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Abstract. Simplicial complexes K, which are equal to their Alexander dual KΛ are known as self-dual
simplicial complexes. We prove that topological and combinatorial properties of any self-dual simplicial
complex, are fully determined by topological and combinatorial properties of the link of any of it’s vertices
which happens to be sub-dual in smaller combinatorial ambient. Using this observation, we describe a
general method for constructing self-dual triangulations of given topological spaces and focus on self-dual
triangulations of compact manifolds. We show that there exist only 4 types of self-dual combinatorial
manifolds and provide a general method for their construction.

1. Introduction

A simplicial complex K ⊂ 2[n] is (Alexander) self-dual if K = KΛ := {[n] \ A | A < K}. Self-dual simplical
complexes appear in many branches of mathematics as fundamental geometrical objects. In combinatorial
(algebraic) topology, self-dual simplicial complexes provide fundamental examples of triangulated geomet-
rical objects which are not embeddable in Euclidean spaces of prescribed dimension. More explicitly, see
[1, Section 5], self-dual complexes on n vertices cannot be embedded in the Euclidean (n − 3)−dimensional
space. Moreover, as demonstrated by S. A. Melikhov in [2], self-dual complexes are subset-minimal exam-
ples of simplicial complexes which are not embeddable in Rn−3 in the sense that every proper subcomplex
of a self-dual complex in the ambient [n] can be embedded in Rn−3. Similar property holds for joins of
self-dual complexes.

U. Brehm and W. Kühnel had proven in [9] that if d−dimensionad manifold different from sphere has a
triangulation with n vertices than

n ≥ 3⌈d/2⌉ + 3 (1)

where equality holds for d = 2, 4, 8, 16 when manifold has homology structure like a real, complex, quater-
nionic and octanionic projective plane. For d = 2, we have a 6-vertex triangulation of the real projective
plane (hemi-icosahedron, exhibited in Figure 1).
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Figure 1: Complete graph K5 and the hemi-icosahedron.

For d = 4 there is a unique 9-vertex triangulation of the complex projective plane, see [3–5, 17]. For
d = 8, several fitting triangulations where described in [13] and in [14] was shown that one of them is
actually a triangulation of the quaternionic projective plane. For d = 16, many suitable triangulations
where discovered in [6] and it is conjectured that every one of them is a triangulation of the octanionic
projective plane. As it turns out, every mentioned triangulation is a self-dual simplicial complex. Here we
prove that there are no other self-dual complexes that are combinatorial manifolds and provide a general
method for obtaining self-dual and consequently minimal triangulations of the projective planes.

1.1. Overview of the Paper
Chapter 2 gives a brief outline of the results published in [21]. There, we define sub-dual and self-

dual simplicial complexes, provide several tools for their analysis and prove the main structural theorem
(Theorem 2.8) which states that for any self-dual simplicial complex K ⊆ 2[n] and any vertex v ∈ [n],
simplicial complex Lk(v) (i.e the link of a vertex {v} ∈ K) is sub-dual in the ambient [n] \ {v} and if Lk(v)Λ is
the Alexander dual of Lk(v) in the ambient [n] \ {v} then:

K = Lk(v)Λ ∪ C Lk(v). (2)

Thus, topological and combinatorial properties of self-dual simplicial complex are fully determined by
topological and combinatorial properties of the link of any of its vertices. This in turn allows us to construct
an operator referred to as “dual upgrade” which transforms sub dual simplicial complex K ⊆ 2[n] into
self-dual simplicial complex ΛK ⊆ 2[n] given by

ΛK = KΛ ∪ CK (3)

where CK = K ∗
{
∅, {n}

}
is the cone of a simplicial complex K.

In Chapter 3 we analyze the relations between f−vectors and consequently Euler characteristic of a
simlicial complex and its Alexander dual (Proposition 3.2), describe f−vectors and Euler characteristic of
self-dual simplicial complexes (Corollary 3.3) and analyze f−vector and Euler characteristic of self-dual
upgrade ΛK in relation to f−vector and Euler characteristic of sub-dual complex K (Proposition 3.4). As it
turns out, f (K) and χ(K) completely determine f (ΛK) and χ(ΛK). Also, if K ⊆ 2[n] is a simlicial complex in
an ambient of odd cardinality, then χ(K) determines χ(Lk(v)) for all v ∈ [n] (Corollary 3.5).

In Chapter 4, using The Combinatorial Alexander duality (Theorem 4.1), we investigate the relations
between homology and cohomology of a given sub-dual simplicial complex and homology and cohomology
of its dual upgrade. Main result is the exact sequence (23) linking homology of a sub-dual simplicial complex
K and its Alexander dual KΛ with homology of its dual-upgrade ΛK. It is shown that homology (and
consequently cohomology) of a sub-dual complex K and its placement within KΛ determine the homology
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of ΛK and that, under specific circumstances, it is possible to construct a self-dual simplicial complex with
prescribed homology groups (Theorem 4.3).

In Section 5, we analyze the existence of self-dual simplicial complexes which are combinatorial man-
ifolds. Main result is Theorem 5.2 where we prove that there are only four types of such manifolds: one
nonorientable in dimension 2 on 6 vertices which is isomorphic to the hemi icosahedron i.e. minimal trian-
gulation of the real projective plane and three types of orientable combinatorial manifolds of dimensions
d = 4, 8, 16 with n = 9, 15, 27 vertexes which are projective-like meaning they have non-trivial reduced
homology groups isomorphic to Z in dimensions d and d/2.

In Section 6 we describe a method for constructing d−dimensional combinatorial self-dual manifolds
Md introduced in Section 5. As it turns out, to constructMd in the ambient [n], it is sufficient to construct
a dual-upgrade of (n − d − 3)−neighbourly sub-dual combinatorial sphere Sd−1. Using results obtained
in Section 3 and Dehn-Sommervile equations (50) we calculated f−vectors of all self-dual manifolds and
f−vectors of the spheres they are obtained form.

