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Abstract. The purpose of this paper is mainly to investigate the existence of weak solution of the stationary
Kirchhoff type equations driven by the fractional p(x)-Laplacian operator with discontinuous nonlinearities
for a class of elliptic Dirichlet boundary value problems. By using the topological degree based on the
abstract Hammerstein equation, we conduct our existence analysis. The fractional Sobolev space with
variable exponent provides an effective functional framework for these situations.

1. Introduction and main result

In this paper we deal with the following fractional Kirchhoff type problem M([u]p(x)
s,p(x))(−∆)s

p(x)u(x) + |u(x)|q(x)−2u(x) + λH(x,u) ∈ −
[
ϕ(x,u), ϕ(x,u)

]
in Ω,

u = 0 on RN
\Ω,

(1)

where Ω ⊂ RN (N ≥ 1) be a bounded open set with Lipschitz boundary and p : Ω × Ω → (1, +∞) be a
continuous variable exponent and 0 < s < 1 and (−∆)s

p(x) is the fractional p(x)-Laplacian operator defined by

(−∆)s
p(x)u(x) = p.v.

∫
RN\Bε(x)

|u(x) − u(y)|p(x,y)−2(u(x) − u(y))
|x − y|N+sp(x,y)

dy, x ∈ RN (2)

where p.v. is a commonly used abbreviation in the principal value sense and let p ∈ C(RN
×RN) satisfying

1 < p− = min
(x,y)∈Ω×Ω

p(x, y) ≤ p(x, y) ≤ p+ = max
(x,y)∈Ω×Ω

p(x, y) < +∞, (3)
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and p is symmetric i.e.

p(x, y) = p(y, x), ∀(x, y) ∈ Ω ×Ω; (4)

and
Bε(x) :=

{
y ∈ RN : |x − y| < ε

}
.

Let denote by:
p̃(x) = p(x, x), ∀x ∈ Ω.

The Kirchhoff function M : R+ → R+ is assumed to be continuous, nondecreasing and to verify the
structural assumption:

(M1) The Kirchhoff function M : R+ → R+ is continuous and non-decreasing function, for which there exist
two positive constant m0 and m1 such that,

m0tµ(x)−1
≤M(t) ≤ m1tµ(x)−1, (5)

where µ(x) ∈ C(Ω) and 1 ≤ µ− ≤ µ(x) ≤ µ+ ≤ p− ≤ p(x) ≤ p+, for all t ∈ [0,+∞[.

Of course, condition (5) trivially holds in the non-degenerate case, that is, when M(0) > 0.
Furthermore, the Carathéodory’s functions H is satisfies only the growth condition, for all s ∈ R and a.e.
x ∈ Ω.

(H0) |H(x, s)| ≤ ϱ(e(x) + |s|q(x)−1),

where ϱ is a positive constant, e(x) is a positive function in Lp′(x)(Ω).
Now we turn to the main advance of our problem. Kirchhoff [27] investigated an equation of the form

ρ
∂2u
∂t2 −

(ρ0

h
+

E
2L

∫ L

0

∣∣∣∣∂u∂x ∣∣∣∣2dx
)∂2u
∂x2 = 0. (6)

The Equation (6) is an extension of the classical D’Alembert wave equation and that by considering the

effect of the changing in the length of the string during the vibration. Since
ρ0

h
+

E
2L

∫ L

0

∣∣∣∣∂u∂x ∣∣∣∣2dx is a

nonlocal coefficient which depends on the average
1

2L

∫ L

0

∣∣∣∣∂u∂x ∣∣∣∣2dx, (6) is no longer a pointwise equation.

The Equation (1) is called a nonlocal problem because of the term M.
Corrêa and Figueieredo [4] proved the existence of positive solutions to the class of nonlocal boundary

problems

−

[
M

(∫
Ω

|∇u|pdx
)]p−1

∆pu = f (x,u) in Ω, u = 0 on ∂Ω

and

−

[
M

(∫
Ω

|∇u|pdx
)]p−1

∆pu = f (x,u) + λ|u|s−2u in Ω, u = 0 on ∂Ω,

via variational methods (see also [1, 5]). An existence result of three nontrivial weak solutions for the
following fractional p(x, .)-Kirchhoff type problem

