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Abstract. In this paper, we study warped product on generalized quasi-Einstein manifolds with respect
to affine connections. Initially, we deal with the elementary properties and existence of generalized quasi-
Einstein warped products manifolds with respect to affine connections. Furthermore, it is proved that
generalized quasi-Einstein manifold to be a quasi-Einstein manifold with respect to affine connections
and we give three and four examples (both Riemannian and Lorentzian) of generalized quasi-Einstein
manifolds to show the existence of such manifold. Finally, we construct two examples of warped product
on generalized quasi-Einstein manifolds with respect to affine connections are also discussed.

1. Introduction

A Riemannian (or semi-Riemannian) manifold (Mn, 1), (n ≥ 3) is named an Einstein manifold if the
Ricci tensor Ric(, 0) of type (0, 2) satisfies: Ric = r

n1, where r represents the scalar curvature of (Mn, 1).
Einstein manifolds form a natural subclass of several classes of (Mn, 1) determined by a curvature restriction
imposed on their Ricci tensor [3]. Also, Einstein manifolds play a key role in Riemannian geometry, general
theory of relativity as well as in mathematical physics.

Approximately two decades ago, the idea of quasi-Einstein manifold was proposed and studied by
Chaki and Maity [11]. An (Mn, 1), (n > 2) is said to be quasi-Einstein manifold (QE)n if its Ric(, 0) satisfies

Ric(Z1,Z2) = a1(Z1,Z2) + bA(Z1)A(Z2), (1)

where a, b(, 0) ∈ R and A is a non-zero 1-form such that

1(Z1, ρ) = A(Z1), 1(ρ, ρ) = A(ρ) = 1, (2)

for all vector field Z1 and a unit vector field ρ called the generator of (QE)n. Also, the 1-form A is named
the associated 1-form. From (1) it is clear that for b = 0, (QE)n reduces to an Einstein manifold.
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Özel), pigazzini@topositus.com (Alexander Pigazzini)



M. Vasiulla et al. / Filomat 38:6 (2024), 2061–2077 2062

An (Mn, 1), (n ≥ 3) is said to be generalized quasi-Einstein manifold G(QE)n [12] if its Ric(, 0) satisfies

Ric(Z1,Z2) = a1(Z1,Z2) + bA(Z1)A(Z2) + c[A(Z1)B(Z2) + A(Z2)B(Z1)] (3)

where a, b(, 0), c(, 0) ∈ R and A(, 0), B(, 0) are 1-forms such that

1(Z1, ρ) = A(Z1), 1(Z1, σ) = B(Z1), 1(ρ, ρ) = 1, 1(σ, σ) = 1. (4)

where ρ and σ are mutually orthogonal unit vector fields, i.e., 1(ρ, σ) = 0 and are known as generators
of G(QE)n. G(QE)n has widely investigate the geometric properties and physical applications in general
relativity [16, 17, 28] and also studied by several authors [6, 18, 25–27].

The concept of a semi-symmetric linear connection on a differentiable manifold was first introduced by
Friedmann and Schouten in 1924 [1]. A generalization of the semi-symmetric connection in [19], Golab first
defined a quarter-symmetric linear connection on a differentiable manifold in 1975. Many writers have
examined the outcomes of warped products with affine connections, including Dey et al. [4, 20, 21], Pahan
et al. [22, 23], Shenawy and Unal [24], among others.

An (Mn, 1), (n ≥ 3) is said to be generalized quasi-constant sectional curvature [25] if its curvature tensor
satisfies

K̃(Z1,Z2,Z3,Z4) = a[1(Z2,Z3)1(Z1,Z4) − 1(Z1,Z3)1(Z2,Z4)]
+ b[1(Z1,Z4)A(Z2)A(Z3) − 1(Z2,Z4)A(Z1)A(Z3)
+ 1(Z2,Z3)A(Z1)A(Z4) − 1(Z1,Z3)A(Z2)A(Z4)]
+ c[1(Z1,Z4)B(Z2)B(Z3) − 1(Z2,Z4)B(Z1)B(Z3)
+ 1(Z2,Z3)B(Z1)B(Z4) − 1(Z1,Z3)B(Z2)B(Z4)],

(5)

where a, b(, 0), c(, 0) ∈ R and A(, 0), B(, 0) are 1-forms.

2. Warped product manifolds admitting affine connection

The concept of a warped product introduced by Bishop et.al [15] in 1969 for the study of negative-
curvature manifolds. Let (B, 1B) and (F , 1F ) be two Riemannian manifolds with dim B = p > 0, dim
F = q > 0 and f : B → (0,∞), f ∈ C∞(B). Consider the product manifold B × F with its projections
u : B×F → B and v : B×F → F . The warped productB× f F is the manifoldB×F with the Riemannian
structure such that ||Z1||

2 = ||u∗(Z1)||2 + f 2(u(m))||v∗(Z1)||2 for any vector field Z1 on M. Thus we have

1M = 1B + f 21F , (6)

whereB is called the base of M and F the fiber. The function f is called the warping function of the warped
product [5].

Since B × f F is a warped product, then we have DZ1 Z3 = DZ3 Z1 = (Z1ln f )Z3 for all vector fields Z1, Z3

on B and F , respectively. Hence we find R(Z1 ∧ Z3) = 1(DZ3 DZ1 Z1 − DZ1 DZ3 Z1,Z3) = 1
f {(DZ1 Z1) f − Z2

1 f }.
If we choose a local orthonormal basis e1, ....., en such that e1, ....., en1 are tangent to B and en1+1, ....., en are
tangent to F , then we have

∆ f
f
=

n∑
i=1

R(ei ∧ e j), (7)

for each j = n1 + 1, ....,n [5].
Two lemmas from [5] are required for further work:

Lemma 2.1. Let us assume that M = B× f F is a warped product, and that KM is the Riemannian curvature tensor.
If we have the fields Z1, Z2, and Z3 on B as well as P, Q, and Z4 on F , then:
(1) KM(Z1,Z2)Z3 = KB(Z1,Z2)Z3,
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(2) KM(Z1,Q)Z2 =
H f (Z1,Z2)

f Q, where H f is the Hessian of f ,
(3) KM(Z1,Z2)Q = KM(Q,Z4)Z1 = 0,
(4) KM(Z1,Q)Z4 = −( 1(Q,Z4)

f )DZ1 (1rad f ),

(5) KM(Q,Z4)P = KF (Q,Z4)P + ( ||1rad f ||2

f 2 )1(Q,P)Z4 − 1(Z4,P)Q.