1.2. Related papers and results
The paper is based on unpublished results of the first author’s Ph.D. degree thesis [20], which was

completed under the mentorship of the second author. The first author acknowledges kind remarks
and useful suggestions of Wolfgang Kühnel who proposed, in a letter following the publication of [21],
some new ideas for future research. F. Chapoton and L. Manivel have previously studied [22, Section
7] the relationship between the f -vectors of minimal triangulations of “projective planes” (over Hurwitz
algebras) and the f -vectors of the corresponding spherical links. If the action of the symmetry group is
vertex-transitive than all spherical links are isomorphic, allowing the authors to compute this f -vector, see
[22, Figure 5].

Our approach, following into footsteps of [21], allows us to calculate (in Section 6.4) this f -vector without
any assumption on the action of the symmetry group. Alexander Gaifullin in [6] also obtained this result
(see [6, Table 1]) and constructed 634 vertex-transitive, and more than 10103 vertex non-transitive, combi-
natorial 16-manifolds like the octonionic projective plane. Gaifullin’s conjecture is that all the constructed
triangulations are PL homeomorphic to the octonionic projective plane.

Our approach, based on dual upgrades and elementary homology theory, is self-contained and may
serve as an introduction to this attractive area of combinatorial topology.

2. Basic Definitions and the Main Theorem

The terminology used in this paper is mostly standard and the reader is referred to [1] for all undefined
concepts. Recall that a simplicial complex K ⊆ 2[n] is any family of subsets of [n] = {1, 2, . . . ,n} such that:

(∀A ∈ K)(∀B ⊆ [n]) B ⊆ A⇒ B ∈ K. (4)

We however emphasize that the set of vertices Vert(K) = {v ∈ [n] | {v} ∈ K} of K can in general be a proper
subset of the ambient set [n].

Definition 2.1. The Alexander dual (or simply dual) of a complex K ⊆ 2[n] is the simplicial complex KΛ ⊆ 2[n] where

KΛ = {[n] \ A | A < K}. (5)

When we want to emphasize the ambient set V ⊆ [n], the Alexander dual of the complex K is denoted
by KΛV . Theorem 4.1 shows that combinatorial properties of KΛV is largely dependent on the cardinality of
the ambient set V.

Definition 2.2. Let K ⊆ 2V be a simplicial complex. We say that the complex K is:
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• sub-dual in the ambient V if K ⊆ KΛV ;

• self-dual in the ambient V if K = KΛV .

There are simplicial complexes which are neither self or sub-dual.

Example 2.3. Let
([n]

k
)

be the (k−1)-skeleton of the complex∆n−1 = 2[n]. Then, by Definition 2.1, its Alexander
dual in the ambient [n] is(

[n]
k

)Λ
= {[n] \ A | |A| > k} = {A | |A| ≤ n − k − 1} =

(
[n]

n − k − 1

)
. (6)

Therefore, (in the ambient [n]) the complex
([n]

k
)

is sub-dual iff 2k + 1 ≤ n and self-dual iff 2k + 1 = n.
Specially, if k = 2 we obtain the complex

([5]
2
)
= K5, a complete graph on 5 vertexes shown on Figure 1.

If a given simplicial complex is sub-dual in the ambient [n], all of its subcomplexes must also be sub-dual
in the ambient [n] because K ⊆ L implies LΛ ⊆ KΛ. Therefore, using the Example 2.3, we obtain the following
proposition.

Proposition 2.4. A simplicial complex K of dimension d is always sub-dual in the ambient [n] where n ⩾ 2d + 3.

The following theorem provides an efficient criterion for verifying sub and self-duality of a given
simplicial complex.

Theorem 2.5. Let K ⊆ 2V be a simplicial complex. In the ambient V the complex K is:

(1) sub-dual iff there is no simplex A ⊆ V such that A ∈ K and V \ A belong to K;

(2) self-dual iff for arbitrary A ⊆ V exactly one of the simplexes A or V \ A belongs to K or equivalently

(∀A ⊆ V)A ∈ K ⇐⇒ V \ A < K. (7)

Proof:
(1)(⇒) Let K ⊆ KΛ and let A ⊆ V such that A,V \ A ∈ K. Then, because K is a subcomplex of KΛ, we
have V \ A,A ∈ KΛ which by Definition 2.1 implies that A and V \ A do not belong to K contradicting our
assumption.

(⇐) Suppose there is no simplex A ⊆ V such that A and V \ A are in K. Then, for arbitrary A ∈ K, the
simplex V \ A is not in K which implies that V \ (V \ A) = A is in KΛ. Therefore K ⊆ KΛ.

(2) Complex K will be self-dual if it is sub-dual. Therefore, for an arbitrary simplex A ⊆ V, at least one of
the simplexes if A or V \ A belongs to K. If both of them are in K then both of them will not be in KΛ = K
which is not possible. □

Example 2.6. The complex ∆n−1 = 2[n] is self-dual in the ambient [n+1] and sub-dual in the ambient [n+2].

Indeed, following Theorem 2.5, for arbitrary A ⊆ [n + 1], the set A does not contain the vertex {n + 1} iff
[n+1]\A contains {n+1} or equivalently, A ∈ 2[n] iff [n+1]\A < 2[n] which confirms (2). If,∆n−1 = 2[n]

⊂ 2[n+2],
then ∆n−1 is sub-complex of self-dual complex 2[n+1] in the ambient [n + 2] ant therefore is sub-dual in the
ambient [n + 2].
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From Theorem 2.5 and Definition 2.1 we conclude that if a simplicial complex K ⊂ 2[n] is sub-dual, then
it’s Alexander dual KΛ has to contain at least one of the simplexes A, [n] \ A forming a partition of [n] into
disjoint subsets. The complexes with this property are also called 2-unavoidable, see [7] and [8] where these
and more general r-unavoidable complexes are studied. In this setting, the self-dual simplicial complexes
correspond to minimal 2−unavoidable complexes.

Here we are reminded of a simple but important concept of a link of a simplex in a given simplicial
complex.

Definition 2.7. Let K ⊆ 2[n] be a simplicial complex. The link of a simplex A ∈ K is a simplicial complex Lk(A) ⊂ K
given by

Lk(A) = {B ∈ K | B ∩ A = ∅,B ∪ A ∈ K}. (8)

In case of a vertex {v} ∈ [n] we will write Lk(v) instead of Lk({v}) for simplicity.