M
( ∫
Ω×Ω

1
p(x, y)

|u(x) − u(y)|p(x,y)

|x − y|N+sp(x,y)
dxdy

)
(−∆)s

p(x,·)u

= λB
(∫
Ω

F(x,u)dx
)

f (x,u) + µ1(x,u) in Ω

u = 0 in RN
\Ω,

(7)
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was proved by Azroul et al. in [2], based on the general three critical points theorem obtained by B.
Ricceri. In [16] we have proved the existence of weak solution via topological degree based on the abstract
Hammerstein equation for the fractional p(x)-Laplacian problems with discontinuous nonlinearities. In the
present paper we extend the results of [16] to problem (1), overcoming several diffculties which arise from
the facts that the problem is nonlocal and that M(0) could be zero, that is, problem (1) could be degenerate.
Hence, the results of this paper are new even in the study of Kirchhoff type problems. In the large literature
of degenerate Kirchhoff problems, the transverse oscillations of a stretched string, with nonlocal flexural
rigidity, depends continuously on the Sobolev deflection norm of u via M(∥u∥2). From a physical point of
view, the fact that M(0) = 0 means that the base tension of the string is zero, a very realistic model. More
specifically, M measures the change of the tension on the string caused by the change of its length during
the vibration. The presence of the nonlinear coeffecient M is crucial to be considered when the changes in
tension during the motion cannot be neglected.

Further, the main challenges in proving the presence of nontrivial weak solutions are represented in the
following aspect: we cannot naturally employ topological degree methods because the nonlinear term ϕ is
discontinuous. We shall adapt this Dirichlet boundary value issue involving the fractional p(.)-Laplacian
operator with discontinuous nonlinearities into a new one guided by a Hammerstein equation to overcome
the discontinuous difficulty. Then, based on the Berkovits-Tienari degree [8], we will use Kim’s topological
degree theory for a class of weakly upper semi-continuous locally bounded set-valued operators of (S+)
type in the framework of real reflexive separable Banach spaces [25, 26]. To this end, we always assume
that ϕ : Ω ×R→ R is a possibly discontinuous function, we ”fill the discontinuity gaps” of ϕ, replacing ϕ

by an interval
[
ϕ(x,u), ϕ(x,u)

]
, where

ϕ(x, s) = lim inf
η→s

ϕ(x, η) = lim
δ→0+

inf
|η−s|<δ

ϕ(x, η),

ϕ(x, s) = lim sup
η→s

ϕ(x, η) = lim
δ→0+

sup
|η−s|<δ

ϕ(x, η),

such that

(H1) ϕ and ϕ are super-positionally measurable (i.e, ϕ(·,u(·)) and ϕ(·,u(·)) are measurable on Ω for every
measurable function u : Ω→ R).

(H2) ϕ satisfies the growth condition:
|ϕ(x, s)| ≤ d(x) + c(x)|s|ζ(x)−1,

for almost all x ∈ Ω and all s ∈ R,where b ∈ Lζ′(x)(Ω), c ∈ L∞(Ω), where 1 < ζ(x) < p(x) for all x ∈ Ω.

First of all, we define the operatorN acting from Ws,p(x,y)
0 (Ω) into 2

(
Ws,p(x,y)

0 (Ω)
)∗

by

Nu =
{
ϑ ∈

(
Ws,p(x,y)

0 (Ω)
)∗
| ∃ h ∈ Lp′(x)(Ω) such that ϕ(x,u(x)) ≤ h(x) ≤ ϕ(x,u(x)) a.e. x ∈ Ω

and ⟨ϑ, v⟩ =
∫
Ω

hvdx ∀ v ∈ Ws,p(x,y)
0 (Ω)

}
.

In this spirit, we consider Q : Ws,p(x,y)
0 (Ω) −→

(
Ws,p(x,y)

0 (Ω)
)∗

such that

⟨Qu, v⟩ =
∫
Ω×Ω

|u(x) − u(y)|p(x,y)−2(u(x) − u(y))(v(x) − v(y))
|x − y|N+sp(x,y)

dxdy, (8)

for all v ∈Ws,p(x,y)
0 (Ω) and the operator A : W0 →W∗

0 setting by
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⟨Au, v⟩ =
∫
Ω

|u(x)|q(x)−2(u(x)v(x) + λG(x,u))v(x)dx,∀u, v ∈ W0, where spaces W0 := Ws,p(x,y)
0 (Ω) will be in-

troduced in Section 2.