Lemma 2.2. Let us assume that M = B × f F is a warped product, and that RicM is the Ricci tensor. If we have the
fields Z1, Z2, and Z3 on B as well as P, Q, and Z4 on F , then:
(1) RicM(Z1,Z2) = RicB(Z1,Z2) − m

f H f (Z1,Z2),
(2) RicM(Z1,Q) = 0,
(3) RicM(Q,Z4) = RicF (Q,Z4) − 1(Q,Z4)(∆ f

f +
m−1

f 2 ||1rad f ||2), where ∆ f is the Laplacian of f on B

Furthermore, the condition is satisfies

scalM = scalB +
scalF

f 2 − 2m
∆ f
f
−m(m − 1)

|1rad f |2

f 2 , (8)

where scalB and scalF are scalar curvatures of B and F , respectively.
Gebarowski investigated Einstein’s warped product manifolds in his paper [2] and demonstrated the

following three theorems about them:

Theorem 2.3. Let dimI = 1, dimF = n− 1(n ≥ 3), and let (M, 1) be a warped product of I× f F . If F is an Einstein
manifold with constant scalar curvature, as in the case of n = 3, and f is determined by one of the following formulas
for any real number β, then (M, 1) is an Einstein manifold.

f 2(x) =


4
αRsinh2

√
α(x+β)

2 , if α > 0
R(x + β)2, if α = 0
−4
α Rsin2

√
−α(x+β)

2 , if α < 0

f 2(x) =

eαxβ, if R > 0 (α , 0)
−4
α Rcosh2

√
α(x+β)

2 , if R = 0 (α > 0)

for R < 0, after integration q′′eq + 2R = 0 and R = scalF
(n−1)(n−2) .

Theorem 2.4. Let (M, 1) be the warped product of a complete connected s-dimensional Riemannian manifold F and
a complete connected (1 < s < n) Riemannian manifold B. B is a sphere of radius 1

√
R

, if (M, 1) is a space with
constant sectional curvature R > 0.

Theorem 2.5. Let (M, 1) be a warped product B × f F of a n − 1-dimensional Riemannian manifold B and a one-
dimensional Riemannian manifold I. If (M, 1) is an Einstein manifold with scalar curvature scalM > 0 and the
Hessian of f is proportional to the metric tensor 1B, then

(1) (B, 1B) is a (n − 1)-dimensional sphere with radius =
(

(scalB
(n−1)(n−2)

) −1
2

(2) (M, 1) denotes a space with constant sectional curvature R = scalM
n(n−1) .

We also investigate warped product manifolds with quarter-symmetric connections in this paper. Here, we look at
propositions 3.1, 3.2, 3.3, and 3.4 of [14] and in this paper we denoted by 3.6, 3.7, 3.8 and 3.9, respectively, which
will help us prove our results.

Proposition 2.6. Let M = B × f F be a warped product. Let Ric and Ric denote the Ricci tensors of M with
respect to the Levi-Civita connection and a quarter-symmetric connection respectively. Let dimB = n1, dimF = n2,
dimM = n = n1 + n2. If Z1, Z2 ∈ X(B), Q, Z4 ∈ X(F ) and ρ ∈ X(B), then

(i) Ric(Z1,Z2) = RicB(Z1,Z2)+n2[
H f
B

(Z1,Z2)
f +µ2

ρ f
f 1(Z1,Z2)+µ1µ2Ω(ρ)1(Z1,Z2)+µ11(Z2,DZ1ρ)−µ2

1Ω(Z1)Ω(Z2)]
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(ii) Ric(Z1,V) = Ric(Q,Z1),
(iii) Ric(V,Z4) = RicF (Q,Z4) + {µ2divBρ + (n2 − 1)

|1radB f |2
B

f 2 [(n − 1)µ1µ2 − µ2
2]Ω(ρ) + [(n − 1)µ1 + (n2 − 1)µ2] ρ f

f +
∆B f

f }1(Q,Z4)

where divBρ =
n1∑

k=1
ϵk⟨DWkρ,Wk⟩ and Wk, 1 ≤ k ≤ n1, is an orthonormal basis of B with ϵk = 1(Wk,Wk)

Proposition 2.7. Let M = B × f F be a warped product, dimB = n1, dimF = n2, dimM = n = n1 + n2. If Z1, Z2
∈ X(B), Q, Z4 ∈ X(F ) and ρ ∈ X(B), then

(i) Ric(Z1,Z2) = RicB(Z1,Z2) + [(n − 1)µ1µ2 − µ2
2]Ω(ρ)1(Z1,Z2) + n2

H f
B

(Z1,Z2)
f + µ21(Z1,Z2)divF ρ,

(ii) Ric(Z1,Q) = [(n − 1)µ1 − µ2]Ω(Q) Z1 f
f ,

(iii) Ric(V,Z1) = [µ2 − (n − 1)µ1]Ω(Q) Z1 f
f ,

(iv) Ric(V,Z4) = RicF (Q,Z4)+ 1(Q,Z4){(n2 − 1)
|1radB f |2

B

f 2 +
∆B f

f + [(n− 1)µ1µ2 −µ2
2]Ω(ρ)+µ2divF ρ}+ [(n− 1)µ1 −

µ2]1(Z4,DQρ) + [µ2
2 + (1 − n)µ2

1]Ω(Q)Ω(Z4)”

Proposition 2.8. Let M = B× f F be a warped product, dimB = n1, dimF = n2, dimM = n = n1+n2. If ρ ∈ X(B),
then

scalM = scalB +
scalF

f 2 + n2(n − 1)
|1radB f |2

B

f 2 + n2(n − 1)(µ1 + µ2)
ρ f
f
+ 2n2

∆B f
f

+ [n2(n + n1 − 1)µ1µ2 − n2(µ2
1 + µ

2
2)]Ω(ρ) + n2(µ1 + µ2)divBρ.