Following theorem, first proven in [21], provides a key insight into combinatorial structure of self-dual
simplicial complexes and is fundamental for this paper.

Theorem 2.8. (The Structural Theorem) Let K ⊂ 2[n] be a self-dual simplicial complex and {v} ⊂ [n] any vertex.
Then, simplicial complex Lk(v) is sub-dual in the ambient [n] \ {v} and

K = Lk(v)Λ[n]\{v} ∪ C Lk(v) (9)

where Lk(v)Λ[n]\{v} is the Alexander dual of a simplicial complex Lk(v) in the ambient [n] \ {v} and C Lk(v) =
Lk(v) ∪ {A ∪ {v} | A ∈ Lk(v)} is the cone of a simplicial complex Lk(v).

Conversely, if K ⊂ 2[n−1] is sub-dual simplicial complex in the ambient [n − 1], then

ΛK = KΛ[n−1] ∪ CK, (10)

where CK = K ∗
{
∅, {n}

}
, is self-dual simplicial complex in the ambient [n].

Proof: Let K ⊂ 2[n] be self-dual. We will prove the claim for the vertex n. First, simplicial complex
Lk(n) ∈ 2[n−1] is sub-dual in the ambient [n − 1]. Indeed, if Lk(n) contains simplexes A and [n − 1] \ A then,
by Definition 2.7, complex K will contain simplexes A∪ {n} and [n] \ (A∪ {n}) contradicting the assumption
that K is self-dual. Now, let A ⊂ [n] be a simplex of the complex K. If n ∈ A, then A ∈ C Lk(n). Let n < A. If
A < Lk(n)Λ[n−1] , then [n− 1] \A ∈ Lk(n) implying ([n− 1] \A)∪{n} = [n] \A ∈ K which cannot be true because
A ∈ K and K is self-dual. Therefore, A ∈ Lk(n)Λ[n−1] and we have proven that K ⊆ Lk(n)Λ[n−1] ∪ C Lk(n).

If there exists A ∈ Lk(n)Λ[n−1] ⊂ 2[n−1] such that A < K, then [n − 1] \ A < Lk(n) and [n] \ A ∈ K. Because
n < A and [n] \ A = ([n − 1] \ A) ∪ {n} ∈ K we have [n − 1] \ A ∈ Lk(n) which is not possible. Therefore
Lk(n)Λ[n−1] ⊂ K proving that Lk(v)Λ[n−1] ∪ C Lk(v) ⊆ K.

Now, let K ⊆ 2[n−1] be a sub-dual simplicial complex. Let us prove that ΛK = KΛ[n−1] ∪ CK is self-dual in
the ambient [n]. Let A ⊆ [n] be arbitrary.

• Let n ∈ A. If A < ΛK then A < CK implying A \ {n} < K and thus we have [n − 1] \ (A \ {n}) =
[n] \ A ∈ KΛ[n−1] ⊆ ΛK. Therefore, [n] \ A ∈ ΛK. If A ∈ ΛK then A ∈ CK implying A \ {n} ∈ K. If
[n] \ A = [n − 1] \ (A \ {n}) also belongs to ΛK, then [n − 1] \ (A \ {n}) ∈ KΛ[n−1] and this will happen if
[n − 1] \ ([n − 1] \ (A \ {n})) = A \ {n} < K which is not true. Therefore, [n] \ A cannot be in ΛK.

• Let n < A or equivalently A ⊆ [n − 1]. If A < ΛK then, A is a subset of [n − 1] such that A < KΛ[n−1]

implying its complement, [n − 1] \ A belongs to the Alexander dual of the complex KΛ[n−1] which is
equal to K. Thus we have ([n − 1] \ A) ∪ {n} = [n] \ A is a simplex of CK ⊆ ΛK. If A ∈ ΛK, since
A ⊂ [n−1], we have A ∈ KΛ[n−1] because K is sub-dual (K ⊆ KΛ[n−1] ). Thus, [n−1]\A < K. If [n]\A ∈ ΛK,
because n ∈ [n] \ A we have [n] \ A ∈ CK and therefore ([n] \ A) \ {n} = [n − 1] \ A ∈ K which is not
true. Therefore, [n] \ A < ΛK.
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Thus, we have shown that for any simplex A ⊆ [n], A ∈ ΛK iff [n] \ A < ΛK proving that ΛK is self-dual in
the ambient [n]. □

As a consequence of Theorem 2.8, we conclude that any self-dual simplicial complex, its topological
and combinatorial properties, are fully determined by the topological and combinatorial properties of the
link of any of it’s vertices. For example, if we want to prove that two self-dual simplicial complexes are
isomorphic, it is sufficient to prove that the link of a vertex in the first one is isomorphic to the link of a
vertex in the second one simplifying the combinatorial classification of self-dual complexes.

Therefore, in the following two chapters, we will explore topological and combinatorial relations be-
tween a given sub-dual simplicial complex K and its self-dual upgrade, simplicial complex ΛK.

3. f-vectors of Dual Upgrades

For a given simplicial complex K in the ambient [n], we define it’s f−vecor f (K) ∈Nn+1
0 as:

f (K) = ( f0, f1, . . . , fn) (11)

where f (K)i = fi is the number of simplexes of the complex K of dimension i − 1 (or cardinality i) for
i = 0, 1, . . . ,n. Then, the Euler-characteristic of the complex K is the alternating sum:

χ(K) =
n∑

i=1

(−1)i+1 fi. (12)

Several elementary properties od the f−vektor and Euler characteristic are given in the following
Lemma.

Lemma 3.1. For arbitrary simplicial complexes K and L in the ambient [n] we have

f (K ∪ L) = f (K) + f (L) − f (K ∩ L), and consequently χ(K ∪ L) = χ(K) + χ(L) − χ(K ∩ L). (13)

If K is a simplicial complex and L ⊆ K is arbitrary subset of simplexes then

f (K \ L) = f (K) − f (L). (14)

Let K ⊆ 2[n] be a simplicial complex and ( f0, f1, . . . , fn) its f−vektor. Form Definition 2.1, the Alexander
dual of the complex K can also be expressed as 2[n]

\ {[n] \ A | A ∈ K}. Thus we have:

f (KΛ) = f (2[n]) − f
(
{[n] \ A | A ∈ K}

)
. (15)

Notice that i−th coordinate of the vector f ({[n] \ A | A ∈ K}) is equal to the number of simplexes of the
family {[n] \ A | A ∈ K} of cardinality i and that is equal to the number of simplexes of the complex K of
cardinality n − i which by definition is fn−i. Thus we have obtained part (1) of the following proposition.