Next, we give the definition of weak solutions for problem (1).

Definition 1.1. A function u ∈Ws,p(x,y)
0 (Ω) is called a weak solution to problem (1), if there exists an element ϑ ∈ Nu

verifying

M([u]p(x)
s,p(x))⟨Qu, v⟩ + ⟨Au, v⟩ + ⟨ϑ, v⟩ = 0, for all v ∈Ws,p(x,y)

0 (Ω).

2. Preliminaries and useful properties

To deal with this situation, we introduce the fractional Sobolev space to investigate problem (1). Let us
recall some definitions and elementary properties of these spaces. We refer the reader to [6, 14, 15, 20, 21,
24, 30, 32] for further reference.

2.1. Variable exponent Lebesgue spaces.

Consider the set,
C+(Ω) = { f ∈ C(Ω)| inf

x∈Ω
f (x) > 1}.

For any f ∈ C+(Ω), we define

f+ := max{ f (x), x ∈ Ω}, f− := min{ f (x), x ∈ Ω}.

For any p ∈ C+(Ω) we define the variable exponent Lebesgue spaces

Lp(x)(Ω) = {u; u : Ω→ R is measurable and
∫
Ω

|u(x)|p(x)dx < +∞}.

Endowed with Luxemburg norm

∥u∥p(x) = inf{λ > 0 : ρp(·)(
u
λ

) ≤ 1}

where

ρp(·) (u) =
∫
Ω

|u(x)|p(x)dx, ∀u ∈ Lp(x).

Note that
(
Lp(x)(Ω), ||.||p(x)

)
is a Banach space, separable and reflexive. Its conjugate space is Lp′(x)(Ω) where

1
p(x)

+
1

p′(x)
= 1 for all x ∈ Ω. In addition, we have the following result.

Proposition 2.1. ([17, 23]) For any u ∈ Lp(x)(Ω), we have

(i) ∥u∥p(x) < 1(= 1;> 1)⇔ ρp(·)(u) < 1(= 1;> 1),

(ii) ∥u∥p(x) ≥ 1⇒ ∥u∥p
−

p(x) ≤ ρp(·)(u) ≤ ∥u∥p
+

p(x),

(iii) ∥u∥p(x) ≤ 1⇒ ∥u∥p
+

p(x) ≤ ρp(·)(u) ≤ ∥u∥p
−

p(x).

From this proposition, we can deduce the inequalities

∥u∥p(x) ≤ ρp(·)(u) + 1, (9)

ρp(·)(u) ≤ ∥u∥p
−

p(x) + ∥u∥
p+

p(x). (10)

If p, q ∈ C+(Ω) such that p(x) ≤ q(x) for any x ∈ Ω, then there exists the continuous embedding

Lq(x)(Ω)→ Lp(x)(Ω).
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2.2. Fractional Sobolev spaces with variable exponent
The definition and some results for fractional Sobolev spaces with variable exponent that were intro-

duced in [6, 24] are presented below.
Let s be a fixed real number such that 0 < s < 1, and let q : Ω → (0,∞) and p : Ω ×Ω → (0,∞) be two

continuous functions. Furthermore, we suppose that the assumptions (3) and (4) be satisfied, we define the
fractional Sobolev space with variable exponent via the Gagliardo approach as follows:

W =Ws,q(x),p(x,y)(Ω) =
{
u ∈ Lq(x)(Ω) :

∫
Ω×Ω

|u(x) − u(y)|p(x,y)

λp(x,y)|x − y|N+sp(x,y)
dxdy < +∞, f or some λ > 0

}
.

We equiped the space W with the norm

∥u∥W = ∥u∥q(x) + [u]s,p(x,y),

where [·]s,p(x,y) is a Gagliardo semi norm with variable exponent, which is defined by

[u]s,p(x,y) = inf
{
λ > 0 :

∫
Ω×Ω

|u(x) − u(y)|p(x,y)

λp(x,y)|x − y|N+sp(x,y)
dxdy ≤ 1

}
.

Theorem 2.2. LetΩ be a Lipschitz bounded domain inRN and s ∈ (0, 1). Let p : Ω̄× Ω̄ −→ (1,+∞) be a continuous
function satisfies (2) and (3) with sp+ < N. Let r : Ω̄ −→ (1,+∞) be a continuous variable exponent such that

1 < r− = min
x∈Ω̄

r(x) ⩽ r(x) < p∗s(x) =
Np̄(x)

N − sp̄(x)
for all x ∈ Ω̄.