(9)

Proposition 2.9. Let M = B× f F be a warped product, dimB = n1, dimF = n2, dimM = n = n1 +n2. If ρ ∈ X(F),
then

scalM = scalB +
scalF

f 2 (n − 1)(µ1 + µ2)divF ρ + [n(n − 1)µ1µ2 + (1 − n)(µ2
1 + µ

2
2)]Ω(ρ)

+ n2(n − 1)
|1radB f |2

B

f 2 + 2n2
∆B f

f

(10)

In this section, we study generalized quasi-Einstein warped product manifolds and prove several results
about them.

Theorem 2.10. Let (M, 1) be a warped product I× f F where I is an open interval inR, dimI = 1 and dimF = n− 1,
n ≥ 3. Then the following statements are equivalent.
(i) If (M, 1) is a (GQ)n with respect to a quarter-symmetric connection then F is a (GQ)n for ρ = ∂

∂t with respect to
the Levi-Civita connection.
(ii) If (M, 1) is a (GQ)n with respect to a quarter-symmetric connection then the warping function f is a constant on
I for ρ ∈ X(F ), µ2 , (n − 1)µ1.”

Proof. Suppose that ρ ∈ X(B) and let 1I be the metric on I. Taking f = e
q
2 and using the Proposition 2.6, one

obtains

RicM

( ∂
∂t
,
∂
∂t

)
= (1 − n)

[1
2

q′′ +
1
4

q′2 −
1
2
µ2q′ + µ1µ2 − µ

2
1

]
11

( ∂
∂t
,
∂
∂t

)
, (11)

Ric
( ∂
∂t
,Q
)
= 0, (12)

Ric(Q,Z4) = RicF (Q,Z4) + eq
[n − 1

4
(q′)2 +

1
2

{
(n − 1)µ1 + (n − 2)µ2

}
q′

+ µ2
2 +

1
2

q′′ + (1 − n)µ1µ2

]
1F (Q,Z4),

(13)
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for all vector fields Q, Z4 on F .
Since M is G(QE)n with respect to quarter-symmetric connection, then form (3), we have

RicM

( ∂
∂t
,
∂
∂t

)
= a1
( ∂
∂t
,
∂
∂t

)
+ bA

( ∂
∂t

)
A
( ∂
∂t

)
+ c
[
A
( ∂
∂t

)
B
( ∂
∂t

)
+ B
( ∂
∂t

)
A
( ∂
∂t

)]
(14)

and

RicM(Q,Z4) = a1(Q,Z4) + bA(Q)A(Z4) + c[A(Q)B(Z4) + A(Z4)B(Q)]. (15)

Decomposing the vector fields P and P′ separately into their components PI, PF and P′I, P′
F

on I and F ,
respectively, we have P = PI + ηIPF and P′ = P′I + η2P′

F
. Since dimI = 1, taking PI =

∂
∂t which gives

P = ∂
∂t + η1PF and P′I =

∂
∂t which gives P′ = ∂

∂t + η2
∂
∂t + P′

F
, where η1 and η2 are functions on M. Thus, we

have the following

A
( ∂
∂t

)
= 1
( ∂
∂t
,P
)
= 1,

B
( ∂
∂t

)
= 1
( ∂
∂t
,P′
)
= 1.

(16)

Using equations (6) and (16), the equations (14) and (15) reduces to

RicM

( ∂
∂t
,
∂
∂t

)
= a + b + 2c (17)

and

RicM(Q,Z4) = aeq1F (Q,Z4) + bA(Q)A(Z4) + c[A(Q)B(Z4) + A(Z4)B(Q)]. (18)

Comparing the right hand side of the equations (11) and (17), one obtains

a + b + 2c = −
n − 1

4

[
2q′′ + (q′)2

]
. (19)

Similarly, comparing the right hand side of the equations (13) and (18) we get

RicF (Q,Z4) = eq
[
a −
{n − 1

4
(q′)2 +

1
2

(
(n − 1)µ1 + (n − 2)µ2

)
q′µ2

2 +
1
2

q′′ + (1 − n)

µ1µ2

}]
1F (Q,Z4) + bA(Q)A(Z4) + c[A(Q)B(Z4) + A(Z4)B(Q)],

(20)

which gives that F is a (GQ)n with respect to connection for ρ ∈ X(B) and use the Proposition 2.7, one gets

Ric
( ∂
∂t
,Q
)
=

q′

2

[
(n − 1)µ1 − µ2

]
Ω(Q), (21)

Ric
(
Q,
∂
∂t

)
=

q′

2

[
µ2 − (n − 1)µ1

]
Ω(Q) (22)

for any vector field Q ∈ X(F ). Since M is a (GQ)n, we have

Ric
( ∂
∂t
,Q
)
= Ric

(
Q,
∂
∂t

)
= a1
(
Q,
∂
∂t

)
+ bA(Q)A

( ∂
∂t

)
+ c
[
A(Q)B

( ∂
∂t

)
+ B(Q)A

( ∂
∂t

)]
.

(23)

Now, 1
(
Q, ∂∂t

)
= 0 as ∂∂t ∈ X(B) and Q ∈ X(F ). Therefore, form (23), we get

Ric
( ∂
∂t
,Q
)
= Ric

(
Q,
∂
∂t

)
= bA(P)A

( ∂
∂t

)
+ c
[
A(Q)B

( ∂
∂t

)
+ B(Q)A

( ∂
∂t

)]
. (24)
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Hence, we have

bA(Q)A
( ∂
∂t

)
+ c
[
A(P)B

( ∂
∂t

)
+ B(Q)A

( ∂
∂t

)]
=

q′

2

[
(n − 1)µ1 − µ2

]
Ω(Q) (25)

bA(Q)A
( ∂
∂t

)
= c
[
A(Q)B

( ∂
∂t

)
+ B(Q)A

( ∂
∂t

)]
+

q′

2

[
µ2 − (n − 1)µ1

]
Ω(Q). (26)

From (24) and (25), we get

q′ = 0, (27)

when µ2 − (n − 1)µ1 , 0. It follows that q is a constant on I. Then f is constant on I.
Now, we consider the warped product M = B × f I with dimB = n − 1, dimI = 1, n ≥ 3. Under this

assumption, we prove the following theorem.