Proposition 3.2. For arbitrary simplicial complex K ⊆ 2[n] with f−vector ( f0, f1, . . . , fn) we have:

(1) f (KΛ)i =
(n

i
)
− fn−i for all i = 0, 1, . . . ,n;

(2) χ(KΛ) = (−1)n+1
(
χ(K) − f0

)
− fn + 1;

(3) if ∅ , K ⊂ 2[n], then χ(KΛ) =
{

χ(K), n ≡ 1 mod 2,
−χ(K) + 2, n ≡ 0 mod 2.
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Proof: For the part (2), using (1), we have:

χ(KΛ) =
n∑

i=1

f (KΛ)i =

n∑
i=1

(−1)i+1
((n

i

)
− fn−i

)
= −

n∑
i=1

(
n
i

)
(−1)i +

n∑
i=1

(−1)i fn−i

= 1 − (−1 + 1)n + (−1)n+1
n∑

i=1

(−1)n−i+1 fn−i = 1 + (−1)n+1
n−1∑
i=0

(−1)i+1 fi

= 1 + (−1)n+2 f0 + (−1)n+1
n∑

i=0

(−1)i+1 fi − (−1)2n+2 fn

= (−1)n+1
(
χ(K) − f0

)
− fn + 1. (16)

Part (3) follows form part (2) because f−vektor of a simplicial complex ∅ , K ⊂ 2[n] satisfies f0 = 1 and
fn = 0 because [n] < K. □

Interesting consequence of previous proposition is that f−vector of self-dual simplicial complex K ⊂ 2[n]

is fully determined by the f−vector of its ⌈n/2⌉−skeleton. Also, self-dual complexes in the ambient of even
cardinality cannot have arbitrary Euler characteristic.

Corollary 3.3. Let K ⊆ 2[n] be a self-dual simplicial complex with f−vector ( f0, f2, . . . , fn). Then:

(1) fi + fn−i =
(n

i
)

for all i = 0, 1, . . . ,n;

(2) if n = 2k, then χ(K) = 2;

(3) if n = 2k + 1, then χ(K) is odd.

Let us analyze f−vecots of self-dual upgrades. In light of the Theorem 2.8, our goal is to describe
f−vector and consequently Euler characteristic of self-dual simplicial complex using f−vector of the link
of its vertex.

Proposition 3.4. Let K ⊆ 2[n−1] be arbitrary sub-dual simplicial complex with f−vector f (K) = ( f0, f1, . . . , fn−1).
Then,

(1) f (ΛK)i =


1, i = 0,(n−1

i
)
− fn−1−i + fi−1, i = 1, . . . ,n − 1,

0, i = n;

(2) χ(ΛK) =
{

2, n ≡ 0 mod 2,
−2χ(K) + 3, n ≡ 1 mod 2.

Proof: Let ∅ , K ⊆ 2[n−1] be a sub-dual simplicial complex and f (K) = ( f0, f1, . . . , fn−1) it’s f−vector. First
note that complex CK (join if the complex K and {∅, {n}}), has fi + fi−1 simplexes of cardinality i for all
i = 1, . . . ,n.

Because Λ(K) = KΛ[n−1] ∪ CK and KΛ[n−1] ∩ CK = K, by Proposition 3.2 (1), for all i = 0, 1, . . . ,n − 1 we
obtain:

f (ΛK)i = f (KΛ[n−1] )i + f (CK)i − f (K)i

=

(
n − 1

i

)
− fn−1−i + fi + fi−1 − fi

=

(
n − 1

i

)
− fn−1−i + fi−1. (17)
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Since the simplicial complexΛK is self-dual in the ambient [n], it cannot contain the simplex [n] implying
f (ΛK)n = 0. Similarly, f (ΛK)0 = 1 because ΛK = ∅ is not self-dual.

By Lemma 3.1, Euler characteristic of ΛK is equal to χ(KΛ[n−1] )+ χ(CK)− χ(K). Because fn = 0 and f0 = 1,
by Proposition 3.2, χ(KΛ[n−1] ) = (−1)n(χ(K) − 1) + 1. Concerning the cone CK, it’s Euler characteristic is 1
because CK is triangulation of a contractible space. Thus we have:

χ(ΛK) = (−1)n
(
χ(K) − 1

)
+ 2 − χ(K) (18)

and property (2) as a consequence. □

Following Proposition 3.4, to find Euler characteristic of self-dual simplicial complex in the ambient of
odd cardinality, it is sufficient to find Euler characteristic of the link of any of its vertices. Conversely, Euler
characteristic of self-dual simplicial complex in an odd ambient determines the Euler characteristic of the
link of any of its vertices.

Corollary 3.5. For any self-dual simplicial complex K ⊆ 2[2n+1] and arbitrary v ∈ [2n + 1],

χ
(
Lk(v)

)
=

1
2

(
3 − χ(K)

)
. (19)

Because every self-dual simplicial complex in the ambient [2n + 1] is a dual-upgrade of every sub-dual
simplicial complex in the ambient [2n], following Proposition 3.4, Euler characteristic of self-dual simplicial
complex in an odd ambient can, in general, be an arbitrary odd number.

4. Homology and Cohomology of Dual Upgrades

In this section we make a simplified presentation of the relationship between the homology and co-
homology of a given simplicial complex and its self-dual upgrade, described in Theorem 2.8. For a more
detailed description, the reader is referred to [21].

Following theorem, known as The Combinatorial Alexander Duality, was originally introduced in [11]. For
the proof, the reader is referred to [12].

Theorem 4.1. Let K be a simplicial complex in the ambient [n]. Then

Hk(K) ≈ Hn−3−k(KΛ) (20)

where Hk and Hk represent the reduced homology and cohomology groups over integers.