Then, there exists a constant C = C(N, s, p, r,Ω) > 0 such that, for any u ∈W,

∥u∥Lr(x)(Ω) ⩽ C∥u∥W .

Thus, the space W is continuously embedded in Lr(x)(Ω). Moreover, this embedding is compact.

The space (W, ∥ · ∥W) is a Banach space (see [12]), separable and reflexive (see [6, Lemma 3.1]).

Remark 2.3. Let W0 denote the closure of C∞0 (Ω) in W with respect to the norm ∥ · ∥W .

(i) Theorem 2.2 remains true if we replace W by W0.

(ii) Since 1 < p− ⩽ p̄(x) < p∗s(x) for all x ∈ Ω̄, then Theorem 2.2 implies that [.]s, p(x, y) is a norm on W0, which is
equivalent to the norm ∥ · ∥W . So

(
W0, [·]s,p(x,y)

)
is a Banach space.

We defne the modular ρp(·,·) : W0 → R by

ρp(·,·)(u) =
∫
Ω×Ω

|u(x) − u(y)|p(x,y)

|x − y|N+sp(x,y)
dxdy, (11)

and

∥u∥p(x,y) = inf
{
λ > 0 : ρp(x,y)

(u
λ

)
⩽ 1

}
= [·]s,p(x,y). (12)

The modular ρp checks the following results, which is similar to Proposition 2.1(see [33, Lemma 2.1])

Proposition 2.4. ([28]) For any u ∈W0 we have

(i) ∥u∥W0 ≥ 1⇒ ∥u∥p
−

W0
≤ ρp(·,·)(u) ≤ ∥u∥p

+

W0
,

(ii) ∥u∥W0 ≤ 1⇒ ∥u∥p
+

W0
≤ ρp(·,·)(u) ≤ ∥u∥p

−

W0
.
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2.3. A brief overview of topological degree theory

Now we will go over topological degree theory, which is one of the most important tools we’ll use to
analyze our results. We start by defining some classes of mappings.
Let X be a real separable reflexive Banach space with dual X∗ and with continuous dual pairing ⟨ · , · ⟩
between X∗ and X in this order. The symbol⇀ stands for weak convergence. Let Y be another real Banach
space.

Definition 2.5. The set-valued operator F : Ω ⊂ X→ 2Y is :

1. bounded, if F maps bounded sets into bounded sets;
2. locally bounded at the point u ∈ Ω, if there is a neighborhood V of u such that the set F(V) =

⋃
u∈V

Fu is bounded.

3. upper semicontinuous (u.s.c.) at the point u, if, for any open neighborhood V of the set Fu, there is a
neighbhorhood U of the point u such that F(U) ⊆ V.

4. upper semicontinuous (u.s.c) if it is u.s.c at every u ∈ X.
5. weakly upper semicontinuous (w.u.s.c.), if F−1(U) is closed in X for all weakly closed set U in Y.

Definition 2.6. Let Ω be a nonempty subset of X, (un)n≥1 ⊆ Ω and F : Ω ⊂ X → 2X∗
\∅. Then, the set-valued

operator F is

1. of type (S+), if un ⇀ u in X and for each sequence (hn) in X∗ with hn ∈ Fun such that

lim sup
n→∞

⟨hn,un − u⟩ ≤ 0, (13)

we get un → u in X.
2. quasi-monotone, if un ⇀ u in X and for each sequence (wn) in X∗ such that wn ∈ Fun yield

lim inf
n→∞

⟨wn,un − u⟩ ≥ 0.

Definition 2.7. Let Ω be a nonempty subset of X such that Ω ⊂ Ω1, (un)n≥1 ⊆ Ω and E : Ω1 ⊂ X → X∗ be a
bounded operator. Then, the set-valued operator F : Ω ⊂ X→ 2X

\∅ is of type (S+)E, ifun ⇀ u in X,
Eun ⇀ y in X∗,

and for any sequence (hn) in X with hn ∈ Fun such that

lim sup
n→∞

⟨hn,Eun − y⟩ ≤ 0,

we have un → u in X.