Theorem 2.11. Let (M, 1) be a warped product B × f I, where dimI = 1 and dimB = n − 1, n ≥ 3, then
(i) if P ∈ X(B) is parallel on B with respect to the Levi-Civita connection on B, f is a constant on B and (M, 1) is a
(GQ)n with respect to a quarter-symmetric connection, then,

a = [(n − 1)µ1µ2 − µ
2
2]Ω(ρ).

(ii) f is a constant on B if (M, 1) is a (GQ)n with respect to a quarter-symmetric connection for ρ ∈ X(I), and
µ2 , (n − 1)µ1.
(iii) M is a (GQ)n with respect to a quarter-symmetric connection if f is a constant on B and B is a (GQ)n with
respect to the Levi-Civita connection for ρ ∈ X(I).

Proof. Let (M, 1) is a (GQ)n with respect to a quarter-symmetric connection. Then we have

Ric(Z1,Z2) = a1(Z1,Z2) + bA(Z1)A(Z2) + c[A(Z1)B(Z2) + A(Z2)B(Z1)]. (28)

Decomposing the vector fields P and Q separately into their components PB and PI onB and I, respectively,
we have

P = PI + PB and Q = QI +QB. (29)

Since dimI = 1, we can take PI = η1
∂
∂t and QI + η2

∂
∂t which gives P = PB + η1

∂
∂t and Q = QB + η2

∂
∂t where η1,

η2 is a function on M. From (28), (29) and Proposition 2.6, one gets

Ric
B

(Z1,Z2) = a1B(Z1,Z2) + b1B(Z1,PB)1B(Z2,PB) + c[1B(Z1,PB)1B(Z2,QB)

+ 1B(Z2,PB)1B(Z1,QB)] −
[H f (Z1,Z2)

f
+ µ2

ρ f
f
1(Z1,Z2)

+ µ1µ2Ω(ρ)1(Z1,Z2) + µ11(Z2,DZ1ρ) − µ2
1Ω(Z1)Ω(Z2)

]
.

(30)

Now, contraction of (28) over Z1 and Z2, gives

scal
B

= a(n − 1) + b1B(PB,PB) + c[1B(Z1,PB)1B(Z2,QB) + 1B(Z1,QB)1B(Z2,PB)]

−

[∆B

f
+ µ2(n − 1)

ρ f
f
+ [(n − 1)µ1µ2 − µ

2
1]Ω(ρ) + µ1

n−1∑
i=1

1(ei,Deiρ)
]
.

(31)

Again, contraction of (28) over Z1 and Z2, yields

scal
M
= an + b1B(PB,PB) + c[1B(Z1,PB)1B(Z2,QB) + 1B(Z1,QB)1B(Z2,PB)]. (32)
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Making use of (32) in (31), one gets

scal
B

= scal
M
− a −

∆B f
f
− µ2(n − 1)

ρ f
f
− [(n − 1)µ1µ2 − µ

2
1]Ω(ρ)

− µ1

n−1∑
i=1

1(ei,Deiρ)
] (33)

On the other hand form Proposition 2.8, one obtains

scal
M
= scal

B

+ (n − 1)(µ1 + µ2)
ρ f
f
+ 2
∆B f

f
+ [2(n − 1)µ1µ2 − (µ2

1 + µ
2
2)]Ω(ρ)

+ (µ1 + µ2)
n−1∑
i=1

1(ei,Deiρ)
]
.

(34)

From (33) and (34), we obtain

a +
∆B f

f
+ µ2(n − 1)

ρ f
f
+ [(n − 1)µ1µ2 − µ

2
1]Ω(ρ) + µ1

n−1∑
i=1

1(ei,Deiρ)
]

= (n − 1)(µ1 + µ2)
ρ f
f
+ 2
∆B f

f
+ [2(n − 1)µ1µ2 − (µ2

1 + µ
2
2)]Ω(ρ)

+ (µ1 + µ2)
n−1∑
i=1

1(ei,Deiρ)
]

(35)

Since f is a constant on B and ρ ∈ X(B) is parallel, then one gets

a = [(n − 1)µ1µ2 − µ
2
2]Ω(ρ).

(ii) Let ρ ∈ X(I). By the use of Proposition 2.7, we obtain

Ric(Z1, ρ) = [(n − 1)µ1µ2 − µ
2
2]Ω(ρ)

Z1 f
f

(36)

and

Ric(ρ,Z1) = [µ2 − (n − 1)µ1]Ω(ρ)
Z1 f

f
. (37)

Since M is a (GQ)n, we have

Ric(Z1, ρ) = Ric(ρ,Z1) = a1(Z1, ρ) + bA(Z1)A(ρ) + c[A(Z1)B(ρ) + A(ρ)B(Z1)].

Again, we have 1(Z1, ρ) = 0 for Z1 ∈ X(B) and ρ ∈ X(I). Thus, we obtain

Z1 f = 0,

where µ2 , (n − 1)µ1. Which implies that f is constant on B.