By comparing Theorem 4.1 with original Alexander duality, we see that Alexander dual of a simpli-
cial complex K provides sufficiently good combinatorial model of its complement within the Bier sphere
Bier(K) = K ∗△ KΛ (see [1]).

Let K be a simplicial complex in the ambient [n], we my assume that K is sub-dual since, by Example
2.6, sub-duality can be achieved by enlarging the ambient [n]. Then, its dual upgrade ΛK is self-dual in the
ambient [n + 1].

Corollary 4.2. Let K be a sub-dual simplicial complex in the ambient [n]. Then, for its dual-upgrade ΛK we have:

Hk

(
Λ(K)

)
≈ Hn−k−2

(
Λ(K)

)
. (21)
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Since K ⊆ KΛ, let us consider the long exact sequence for the pair (KΛ,K):

· · · → Hk

(
KΛ

)
→ Hk

(
KΛ,K

)
→ Hk−1(K)→ Hk−1

(
KΛ

)
→ · · · (22)

Groups Hk(KΛ,K) are isomorphic to Hk(KΛ/K) and the factor space KΛ/K is homotopically equivalent
to the space KΛ ∪ CK, which is precisely ΛK. Therefore, by replacing Hk(KΛ,K) with Hk(ΛK) and trough
composition with appropriate isomorphisms, we obtain the exact sequence:

· · · → Hk

(
KΛ

)
→ Hk

(
ΛK

)
→ Hk−1(K)→ Hk−1

(
KΛ

)
→ · · · (23)

Using Theorem 4.1 and The Universal Coefficient Theorem, homology groups Kk(KΛ) are easily de-
termined. Therefore, homology of simplicial complex K, it’s placement within KΛ fully determine the
homology of it’s self-dual upgrade ΛK.

Following theorem demonstrates the usage of the sequence (23) for constructing specific self-dual
simplicial complexes with prescribed homology groups satisfying Corollary 4.2.

Theorem 4.3. Let K be a simplicial complex of dimension d in the ambient [n] where n ≥ 2d + 3. Then ΛK has the
same homology and cohomology groups as the space KΛ ∨ ΣK where ∨ is the wedge sum of spaces.

Proof: By Proposition 2.4 the complex K is self dual in the ambient [n].

Moreover, since the dimension of K is d, all groups Hk(K) are trivial for k > d. Also, if n ≥ 2d + 3, then
by Theorem 4.1 and the Universal coefficient theorem, the only non trivial homology groups of KΛ are in
dimensions n− 3,n− 4, . . . ,n− d− 3 (note that Hd(K) is torsion-free). Since n− d− 3 ≥ 2d+ 3− d− 3 = d, we
conclude that in the long exact sequence (23) for the pair (KΛ,K) groups Hk(KΛ) and Hk−1(KΛ) are trivial or
Hk(K) and Hk−1(K) are trivial. This implies that Hk(KΛ) is isomorphic to Hk−1(K) if k < d or Hk(KΛ) if k ≥ d
which completes the proof. □

5. Existence of Self-dual Manifolds

In this chapter, using described mathematical apparatus, we analyze the existence and combinatorial
properties of self-dual combinatorial manifolds.

LetMd
⊂ 2[n] be a connected d−dimensional combinatorial manifold which is self-dual in the ambient

[n]. Then, link of a vertex n is a combinatorial (d − 1)−dimensional sphere Sd−1
⊂ 2[n−1] and by Theorem 2.8

simplicial complexMd has a form

Md = (Sd−1)Λ ∪ CSd−1. (24)

where (Sd−1)Λ is the Alexander dual of the sphere Sd−1 in the ambient [n − 1] and Sd−1 is sub-dual ie.
Sd−1

⊂ (Sd−1)Λ. Since groups Hk(Sd−1) are torsion-free, using The Universal Coefficients Theorem and The
Combinatorial Alexander Duality (Theorem 4.1) we conclude that:

Hk

(
(Sd−1)Λ

)
=

{
O, k , n − d − 3,
Z, k = n − d − 3. (25)

implying that (Sd−1)Λ has homology and co-homology groups as a sphere Sn−d−3. It can be proven that
(Sd−1)Λ is homotopically equivalent to a (n−d−3)−dimensional sphere. For convenience, let us label (Sd−1)Λ

with Sn−d−3
∗ . Thus, manifoldMd = Sn−d−3

∗ ∪ CSd−1 is homotopically equivalent to the space Sn−d−3
∗ /Sd−1.

From the long exact sequence (23) for the pair (Sn−d−3
∗ , Sd−1) we have

· · · → Hk(Sn−d−3
∗ )→ Hk(Md)→ Hk−1(Sd−1)→ Hk−1(Sn−d−3

∗ )→ · · · (26)
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Since Hn−d−3(Sn−d−3
∗ ) = Z and Hd−1(Sd−1) = Z are only non-trivial reduced homology groups of Sn−d−3

∗ and
Sd−1, the combined rank of homology groups Hk(Md) can be at most two.

ManifoldMd cannot be homeomorphic to a sphere because in that case Hd(Md) is the only non-trivial
homology group ofMd and then arbitrary placement of the group Hn−d−3(Sn−d−3

∗ ) produces an impossible
exact sequence.

Now we focus on two distinct cases.

Let M be non-orientable. Then, Hd(Md) is trivial and Hd−1(Md) contains a Z2 summand forcing
Hd−1(Sn−d−3

∗ ) to be non trivial or equivalently n − d − 3 = d − 1. Then, the sequence (26) has a form:

O→ Z→ Z→ Hd−1(Md)→ O. (27)

For previous sequence to be exact, group Hd−1(Md) has to be isomorphic to Z2.

Thus, non-orientable self-dual combinatorial manifoldMd exists in the ambient [2d + 2] and has only
one non-trivial homology group Z2 in dimension d − 1. Since the real projective plane RP2 is a unique
non-orientable manifold with only one non trivial homology groupZ2, we conclude that there can be only
one self-dual non-orientable manifold on n = 6 vertices and its dimension is d = 2.