Next, we consider the following sets :

F1(Ω) := {F : Ω→ X∗| F is bounded, demicontinuous and of type (S+)},

FE(Ω) := {F : Ω→ 2X
| F is locally bounded, w.u.s.c. and of type (S+)E},

for any Ω ⊂ DF and each bounded operator E : Ω→ X∗, where DF denotes the domain of F.

Remark 2.8. We say that the operator E is an essential inner map of F, if E ∈ F1(G).

Lemma 2.9. ([26, Lemma 1.4]) Let X be a real reflexive Banach space and G ⊂ X is a bounded open set. Assume that
E ∈ F1(G) is continuous and S : DS ⊂ X∗ → 2X weakly upper semicontinuous and locally bounded with E(G) ⊂ Ds.
Then the following alternative holds:
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1. If S is quasi-monotone, yield I + S ◦ E ∈ FE(G), where I denotes the identity operator.
2. If S is of type (S+), yield S ◦ E ∈ FE(G).

Definition 2.10. ([26]) Let E : G ⊂ X → X∗ is to be a bounded operator, a homotopy H : [0, 1] × G → 2X is called
of type (S+)E, if for every sequence (tk,uk) in [0, 1] × G and each sequence (ak) in X with ak ∈ H(tk,uk) such that

uk ⇀ u ∈ X, tk → t ∈ [0, 1], Euk ⇀ y in X∗ and lim sup
k→∞

⟨ak,Euk − y⟩ ≤ 0,

we get uk → u in X.

Lemma 2.11. ([26]) Let X be a real reflexive Banach space and G ⊂ X is a bounded open set, E : G → X∗ is
continuous and bounded. If F, S are bounded and of class (S+)E, then an affine homotopy H : [0, 1] ×G→ 2X giving
by

H(t,u) := (1 − t)Fu + tSu, for (t,u) ∈ [0, 1] × G,

is of type (S+)E.

Now we introduce the topological degree for a class of locally bounded, w.u.s.c. operators that satisfy
condition (S+)E for more details see [18, 19, 22, 26] and properties of operators.

Theorem 2.12. Let
L =

{
(F,G, 1)| G ∈ O, E ∈ F1(G), F ∈ FE(G), 1 < F(∂G)

}
,

whereO denotes the collection of all bounded open set in X. There exists a unique (Hammerstein type) degree function

d : L −→ Z

such that the following alternative holds:

1. ( Normalization) For each 1 ∈ G, we have d(I,G, 1) = 1.
2. ( Domain additivity) Let F ∈ FE(G). We have

d(F,G, 1) = d(F,G1, 1) + d(F,G2, 1),

with G1, G2 ⊆ G disjoint open such that 1 < F(G\(G1 ∪ G2)).
3. ( Homotopy invariance) If H : [0, 1] × G → X is a bounded admissible affine homotopy with a common

continuous essential inner map and 1: [0, 1] → X is a continuous path in X such that 1(t) < H(t, ∂G) for all
t ∈ [0, 1], then the value of d(H(t, ·),G, 1(t)) is constant for any t ∈ [0, 1].

4. ( Solution property) if d(F,G, 1) , 0, then the equation 1 ∈ Fu has a solution in G.

Now, define the functional K : Ws,p(x,y)
0 (Ω)→ R by

K(u) =
1

p(x)
M

(
[u]p(x)

s,p(x)

)
,

for all u ∈ Ws,p(x,y)
0 (Ω) and let F be its derivative operator, i.e., F = K′ : Ws,p(x,y)

0 (Ω) −→
(
Ws,p(x,y)

0 (Ω)
)∗

.
Moreover, F can be represented as

⟨Fu, v⟩ =M
(
[u]p(x)

s,p(x)

)
⟨Qu, v⟩s,p(x). (14)

Lemma 2.13. The functional K is convex, of class C1(Ws,p(x,y)
0 (Ω)) and

⟨Fu, v⟩ =M
(
[u]p(x)

s,p(x)

)
⟨Qu, v⟩s,p(x) (15)

for all u, v ∈Ws,p(x,y)
0 (Ω). Moreover, K is sequentially weakly lower semicontinuous in Ws,p(x,y)

0 (Ω).
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Proof. Standard arguments (see, for instance [3, Lemma 3.1] and the continuity of M imply that K is well
defined and K ∈ C1(Ws,p(x,y)

0 (Ω),R). Moreover, for all u, v ∈Ws,p(x,y)
0 , its Gâteaux derivative is given by

⟨K′u, v⟩ =M
(
[u]p(x)

s,p(x)

) ∫
Ω×Ω

|u(x) − u(y)|p(x,y)−2(u(x) − u(y))(v(x) − v(y))
|x − y|N+sp(x,y)

dxdy =M
(
[u]p(x)

s,p(x)

)
⟨Qu, v⟩s,p(x).