(iii) Suppose that B is a (GQ)n with respect to the Levi-Civita connection. Then we have

Ric
B

(Z1,Z2) = a1(Z1,Z2) + bA(Z1)A(Z2) + c[A(Z1)B(Z2) + A(Z2)B(Z1)], (38)
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for every vector fields Z1, Z2 tangent to B. From Proposition 2.7, we obtain

Ric
M

(Z1,Z2) = Ric
B

(Z1,Z2) + [(n − 1)µ1µ2 − µ
2
2]Ω(ρ)1(Z1,Z2) +

H f (Z1,Z2)
f

,

for every vector fields ρ ∈ X(I). Since f is a constant, H f (Z1,Z2) = 0 ∀ Z1,Z2 ∈ X(B). Then the above
equation reduces to

Ric
M

(Z1,Z2) = Ric
B

(Z1,Z2) + [(n − 1)µ1µ2 − µ
2
2]Ω(ρ)1(Z1,Z2). (39)

Using (38) and (39), one obtains

Ric
M

(Z1,Z2) = (a + [(n − 1)µ1µ2 − µ
2
2]Ω(ρ))1(Z1,Z2) + bA(Z1)A(Z2)

+ c[A(Z1)B(Z2) + A(Z2)B(Z1)].
(40)

This implies that M is a (GQ)n with respect to a quarter-symmetric connection.

Theorem 2.12. Consider the warped product manifold (M, 1) of I× f B. If the two generators P and Q in a (GQ)n are
parallel to I with respect to a quarter-symmetric connection, then M is a (QE)n with respect to a quarter-symmetric
connection.

Proof. Let the generator P is a parallel vector field, then K(Z1,Z2)P = 0. Thus

Ric(Z1,P) = 0. (41)

Consider

P = PB + f 2PI and Q = QB + f 2QI. (42)

From (3), we have

Ric(Z1,Z2) = a1(Z1,Z2) + bA(Z1)A(Z2) + c[A(Z1)B(Z2) + A(Z2)B(Z1)]. (43)

Putting Z2 = P and using (42) in (43), one gets

Ric(Z1,P) = a1(Z1,P) + bA(Z1)A(P) + c[A(Z1)B(P) + A(P)B(Z1)]

= {a + b( f 4 + 1)}1I(Z1,PI) f 2 + c( f 4 + 1)1I(Z1,QI) f 2
(44)

From (13), we have

RicM(Z1,Z2) = RicI(Z1,Z2) + eq
[n − 1

4
(q′)2 +

1
2

{
(n − 1)µ1 + (n − 2)µ2

}
q′

+ µ2
2 +

1
2

q′′ + (1 − n)µ1µ2

]
1I(Z1,Z2),

(45)

for vector fields Z1, Z2 on I.
Since P is parallel to I, then from above relation

RicM(Z1,Z2) = eq
[n − 1

4
(q′)2 +

1
2

{
(n − 1)µ1 + (n − 2)µ2

}
q′ + µ2

2 +
1
2

q′′

+ (1 − n)µ1µ2

]
1I(Z1,PB + f 2PI)

= f 2eq
[n − 1

4
(q′)2 +

1
2

{
(n − 1)µ1 + (n − 2)µ2

}
q′

+ µ2
2 +

1
2

q′′ + (1 − n)µ1µ2

]
1I(Z1,Z2).

(46)
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Comparing (44) and (46), one obtains

c = 0. (47)

Making use of (47) in (3), one gets

Ric(Z1,Z2) = a1(Z1,Z2) + bA(Z1)A(Z2),

i.e., (QE)n with respect to quarter symmetric connection. Similarly, if Q is parallel to I, one also gets

c = 0.

So the manifold also becomes (QE)n with respect to quarter symmetric connection.

Theorem 2.13. Let (M, 1) be a warped product B × f F of a complete connected r -dimensional (1 < k < n)
Riemannian manifold B and (n − k)-dimensional Riemannian manifold F .
(i) B is a two-dimensional Einstein manifold if (M, 1) is a space with generalized quasi-constant sectional curvature,
the Hessian of f is proportional to the metric tensor 1B, and the associated vector fields W and W′ are the general
vector field on M or W, W′

∈ X(B).
(ii) B is a two-dimensional Einstein manifold if (M, 1) is a space of generalized quasi-constant sectional curvature
with the associated vector fields W, W′

∈ X(F ).

Let M is a generalized quasi-constant sectional curvature space. Then, using (5) we can write

K̃(Z1,Z2,Z3,Z4) = a[1(Z2,Z3)1(Z1,Z4) − 1(Z1,Z3)1(Z2,Z4)] + b[1(Z1,Z4)A(Z2)A(Z3)
− 1(Z2,Z4)A(Z1)A(Z3) + 1(Z2,Z3)A(Z1)A(Z4) − 1(Z1,Z3)A(Z2)A(Z4)]
+ c[1(Z1,Z4)B(Z2)B(Z3) − 1(Z2,Z4)B(Z1)B(Z3)
+ 1(Z2,Z3)B(Z1)B(Z4) − 1(Z1,Z3)B(Z2)B(Z4)],

(48)

for all Z1, Z2, Z3, Z4 on B.
Decomposing the vector fields W and W′ uniquely into its components WB, WF and W′

B
, W′

F
on B and

F , respectively, we can write W =WB +WF and W′ =W′

B
+W′

F
. Then we can write

1(Z1,W) = 1(Z1,WB) = 1B(Z1,WB) = A(Z1)
1(Z1,W′) = 1(Z1,W′

B
) = 1B(Z1,W′

B
) = B(Z1).

(49)

Making use of (6) and (49) in (48) and by use of Lemma 2.1 and then putting Z1 = Z4 = ei, where ei is an
orthonormal basis, one obtains

RicB(Z2,Z3) = [a(k − 1) + b1B(WB,WB)]1B(Z2,Z3) + b(k − 2)A(Z2)A(Z3)
+ c(k − 1)[A(Z2)B(Z3) + A(Z3)B(Z2)].

(50)

This shows that B is a generalized quasi-Einstein manifold. Again, putting Z2 = Z = ei, where ei is an
orthonormal basis, one obtains

scalB = (k − 1)[ak + 2b1B(WB,WB)]. (51)

In view of (7) and (51), we infer that

∆ f
f
=

ak + b1B(WB,WB)
2

. (52)

However, since the metric tensor 1B is proportional to the Hesssian of f , we can write as

H f (Z1,Z2) =
∆ f
k
1B(Z1,Z2). (53)
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Using (51) and (52) in (53) we get

H f (Z1,Z2) + R f1B(Z1,Z2) = 0,

where R = (k−1)(b1B(WBWB))−saclB
2k(k−1) holds on B. According to OBATA’s theorem [10], in (k + 1)-dimensional

Euclidean space, B is isometric to the sphere of radius 1
√

R
. Since B is a result of this, we know that it is

an Einstein manifold. Therefore, k = 2 because b , 0, c , 0. As a result, B is a two-dimensional Einstein
manifold.