LetMd be orientable. In this case, Hd(Md) is isomorphic to Z implying Hk(Sn−d−3
∗ ) cannot be non-trivial

for k ≥ d. Also, Hd−1(Sn−d−3
∗ ) cannot be non-trivial because the sequence (26) will become

O→ Z→ Z→ Z→ Hd−1(Md)→ O (28)

and such exact sequence does not exist regardless of the group Hd−1(Md). Thus, non trivial group Hk(Sn−d−3
∗ )

is in dimension k < d − 1 and the sequence (26) has a form

O→ Hd(Md)→ Z→ O→ · · · → O→ Z→ Hn−d−3(Md)→ O (29)

implying that reduced homology groups of manifoldMd are

Hk(Md) =
{
O, k , d,n − d − 3,
Z, k = d,n − d − 3. (30)

Note that, in this form, groups Hk(Md) satisfy Corollary 4.2 arising form The Combinatorial Alexander
duality. However, non-reduced homology and co-homology groups of orientable manifolds (labeled here
H′k and H′k) satisfy the Poincaré Duality:

H′k(M) ≈ H′d−k(M) for k = 0, 1, . . . , d. (31)

Using the Universal coefficient theorem, from Poincaré duality we conclude that groups Hn−d−3(Md) and
Hd−(n−d−3)(Md) have to be isomorphic and this will be the case when d − (n − d − 3) = n − d − 3.

Thus, orientable self-dual combinatorial manifold Md is of an even dimension, exists in the ambient
[3d/2 + 3] and has only two non-trivial homology groups Z in dimensions d and d/2.

Following theorem vas proven by, U. Brehm, W. Kühnel in [9].

Theorem 5.1. If a combinatorial manyfold of dimension d which is not homeomorphic to a sphere has a triangulation
on n vertexes then:

n ≥ 3⌈d/2⌉ + 3 (32)

where equality holds only in dimensions d = 2, 4, 8, 16.
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Since for our d−dimensional self-dual orientable manifoldsMd
⊂ 2[n] we have:

n = 3d/2 + 3 (33)

we conclude that their dimension has to be equal to d = 4, 8, 16.

Thus, we have proven that there is only four homological types of self-dual combinatorial manifolds
and all of them are “projective-like”.

Theorem 5.2. LetMd
⊆ 2[n] be a self-dual combinatorial manifold.

• IfMd is non-orientable, then d = 2, n = 6 andM2 has only one non trivial homology group H1(M2) ≈ Z2.

• IfMd is orientable, then d = 4, 8, 16, n = 3d/2 + 3, and non trivial homology groups ofMd are Hk(Md) ≈ Z
for k = d, d/2 and Euler characteristic ofMd is 3.

6. Construction of Self-dual combinatorial Manifolds

In this section we turn our attention on construction of self-dual manifoldsMd
⊆ 2[n] where n = 3d/2+ 3

described in Theorem 5.2.

Since combinatorial manifoldMd
⊆ 2[n] is a pure simplicial complex, if A ⊆ [n] is a simplex of dimension

d+ 1, then A <Md which by Theorem 2.5 (2) implies that [n] \A ∈ K. Thus, the complexMd contains every
simplex A ⊆ [n] where |A| ≤ n − d − 2 implying that:(

[n]
≤ n − d − 2

)
⊂Md. (34)

Therefore, self-dual manifoldMd
⊆ 2[n] is (n−d−2)−neighbourly. Also, if A ⊆ [n] is a simplex of dimension

d − 1, since Md is a combinatorial manifold, simplex A is a face of exactly two simplexes of a simplicial
complexMd. If f (Md) = ( f0, f1, . . . , fn) is the f−vector of the simplicial complexMd, by Corollary 3.3 and
Theorem 5.2, numbers fi satisfy the following equations:

∑n
i=1(−1)i+1 fi = 3;

2 fd = (d + 1) fd+1;
fi =

(n
i
)
, for all i = 0, 1, . . . ,n − d − 2;

fi + fn−i =
(n

i
)
, for all i = n − d − 1, . . . , d + 1;

fi = 0, for all i = d + 2, . . . ,n.

(35)

By Theorem 2.8, self-dual simplicial complexMd is a dual-upgrade of a sub-dual combinatorial sphere
Sd−1

⊆ 2[n−1] i.e.

Md = (Sd−1)Λ ∪ CSd−1 (36)

and Sd−1 is the link of the vertex n ∈ [n]. By (34), complex Md contains every simplex A ⊆ [n] where
|A| ≤ n − d − 2 and therefore the link of a vertex n i.e. the sphere Sd−1 contains every simplex A ⊆ [n − 1]
such that |A| ≤ n − d − 3 implying that(

[n − 1]
≤ n − d − 3

)
⊂ Sd−1 (37)

meaning the sphere Sd−1
⊆ 2[n−1] is (n − d − 3)−neighbourly simplicial complex. Therefore if f (Sd−1) =

(s0, s1, . . . , sn−1), by Proposition 3.4 and from equation (37), coordinates si, i = 0, 1 . . . ,n − 1 satisfy the
following system of equations
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∑n
i=1(−1)i+1si = 0;

2sd−1 = dsd, (Sd−1 is a combinatorial manifold);
si =

(n−1
i
)
, for all i = 0, 1, . . . ,n − d − 3;(n−1

i
)
− sn−1−i + si−1 = fi, for all i = 1, . . . ,n;

si = 0, for all i = d + 1, . . . ,n − 1.

(38)

Let d = 4, 8, 16 and n = 3d/2 + 3. let Sd−1
⊆ 2[n−1] be a sub-dual combinatorial sphere satisfying (37).

Then, its dual upgrade ΛSd−1 = (Sd−1)Λ ∪ CSd−1
⊆ 2[n] is a self-dual simplicial complex of dimension d. By

The Combinatorial Alexander duality 4.1, and The Universal Coefficient Theorem, groups Hk((Sd−1)Λ) are
trivial for k , n− d− 3 and isomorphic toZ for k = n− d− 3. Thus, the long exact sequence (23) for the pair
((Sd−1)Λ, Sd−1) is of the form

O→ Hd(ΛSd−1)→ Z→ O→ · · · → O→ Z→ Hn−d−3(ΛSd−1)→ O. (39)

Therefore, there are only two non-trivial reduced homology groups Hk(ΛSd−1) ≈ Z for k = d, d/2.
Implying that ΛSd−1 has homology groups prescribed in Theorem 5.2. To complete the construction, only
thing left to do is to prove that ΛSd−1 is a combinatorial manifold. This can be done in two ways:

• prove that (Sd−1)Λ (in the ambient [n − 1]) is a combinatorial manyfold with boundary Sd−1 or

• prove that Lkv ⊂ ΛSd−1 is a combinatorial sphere for all v ∈ [n].

