

]i [
I 0
0 Dπ

]
+

iN−1∑
i=0

[
0 0
0 D

]
NiNπ

[
0 0
0 D(i+2)d

]
+

[
0 0
0 D

]
Q4d

[
0 0

DC 0

]
−

[
0 0
0 Dd +DC[YAd + (BC)d(YA − Ad)]BDd

]
,

where Nd and Y are given by Lemma 2.6 such that ind(N) = iN and ind(D) = iD.

Remark 4.7. A list of results extended by Theorem 4.4 is given below:

1. In [5, Theorem 2.1], A = 0 and D = 0;
2. In [11, Theorem 5.3], BC = 0,BD = 0 and DC = 0;
3. In [14, Lemma 2.2], BC = 0,DC = 0 and D is nilpotent;
4. In [3, Theorem 2.2], ABC = 0 and DC = 0;
5. In [7, Theorem 1], ABC = 0,BD = 0 and DC = 0;
6. In [7, Theorem 2, Theorem 3], ABC = 0,DC = 0 and BC is nilpotent (or D is nilpotent).

5. Numerical examples

To illustrate our results, we present numerical examples in this section.
Firstly, we describe that Theorem 4.1 generalizes results listed in Remark 4.3.
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Example 5.1. Let

A =


1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 and B = C = D =


0 b 0 0
0 0 c 0
0 0 0 d
0 0 0 0

 ,
where b, c, d ∈ C\{0}. Then

CB = BC = DC =


0 0 bc 0
0 0 0 cd
0 0 0 0
0 0 0 0

 , 0, BCB = CBC = CBD =


0 0 0 bcd
0 0 0 0
0 0 0 0
0 0 0 0

 , 0.

Hence, the assumptions of [9, Theorem 2.1], [12, Case (b3)], [33, Theorem 3.1], [18, Corollary 3.3], [1, Corollary
3.2] and [1, Theorem 3.3] are not satisfied. Notice that BCA = DCA = 0 and CBCB = DCBD = BCBD = 0, i.e, the
conditions of Theorem 4.1 hold. Using A2 = A = A# and Dd = 0, by Theorem 4.1, we obtain

Md =



1 1 0 0 0 b 0 0
0 0 0 0 0 0 c 0
0 0 0 0 0 0 0 d
0 0 0 0 0 0 0 0
0 b 0 0 0 b 0 0
0 0 c 0 0 0 c 0
0 0 0 d 0 0 0 d
0 0 0 0 0 0 0 0



d

=



1 1 bc cd + bcd 0 b c + bc cd + 2bcd
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

We now verify that Theorem 4.4 extends results given in Remark 4.7.

Example 5.2. Consider matrices A, B and C presented in Example 5.1 and, for a, e ∈ C\{0},

D =


0 0 a 0
0 0 0 e
0 0 0 0
0 0 0 0

 .
By

DC =


0 0 0 ad
0 0 0 0
0 0 0 0
0 0 0 0

 , 0,

we observe that the conditions of [5, Theorem 2.1], [11, Theorem 5.3], [14, Lemma 2.2], [3, Theorem 2.2], [7,
Theorem 1] and [7, Theorem 2,Theorem 3] are not met. Since (BC)2 = 0, we have A(BC)2 = 0 and (BC)d = 0. The
equalities BCA = 0, DCA = 0 and D2 = 0 imply that the assumptions of Theorem 4.4 are satisfied. Also, we see that
Dd = 0. Applying Lemma 2.5 and Theorem 4.4, we get

Nd =

[
F1 F2
F3 F4

]
,

where

F1 = A + ABC =


1 1 bc cd
0 0 0 0
0 0 0 0
0 0 0 0

 ,
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F2 = A2B + A4BCB = AB + ABCB =


0 b c bcd
0 0 0 0
0 0 0 0
0 0 0 0

 ,
F3 = CA + CABC = 04×4,

F4 = CAB + CABCB = 04×4,

and

Md =



1 1 0 0 0 b 0 0
0 0 0 0 0 0 c 0
0 0 0 0 0 0 0 d
0 0 0 0 0 0 0 0
0 b 0 0 0 0 a 0
0 0 c 0 0 0 0 e
0 0 0 d 0 0 0 0
0 0 0 0 0 0 0 0



d

=



1 1 bc cd 0 b c be + bcd
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.
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[37] D. Zhang, D. Mosić, Y. Jin, Explicit formulae for the Drazin inverse of anti-triangular block matrices, Filomat 36 (2022), 6215–6229.
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[39] D. Zhang, Y. Zhao, D. Mosić, V.N. Katsikis, Exact expressions for the Drazin inverse of anti-triangular matrices, J. Comput. Appl.

Math. 428 (2023), 115187.