Suppose that the associated vector fields W, W′
∈ X(B) then in view of (6) and (48) and then putting

Z1 = Z4 = ei, where ei is an orthonormal basis, one obtains

scalB(Z2,Z3) = [a(k − 1) + b]1B(Z2,Z3)
= b(k − 2)1B(Z2,W)1B(Z3,W) + c(k − 1)[1B(Z2,W)1B(Z3,W′)
+ 1B(Z2,W′)1B(Z3,W)],

(54)

which shows that B is a G(QE)n. Putting Z2 = Z3 = ei in (54), where ei is an orthonormal basis, one obtains

scalB = (k − 1)[ak + 2b]. (55)

In view of (6) and (48) (for W, W′
∈ X(B)), one obtains

∆ f
f
=

ak + b
2
. (56)

However, since the metric tensor 1B is proportional to the Hesssian of f , we can write as

H f (Z1,Z2) =
∆ f
k
1B(Z1,Z2). (57)

Using (55) and (56) in (57) we get

H f (Z1,Z2) + R f1B(Z1,Z2) = 0,

where R = (k−1)b−saclB
2k(k−1) holds on B. According to OBATA’s theorem [10], in (k + 1)-dimensional Euclidean

space, B is isometric to the sphere of radius 1
√

R
. Since B is a result of this, we know that it is an Einstein

manifold. Therefore, k = 2 because b , 0, c , 0. As a result, B is a two-dimensional Einstein manifold.
Suppose that the associated vector fields W, W′

∈ X(F ), then the relation (48) reduces to

K̃(Z1,Z2,Z3,Z4) = a[1(Z2,Z3)1(Z1,Z4) − 1(Z1,Z3)1(Z2,Z4)]. (58)

Making use of (6) in (58), one gets

K̃(Z1,Z2,Z3,Z4) = a[1B(Z2,Z3)1B(Z1,Z4) − 1B(Z1,Z3)1B(Z2,Z4)]. (59)

Contraction of (59) over Z1 and Z4, one gets

RicB(Z2,Z3) = a(k − 1)1B(Z2,Z3), (60)

which shows that B is an Einstein manifold with scalar curvature scalB = ak(k − 1). This complete the
proofs.

Theorem 2.14. Let (M, 1) be a warped product B × f I of a complete connected (n − 1)-dimensional Riemannian
manifold B and one-dimensional Riemannian manifold I. (B, 1B) is a (n − 1)-dimensional sphere with radius
rd = n−1

√
scalB+a

if (M, 1) is a G(QE)n with constant associated scalars a, b, c and d P, P′ ∈ X(M) and if the Hessian of f
is proportional to the metric tensor 1B.
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Proof. Suppose that M is a warped product manifold. Then by use of Lemma 2.2 we can write

RicB(Z1,Z2) = RicM(Z1,Z2) +
1
f

H f (Z1,Z2), (61)

for all Z1, Z2 on B. Since M is a G(QE)n, we have

RicM(Z1,Z2) = a1(Z1,Z2) = bA(Z1)A(Z2) + c[A(Z1)B(Z2) + A(Z2)B(Z1)]. (62)

Decomposing the vector fields P and P′ uniquely into its components PI, PF and P′I, P′F on B and I,
respectively, we can write

P = PB + PI P′ = P′
B
+ P′I. (63)

In view of (6),(62) and (63) the relation (61) can be write as

RicB(Z1,Z2) = a1B(Z1,Z2) + b1B(Z1,PB)1B(Z2,PB) + c[1B(Z1,PB)1B(Z2,P′B)

+ 1B(Z1,P′B)1B(Z2,PB)] +
1
f

H f (Z1,Z2).
(64)

Contraction above relation over Z1 and Z2, one gets

scalB = a(n − 1) + b1B(PB,PB) +
∆ f
f
. (65)

Again Contraction of (61) over Z1 and Z2, one gets

scalB = an + b1B(PB,PB). (66)

Making use of (66) in (65), one gets

scalB = scalM − a +
∆ f
f

In view of Lemma 2.2, we know that

−
scalM

n
=
∆ f
f
. (67)

The above two relations gives us scalB = n−1
n scalM − a. However, since the metric tensor 1B is proportional

to the Hesssian of f , we can write as

H f (Z1,Z2) =
∆ f

n − 1
1B(Z1,Z2).

As the consequence of (67) we have ∆ f
n−1 = −

1
n(n−1) scalM f , that is,

H f (Z1,Z2) +
scalB + a
(n − 1)2 f1B(Z1,Z2) = 0.

Thus, B is isometric to the (n − 1)-dimensional sphere of radius rd = n−1
√

scalb+a
.
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3. Examples of 3 and 4-dimensional G(QE)n

Example 3.1. We define a Riemannian metric 1 in 3-dimensional space R3 by the relation

ds2 = 1i jdxidx j = (x3)4/3[(dx1)2 + (dx2)2] + (dx3)2 (68)

where x1, x2, x3 are non-zero finite. The covariant and contravariant components of the metric tensor are

111 = 122 = (x3)4/3, 133 = 1, 1i j = 0 ∀ i , j (69)

and

111 = 122 =
1

(x3)4/3
, 133 = 1, 1i j = 0 ∀ i , j. (70)

The only non-vanishing components of the Christoffel symbols are{
1
13

}
=

{
2
23

}
=

2
3x3 ,

{
3

11

}
=

{
3

22

}
=
−2
3

(x3)
1
3 . (71)

The non-zero derivatives of (71), we have

∂

∂x3

{
1

13

}
=
∂

∂x3

{
2

23

}
=
−2

3(x3)2 ,
∂

∂x3

{
3

11

}
=
∂

∂x3

{
3

22

}
=
−2

9(x3)
2
3

. (72)

For the Riemannian curvature tensor,

Kl
i jk =

∣∣∣∣∣∣∣∣∣∣∣
∂
∂x j

∂
∂xk{

l
i j

} {
l
ik

}
∣∣∣∣∣∣∣∣∣∣∣︸         ︷︷         ︸

=I

+

∣∣∣∣∣∣∣∣∣∣∣
{

m
ik

} {
m
ij

}
{

l
mk

} {
l

mj

}
∣∣∣∣∣∣∣∣∣∣∣︸            ︷︷            ︸

=II

.