Since in this case Lk(v) ⊆ 2[n]\v is a (d − 1)−dimensional simplicial complex with n − 1 = 3d/2 + 3 − 1 <
3⌈(d − 1)/2⌉ + 3 (for d = 4, 8, 16), in order to prove that it is a combinatorial sphere, by Theorem 5.1, it is
sufficient to prove that Lk(v) ⊂ 2[n]\v is a combinatorial manifold.

At this state, Lk(v) ⊂ ΛSd−1 has interesting properties. Since ΛSd−1 is d−dimensional, similarly to (34),
we have(

[n]
≤ n − d − 2

)
⊆ ΛSd−1 (40)

and therefore, complex Lk(v) is (d − 1)−dimensional and
( [n]\{v}
≤n−d−3

)
⊆ Lk(v) implying Hk(Lk(v)) ≈ O for

k ≤ n − d − 3 and k ≥ d. Since n − d − 3 ≥ 2, we conclude that Lk(v) is simply-connected. Furthermore, by
Theorem 2.8, the complex ΛSd−1 also has a form

ΛSd−1 = Lk(v)Λ[n]\{v} ∪ CLk(v). (41)

Following The Universal Coefficient Theorem, cohomology groups Hk(Lk(v)) are trivial for k ≤ n− d− 3
and k > d therefore, by The Combinatorial Alexander Duality 4.1, groups Hk(Lk(v)Λ) are trivial for k < n−d−4
and k ≥ d − 1. Then, the long exact sequence (23) for the pair (Lk(v)Λ,Lk(v)), has a form:

· · · → O→ Z→Hd−1

(
Lk(v)

)
→ O→ · · ·

· · · → O→ Hk

(
Lk(v)

)
→Hk

(
Lk(v)Λ

)
→ O→ · · · (42)

· · · → O→ Hn−d−3

(
Lk(v)Λ

)
→Z→ O→ · · ·

Thus, Hd−1(Lk(v)) ≈ Z and for k = d/2 + 1, . . . , d − 2 groups Hk(Lk(v)) ≈ Z are isomorphic to Hk(Lk(v)Λ)
which is by The Combinatorial Alexander Duality 4.1 isomorphic to Hn−k−4(Lk(v)).
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Figure 2: Pentagonal cycle, its dual, the Möebious band and its dual-upgrade, the hemi-icosahedron.

6.1. The Real Projective Plane RP2

Let us construct a self-dual manifold M2
∈ 2[6]. By Theorem 2.8, it will be a dual upgrade of a circle

S1
⊆ 2[5]. Let S1 be the pentagonal cycle shown in Figure 2 (left). Since S1 is one-dimensional, by Proposition

2.4 it is sub-dual in the ambient [5], so its dual upgrade ΛS1 is a simplicial complex in the ambient [6].
Since minimal non simplices of S1 are its diagonals, the maximal simplexes of KΛ are their complements.
Therefore, (S1)Λ is a triangulation of the Möebious band with boundary K, as shown in Figure 2 (center).

By adding the cone CS1 along the boundary of (S1)Λ, we obtain the hemi-icosahedron, a minimal
triangulation of the real projective plane with 6 vertices shown on Figure 2 (right).

6.2. The Complex Projective Plane RP2

Let M4
⊆ 2[9] be a self-dual combinatorial manifold and f (M4) = ( f0, f1, . . . , f9) its f−vector. From

equations (35) we have

f6 = f7 = f8 = f9 = 0
f1 = 9, f2 = 36, f3 = 84,

2 f4 = 5 f5, (43)
57 − f4 + f5 = 3,

f4 + f5 = 126.

Previous system has only one solution fi = 0 for i > 5 and:

( f1, f2, f3, f4, f5) = (9, 36, 84, 90, 36). (44)

Now, to constructM4 we need to construct a dual-upgrade of a sub-dual sphere S3
⊆ 2[8]. By (37) we

have
([8]
≤2

)
⊆ S3 and by (38), if f (S3) = (s1, s2, . . . , s8) is the f−vector of the sphere S3 we have:

s5 = s6 = s7 = s8 = 0,
s1 = 8, s2 = 28,

2s3 = 4s4, (45)
−20 + s3 − s4 = 0.

This system also has a unique solution so the sphere S3 has f−vector such that si = 0 for i ≥ 5 and

(s1, s2, s3, s4) = (8, 28, 40, 20). (46)
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Among 39 combinatorially distinct spheres on 8 vertices, there are four with prescribed f−vector and
only one of them, the Brückner’s sphere (see [16]) is sub-dual and suitable for further construction.

Let S3 be the Brückner’s sphere. Since, minimal triangulation RP2
9 of the complex projective plane

described in [15] has a Brückner sphere as a link of all of its vertexes, by Theorem 2.8 we conclude that the
complex ΛS3 is isomorphic to CP2

9 and thus a combinatorial manifold. Therefore, there’s a combinatorially
unique self-dual 4−dimensional combinatorial manifold on 9 vertices, the complex projective plane.

6.3. The Quaternionic Projective PlaneHP2

Let M8
⊆ 2[15] be a self-dual combinatorial manifold and f (M8) = ( f0, f1, . . . , f15) its f−vector. From

equations (35) we have

f10 = f11 = f12 = f13 = f14 = f15 = 0,
f1 = 15, f2 = 105, f3 = 455, f4 = 1365, f5 = 3003,

2 f8 = 9 f9,
2003 − f6 + f7 − f8 + f9 = 3, (47)

f6 + f9 = 5005,
f7 + f8 = 6435.