Now, let {un} ⊂Ws,p(x,y)
0 ,u ∈Ws,p(x,y)

0 satisfy un → u strongly in Ws,p(x,y)
0 as n→∞. Without loss of generality,

we assume that un → u a.e. in RN. Then, the sequence
∣∣∣un(x) − un(y)

∣∣∣p(x,y)−2 (
un(x) − un(y)

)
|x − y|(N+sp(x,y))


∞

n=1

is bounded in Lp′
(
R2N

)
and

Un(x, y) :=

∣∣∣un(x) − un(y)
∣∣∣p(x,y)−2 (

un(x) − un(y)
)

|x − y|(N+sp(x,y))
→U(x, y) :=

|u(x) − u(y)|p(x,y)−2(u(x) − u(y))
|x − y|(N+sp(x,y))

,

a.e. in R2N. Thus, the Brézis-Lieb lemma (see [7]) implies that

lim
n→∞

"
R2N

∣∣∣Un(x, y) −U(x, y)
∣∣∣p′(x)

dxdy = lim
n→∞

(
[un]p(x)

s,p(x) − [u]p(x)
s,p(x)

)
= 0,

since un → u strongly in Ws,p(x,y)
0 . Moreover, M

(
[un]p(x)

s,p(x)

)
→M

(
[u]p(x)

s,p(x)

)
by the continuity of M. Hence,

lim
n→∞

M
(
[un]p(x)

s,p(x)

)"
R2N

∣∣∣Un(x, y) −U(x, y)
∣∣∣p′(x)

dxdy = 0. (16)

Combining (16), M
(
[un]s,p(x)

)
→M

(
[u]p(x)

s,p(x)

)
with the Hölder inequality, we have as n→∞

∥F(un) − F(u)∥W′ = sup
φ∈W,∥φ∥W=1

∣∣∣〈F (un) − F(u), φ
〉∣∣∣→ 0.

Hence, K ∈ C1(Ws,p(x,y)
0 (Ω)).

Next, we show that K is convex in Ws,p(x,y)
0 (Ω). Since M is nondecreasing and continuous on R+0 , we have

thatM(t) =
∫ t

0 M(τ)dτ is increasing and convex in R+0 . Moreover, the map Ws,p(x,y)
0 ∋ v 7→ [v]p(x)

s,p(x) is convex,

being a seminorm in Ws,p(x,y)
0 . Therefore, for all u, v ∈Ws,p(x,y)

0 , we obtain

M

([u + v
2

]p(x)

s,p(x)

)
≤ M

(1
2

[u]p(x)
s,p(x) +

1
2

[v]p(x)
s,p(x)

)
≤

1
2
M

(
[u]p(x)

s,p(x)

)
+

1
2
M

(
[v]p(x)

s,p(x)

)
.

This means that K is a convex functional in Ws,p(x,y)
0 . Furthermore, [10, Proposition 1.1] implies that K is

subdifferentiable and its subdifferential, denoted by ∂K, satisfies ∂K(v) = {F(v)} for all v ∈Ws,p(x,y)
0 . Now, let

{vn}n ⊂ Ws,p(x,y)
0 , v ∈ Ws,p(x,y)

0 , with vn → v weakly in Ws,p(x,y)
0 as n → ∞. Then, it follows from the definition

of subdifferential that
K(vn) − K(v) ≥ ⟨F(v), vn − v⟩.

Hence, we obtain K(v) ≤ lim infn→∞ K (vn), that is, K is sequentially weakly lower semi-continuous in
Ws,p(x,y)

0 .



H. El Hammar et al. / Filomat 38:6 (2024), 2109–2125 2117

3. Existence of weak solutions

The existence of weak solutions for the issue (1) in fractional Sobolev spaces is proved using compactness
methods (see [13, 29]). We convert elliptic Dirichlet boundary value issues with discontinuous nonlinearities
involving the fractional p(.)-Laplacian operator into a new problem governed by a Hammerstein equation in
this way. We prove the existence of weak solutions to the state issue, which holds under proper assumptions,
by using the topological degree theory introduced in Section 2. Now we are in a position to present our
main result.