The non-zero components of (I) are:

K1
331 =

∂

∂x3

{
1
31

}
=
−2

3(x3)2 ,

K2
332 =

∂

∂x3

{
2
32

}
=
−2

3(x3)2 ,

and the non-zero components of (II) are:

K1
331 =

{
m
31

}{
1

m3

}
−

{
m
33

}{
1

m1

}
=

{
1

31

}{
1
13

}
−

{
1

33

}{
1
11

}
=

4
9(x3)2 ,

K2
332 =

{
m
32

}{
2

m3

}
−

{
m
33

}{
2

m2

}
=

{
2

32

}{
2
23

}
−

{
2

33

}{
2
22

}
=

4
9(x3)2 ,

K1
221 =

{
m
21

}{
1

m2

}
−

{
m
22

}{
1

m1

}
=

{
3

21

}{
1
32

}
−

{
3

22

}{
1
31

}
=

4

9(x3)
2
3

,

Adding components corresponding (I) and (II), we have

K1
221 =

4

9(x3)
2
3

, K1
331 =

−2
9(x3)2 = K2

332.
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Thus, the non-zero components of curvature tensor, up to symmetry are,

K1331 = K2332 =
−2

9(x3)
2
3

, K1221 =
4
9

(x3)
2
3 ,

and the Ricci tensor

Ric11 = 1
jhK1 j1h = 1

22K1212 + 1
33K1313 =

2

9(x3)
2
3

,

Ric22 = 1
jhK2 j2h = 1

11K2121 + 1
33K2323 =

2

9(x3)
2
3

,

Ric33 = 1
jhK3 j3h = 1

11K3131 + 1
22K3232 =

−4
9(x3)2 ,

Let us consider the associated scalars a, b, c and the 1-forms are defined by

a =
−4

9(x3)2 , b =
6(x3)

4
3

9
, c =

1
9(x3)2 ,

Ai(x) =


1
x3 , if i=1
(x3)

2
3 , if i=2

0, otherwise
and Bi(x) =

(x3)
2
3 , if i=2

0, otherwise

where generators are unit vector fields, then from (3), we have

Ric11 = a111 + bA1A1 + 2cA1B1, (73)

Ric22 = a122 + bA2A2 + 2cA2B2, (74)

Ric33 = a133 + bA3A3 + 2cA3B3, (75)

R.H.S. o f (73) = a111 + bA1A1 + 2cA1B1

=
−4

9(x3)
2
3

+
6

9(x3)
2
3

=
2

9(x3)
2
3

= L.H.S. o f (73)

By similar argument it can be shown that (74) and (75) are also true.
Hence (R3, 1) is a G(QE)3.

Example 3.2. Lorentzian manifold (R3, 1) endowed with the metric given by

ds2 = 1i jdxidx j = −(x3)4/3[(dx1)2 + (dx2)2] + (dx3)2, (76)

where x1, x2, x3 are non-zero finite, then (R3, 1) is a G(QE)3.

Example 3.3. We define a Riemannian metric 1 in 4-dimensional space R4 by the relation

ds2 = 1i jdxidx j = (1 + 2p)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2] (77)

where x1, x2, x3, x4 are non-zero finite and p = ex1 k−2. Then the covariant and contravariant components of the metric
are

111 = 122 = 133 = 144 = (1 + 2p), 1i j = 0 ∀ i , j (78)
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and

111 = 122 = 133 = 144 =
1

1 + 2p
, 1i j = 0 ∀ i , j. (79)

The only non-vanishing components of the Christoffel symbols are{
1

11

}
=

{
2

12

}
=

{
3

13

}
=

{
4

14

}
=
∂

∂x1

{
4

14

}
=

p
1 + 2p

,{
1

22

}
=

{
1

33

}
=

{
1

44

}
=
−p

1 + 2p
.

(80)

The non-zero derivatives of (80), we have

∂

∂x1

{
1

11

}
=
∂

∂x1

{
2

12

}
=
∂

∂x1

{
3

13

}
=

p
(1 + 2p)2 ,

∂

∂x1

{
1

22

}
=
∂

∂x1

{
1

33

}
=
∂

∂x1

{
1

44

}
=

−p
1 + 2p)2 .

(81)

For the Riemannian curvature tensor,

Kl
i jk =

∣∣∣∣∣∣∣∣∣∣∣
∂
∂x j

∂
∂xk{

l
i j

} {
l
ik

}
∣∣∣∣∣∣∣∣∣∣∣︸         ︷︷         ︸

=I

+

∣∣∣∣∣∣∣∣∣∣∣
{

m
ik

} {
m
ij

}
{

l
mk

} {
l

mj

}
∣∣∣∣∣∣∣∣∣∣∣︸            ︷︷            ︸

=II

.

The non-zero components of (I) are:

K1
212 =

∂

∂x1

{
1

22

}
=

−p
(1 + 2p)2 ,

K1
313 =

∂

∂x1

{
1

33

}
=

−p
(1 + 2p)2 ,

K1
414 =

∂

∂x1

{
1

44

}
=

−p
(1 + 2p)2

and the non-zero components of (II) are:

K2
332 =

{
m
32

}{
2

m3

}
−

{
m
33

}{
2

m2

}
= −

{
1

33

}{
2

12

}
=

p2

(1 + 2p)2 ,

K2
442 =

{
m
42

}{
2

m4

}
−

{
m
44

}{
2

m2

}
= −

{
1

44

}{
2

12

}
=

p2

(1 + 2p)2 ,

K3
443 =

{
m
43

}{
3

m4

}
−

{
m
44

}{
3

m3

}
= −

{
1

44

}{
3

13

}
=

p2

(1 + 2p)2 .