Previous system also has only one solution fi = 0 for i > 10 and:

( f1, f2, f3, f4, f5, f6, f7, f8, f9) = (15, 105, 455, 1365, 3003, 4515, 4230, 2205, 490). (48)

In order to obtainM8, we need to construct a dual-upgrade of a sub-dual sphere S7
⊂ 2[14]. By (37) we

have
([14]
≤4

)
⊂ S7 and if f (S7) = (s1, s2, . . . , s14) is the f−vector of the sphere S7, following (38) we have:

s9 = s10 = s11 = s12 = s13 = s14 = 0,
s1 = 14, s2 = 91, s3 = 364, s4 = 1001,

2s7 = 8s8, (49)
−714 + s5 − s6 + s7 − s8 = 0,

3003 + s5 − s8 = 4515.

Previous system does not have a unique solution. In order to determine f (S7), we will use Dehn-
Sommerville-equations (see [19]) which for every d−dimensional orientable combinatorial manifold Md

with f−vector f (Md) = ( f1, . . . , fd+1) and every k = 0, 1, . . . , d + 1 (where f0 = χ(Md)) state that:

d+1∑
i=k

(−1)i+1

(
i
k

)
fi = (−1)d+1 fk. (50)

To solve (49), it is sufficient to add only one equation, for example for k = 1:

3080 − 5s5 + 6s6 − 7s7 + 8s8 = 14. (51)

With this equation, the system (49) has a unique solution si = 0 for i ≥ 9 and

(s1, s2, s3, s4, s5, s6, s7, s8) = (14, 91, 364, 1001, 1806, 1974, 1176, 294). (52)

Since there is no suitable catalog of available 7−dimensional spheres on 14 vertices, the required sphere
will have to be constructed. As it turns out, it is sufficient to start with any sub-dual 7−dimensional sphere
on 14 vertices, say for example a Bier sphere (see [1]), and use Pachner moves (see [18]) which preserve sub-
duality to obtain the sphere with desired f−vector. This procedure is easily programable on almost every
programming language and using computer assisted calculations, many non-isomorphic suitable spheres
where obtained, including one isomorphic to the vertex-link of the vertex-transitive minimal triangulation
of the quaternionic projective planeHP2

15 described in [13].
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6.4. The Octanionic Projective Plane OP2

Let M16
⊆ 2[27] be a self-dual combinatorial manifold and f (M8) = ( f0, f1, . . . , f27) its f−vector. From

equations (35) we have

f18 = f19 = f20 = f21 = f22 = f23 = f134 = f25 = f26 = f27 = 0,
f1 = 27, f2 = 351, f3 = 2925, f4 = 17550, f5 = 80730,
f6 = 296010, f7 = 888030, f8 = 2220075, f9 = 4686825,

2 f16 = 17 f17,

3124551 − f10 + f11 − f12 + f13 − f14 + f15 − f16 + f17 = 3, (53)
f10 + f17 = 8436285,
f11 + f16 = 13037895,
f12 + f15 = 17383860,
f13 + f14 = 20058300.

The system (53) does not have a unique solution so we again use Dehn-Sommerville-equations (50). As it
turns out, it is sufficient to use equations for k = 2 and k = 4:

−121482504 + 45 f10 − 55 f11 + 66 f12 − 78 f13+

+91 f14 − 105 f15 + 120 f16 − 136 f17 = −351, (54)
−462161700 + 210 f10 − 330 f11 + 495 f12 − 715 f13+

1001 f14 − 1365 f15 + 1820 f16 − 2380 f17 = −17550 (55)

which, together with (53) have a unique solution fi = 0 for i ≥ 18 and

( f1, . . . , f17) = (27, 351, 2925, 17550, 80730, 296010, 888030, 2220075, 4686825, 8335899,
12184614, 14074164, 12301200, 7757100, 3309696, 853281, 100386) (56)

Previous vector, recognized as f−vector of Cayley-like manifold with 27 vertexes, was first derived by
Wolfgang Kühnel in [10].

To constructM16, we need a sub-dual sphere S15
⊂ 2[26]. Then, manifoldM16 will be its dual upgrade.

By (37),
([26]
≤8

)
⊆ S15 and if f (S15) = (s1, s2, . . . , s26) from (38) we have:

s17 = s18 = s19 = s20 = s21 = s22 = s23 = s24 = s25 = s26 = 0,
s1 = 26, s2 = 325, s3 = 2600, s4 = 14950, s5 = 65780,

s6 = 230230, s7 = 657800, s8 = 1562275,
2s15 = 16s16, (57)

−1081574 + s9 − s10 + s11 − s12 + s13 − s14 + s15 − s16 = 0,
5311735 + s9 − s16 = 8335899,

7726160 + s10 − s15 = 12184614,
9657700 + s11 − s14 = 14074164.

Since (57) does not have a unique solution, to obtain f (S15) we use equations k = 1, 3, 5 from (50):

8998704 − 9s9 + 10s10 − 11s11 + 12s12−

13s13 + 14s14 − 15s15 + 16s16 = 26, (58)
68468400 − 84s9 + 120s10 − 165s11 + 220s12−

−286s13 + 364s14 − 455s15 + 560s16 = 2600, (59)
74989200 − 126s9 + 252s10 − 462s11 + 792s12−

−1287s13 + 2002s14 − 3003s15 + 4368s16 = 65780. (60)
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Therefore, the sphere S15 has f−vector such that si = 0 for i ≥ 17 and

(s1, . . . , s16) = (26, 325, 2600, 14950, 65780, 230230, 657800, 1562275, 3087370,
4964102, 6255184, 5922800, 4022200, 1838720, 505648, 63206). (61)

Using the same program as in construction of quaternionic projective plane, several sub-dual combina-
torial spheres with described f−vector where obtained, and it is shown that dual-upgrade of at least one of
them is a combinatorial manifold. Description of the program and computer obtained results will be given
in a subsequent publication.

Alexander Gaifullin had shown in [6] that there are 634 vertex-transitive and more than 10103 non-
vertex-transitive non isomorphic combinatorial manifolds with 27 vertexes and all of them are self-dual
implying that there are is at least as much sub-dual 8−neighbourly combinatorial spheres on 26 vertexes.
By Theorem 2.8 and previous computations, all of them have the same f−vector.

Corollary 6.1. IfMd
⊆ 2[n] is self-dual combinatorial manifold, then for all v,w ∈ [n]

f
(
Lk(v)

)
= f

(
Lk(v)

)
. (62)
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