Theorem 3.1. Assume that ϕ satisfies (H1), (H2) and H satisfies (H0). Then, the problem (1) has a weak solution u
in Ws,p(x,y)

0 (Ω).

Proof of Theorem 3.1
First, we give several lemmas.

Lemma 3.2. Let 0 < s < 1 and 1 < p(x, y) < +∞, (or sp+ < N) the operator F defined in (14) is

(a) continuous, bounded and strictly monotone operator.

(b) of type (S+).

Proof. (a) From Lemma 2.13 F is continuous bounded operator. Next we show that F is a strictly monotone
operator. To this end, let us now recall the well-known Simon inequalities (see [31]): for all ξ, η ∈ RN,

|ξ − η|p ≤ cp

(
|ξ|p−2ξ − |η|p−2η

)
(ξ − η); p ≥ 2

|ξ − η|p ≤ Cp

[(
|ξ|p−2ξ − |η|p−2η

)
(ξ − η)

] p
2 (|ξ|p + |η|p)

2−p
2 , 1 < p < 2,

where cp =
(1
2

)−p
and Cp =

1
p−1 .

Using these two inequalities and the convexity of K and the property of subdifferentiability imply
that F is a monotone operator. Hence,

⟨Fu − Fv,u − v⟩ > 0 (17)

for all u, v ∈ Ws,p(x,y)
0 (Ω) with u , v a.e. in RN, that is, F is a strictly monotone operator in Ws,p(x,y)

0 (Ω)
as claimed.

(b) Let (un) ∈ Ws,p(x,y)
0 (Ω) be a sequence such that un ⇀ u and lim sup

n→∞
⟨Fun − Fu,un − u⟩ ≤ 0. In view of (a),

we get
lim
n→∞
⟨Fun − Fu,un − u⟩ = 0.

Thanks to Proposition 2.1, we obtain

un(x)→ u(x), a.e. x ∈ Ω. (18)

In the sequel, we denote by L(x, y) = |x − y|−N−sp(x,y).
By Fatou’s lemma and (18), we get

lim inf
n→+∞

∫
Ω×Ω

|un(x) − un(y)|p(x,y)L(x, y)dxdy ≥
∫
Ω×Ω

|u(x) − u(y)|p(x,y)L(x, y)dxdy. (19)

On the other hand, from un ⇀ u we have

lim
n→+∞

⟨Qun, un − u⟩ = lim
n→+∞

⟨Qun −Qu,un − u⟩ = 0. (20)
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Now, by using Young’s inequality, there exists a positive constant c such that

⟨Qun,un − u⟩ =
∫
Ω×Ω

|un(x) − un(y)|p(x,y)L(x, y)dxdy

−

∫
Ω×Ω

|un(x) − un(y)|p(x,y)−2(un(x) − un(y))(u(x) − u(y))L(x, y)dxdy

≥ c
∫
Ω×Ω

|un(x) − un(y)|p(x,y)L(x, y)dxdy (21)

− c
∫
Ω×Ω

|u(x) − u(y)|p(x,y)L(x, y)dxdy.

Combine (19), (20) and (21), we obtain

lim
n→+∞

∫
Ω×Ω

|un(x) − un(y)|p(x,y)L(x, y)dxdy =
∫
Ω×Ω

|u(x) − u(y)|p(x,y)L(x, y)dxdy. (22)

And in particular, since the sequence
{
M

(
[un]p(x)

s,p(x)

)}
n

is bounded,

lim
n→∞

M
(
[un]p(x)

s,p(x)

)
⟨Q(u),un − u⟩ = 0. (23)

Similarly,

lim
n→∞

M
(
[u]p(x)

s,p(x)

)
⟨B(u),un − u⟩ = 0. (24)

It follows from (13) that

lim
n→∞

〈
M

(
[un]p(x)

s,p(x)

)
Q (un) −M

(
[u]p(x)

s,p(x)

)
Q(u),un − u

〉
= 0.

Hence,

lim
n→∞

M
(
[un]p(x)

s,p(x)

)
⟨Q (un) −Q(u),un − u⟩ = 0. (25)

By (23) and (24), the assumption (M) implies at once that

lim
n→∞
⟨Q (un) −Q(u),un − u⟩ = 0.