Adding components corresponding (I) and (II), we have

K1
221 = K1

331 = K1
441 =

p
(1 + 2p)2 ,

K2
332 = K2

442 = K3
443 =

p2

(1 + 2p)2 .
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Thus, the non-zero components of curvature tensor, up to symmetry are given by

K1221 = K1331 = K1441 =
p

1 + 2p
,

K2332 = K2442 = K3443 =
p2

1 + 2p
and the Ricci tensor are given by

Ric11 = 1
jhK1 j1h = 1

22K1212 + 1
33K1313 + 1

44K1414 =
3p

(1 + 2p)2 ,

Ric22 = 1
jhK2 j2h = 1

11K2121 + 1
33K2323 + 1

44K2424 =
p

(1 + 2p)
,

Ric33 = 1
jhK3 j3h = 1

11K3131 + 1
22K3232 + 1

44K3434 =
p

(1 + 2p)
,

Ric44 = 1
jhK4 j4h = 1

11K4141 + 1
22K4242 + 1

33K4343 =
p

(1 + 2p)
.

The scalar curvature r is given by

r = 111Ric11 + 1
22Ric22 + 1

33Ric33 + 1
44Ric44 =

6p(1 + p)
(1 + 2p)3 .

Let us consider the associated scalars a, b, c and the 1-forms are defined by

a =
3p

(1 + 2p)3 , b = 2p, c =
−p

(1 + 2p)2

Ai(x) =

 1
1+2p , if i=1
0, otherwise

and Bi(x) =


1, if i=1
−1, if i=2
0, otherwise

where generators are unit vector fields, then from (3), we have

Ric11 = a111 + bA1A1 + 2cA1B1, (82)

Ric22 = a122 + bA2A2 + 2cA2B2, (83)

Ric33 = a133 + bA3A3 + 2cA3B3, (84)

Ric44 = a144 + bA4A4 + 2cA4B4, (85)

R.H.S. o f (82) = a111 + bA1A1 + 2cA1B1

=
3p

(1 + 2p)2 +
2p

(1 + 2p)2 −
2p

(1 + 2p)2

=
3p

(1 + 2p)2

= L.H.S. o f (82)

By similar argument it can be shown that (83) to (85) are also true.
Hence (R4, 1) is a G(QE)4.

Example 3.4. Lorentzian manifold (R4, 1) endowed with the metric given by

ds2 = 1i jdxidx j = −(1 + 2p)(dx1)2 + (1 + 2p)[(dx2)2 + (dx3)2 + (dx4)2]

where x1, x2, x3 and x4 are non-zero finite, then (R4, 1) is a G(QE)4.
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4. Example of generalized quasi-Einstein warped product manifold

In this section, we will have look at examples 3.1 and 3.3, which is a three and four dimensional examples
of a generalized quasi-Einstein manifold.

Example 4.1. Let us assume that the Riemannian manifold denoted by (R3, 1) is endowed with the metric

ds2 = 1i jdxidx j = (x3)4/3[(dx1)2 + (dx2)2] + (dx3)2,

where x1, x2, x3 are non-zero finite. In order to define the warped product on G(QE)3, we consider the warping
function f : R,0 → (0,∞) by f (x3) = (x3)

2
3 and notice that f = (x3)

2
3 > 0 is a smooth function. This allows us to

define the warped product. The line element that is defined on R,0 × R2 and has the form B × f F, where B = R,0 is
the base and F = R2 is the fibre.

So, we can write ds2
M = ds2

B + f 2ds2
F, i.e.,

ds2 = 1i jdxidx j = (dx2)2 + (dx3)2 + {(x3)2/3
}[(dx1)2 + (dx2)2],

which represents an example of a Riemannian warped product on G(QE)3.

Example 4.2. Let us assume that the Riemannian manifold denoted by (R4, 1) is endowed with the metric

ds2 = 1i jdxidx j = (1 + 2p)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2],

where x1, x2, x3 and x4 are non-zero finite. In order to define the warped product on G(QE)3, we consider the warping
function f : R3

→ (0,∞) by f (x1, x2, x3) =
√

1 + 2p and notice that f > 0 is a smooth function. This allows us to
define the warped product. The line element that is defined on R3

× R and has the form B × f F, where B = R3 is the
base and F = R is the fibre.

So, we can write ds2
M = ds2

B + f 2ds2
F, i.e.,

ds2 = 1i jdxidx j = (1 + 2p)[(dx1)2 + (dx2)2 + (dx3)2] +
√

1 + 2p(dx4)2,

which also represents an example of a Riemannian warped product on G(QE)4.
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[18] S. Sular and C. Öz1ür, Characterizations of generalized quasi-Einstein manifolds, An. Univ. Ovidius Constanta-Seria Mat. 20

(2012) 407-–416.



M. Vasiulla et al. / Filomat 38:6 (2024), 2061–2077 2077

[19] S. Golab, On semi-symmetric and quarter-symmetric linear connections. Tensor (N. S.) 29 (1975) 249-–254.
[20] S. Dey, B. Pal and A. Bhattacharyya, Warped products and quasi-Einstein metrics, Caspian J. Math. Sci. 6(1) (2017) 1-–8.
[21] S. Dey, B. Pal and A. Bhattacharyya, On some classes of mixed-super quasi-Einstein manifolds, Acta Univ. Sapientiae Math. 8(1)

(2016), 32—52.
[22] S. Pahan, B. Pal and A. Bhattacharyya, Multiply warped products as quasi-Einstein manifolds with a quarter-symmetric connec-

tion. Rend. Istit. Mat. Univ. Trieste 48 (2016) 587—605.
[23] S. Pahan, B. Pal and A. Bhattacharyya, On Einstein warped products with a quarter-symmetric connection, Int. J. Geom. Methods

Mod. Phys. 14(4) (2017) 15.
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