According to (18), (22), (25) and the Brezis-Lieb lemma [9], our result is proved.

Proposition 3.3. ([11, Proposition 1]) For any fixed x ∈ Ω, the functionsϕ(x, s) andϕ(x, s) are upper semicontinuous
(u.s.c.) functions on RN.

Lemma 3.4. Let Ω ⊂ RN (N ≥ 1) be a bounded open set with smooth boundary. The operator A : Ws,p(x,y)
0 (Ω) →(

Ws,p(x,y)
0 (Ω)

)∗
setting by

⟨Au, v⟩ =
∫
Ω

(|u(x)|q(x)−2u(x) + λH(x,u))vdx,∀u, v ∈W0

is compact.



H. El Hammar et al. / Filomat 38:6 (2024), 2109–2125 2119

Proof. The proof was broken down into three sections.
Step 1 Let B : W0 → Lq′ (x)(Ω) be the operator setting by

Bu(x) := −|u(x)|q(x)−2u(x) for u ∈W0 and x ∈ Ω.

It is obvious that B is continuous. Next we show that B is bounded. For every u ∈ W0, we have by the
inequalities (9) and (10) that

∥Bu∥q′(x) ≤ ρq′(·)(Bu) + 1

=

∫
Ω

| | u|q(x)−1
∣∣∣q′(x)

dx + 1

= ρq(·)(u) + 1

≤ ∥u∥q
−

q(x) + ∥u∥
q+

q(x) + 1.

By the compact embedding W0 ↪→↪→ Lq(x)(Ω) we have

∥Bu∥q′(x) ≤ const
(
∥u∥q

−

W0
+ ∥u∥q

+

W0

)
+ 1.

This implies that B is bounded on W0.
Step 2 We show that the operator A defined from W0 into Lp′(x)(Ω) by

Au(x) := −λH(x,u) for u ∈W0 and x ∈ Ω

is bounded and continuous. Let u ∈W0, by using the growth condition (H0) we obtain

∥Au∥p
′(x)

p′(x) ≤

∫
Ω

|λH(x,u)|p
′(x)dx

≤ (ϱλ)p′(x)
∫
Ω

(
|e(x)|p

′(x) + |u|(q(x)−1)p′(x)
)
dx

≤ (ϱλ)p′(x)
∫
Ω

(
|e(x)|p

′(x) + |u|(p(x)−1)p′(x)
)
dx (26)

≤ (ϱλ)p′(x)
∫
Ω

|e(x)|p
′(x)dx + (ϱλ)p′(x)

∫
Ω

|u|p(x) dx

≤ (ϱλ)p′(x)(∥e∥p
′+

p′(x) + ∥e∥
p′−
p′(x)) + (ϱλ)p′(x)(∥u∥p+p(x) + ∥u∥

p−
p(x))

≤ Cm(∥u∥p+W0
+ ∥u∥p−W0

+ 1),

where Cm = max
(
(ϱλ)p′(x)(∥e∥p

′+

p′(x) + ∥e∥
p′−
p′(x)), (ϱλ)p′(x)

)
. (Due to e(x) is a positive function in Lp′(x)(Ω)).

ThereforeA is bounded on Ws,q(x),p(x,y)(Ω).
Next, we show thatA is continuous, let un → u in Ws,q(x),p(x,y)(Ω), then un → u in Lp(x)(Ω). Thus there exist
a subsequence still denoted by (un) and measurable function α in Lp(x)(Ω) such that

un(x)→ u(x),

|un(x)| ≤ α(x),

for a.e. x ∈ Ω and all n ∈N. Since H satisfies the Carathéodory condition, we obtain

H(x,un(x))→ H(x,u(x)) a.e. x ∈ Ω. (27)

Thanks to (H0) we obtain
|H(x,un(x))| ≤ ϱ

(
e(x) + |α(x)|q(x)−1

)
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for a.e. x ∈ Ω and for all k ∈N.
Since

e(x) + |α(x)|p(x)−1
∈ Lp′(x)(Ω),

and from (27), we get ∫
Ω

|H(x,uk(x)) −H(x,u(x))|p
′(x)dx −→ 0,

by using the dominated convergence theorem we have

Auk →Au in Lp′(x)(Ω).

Thus the entire sequence (Aun) converges toAu in Lp′(x)(Ω) and thenA is continuous.
Step 3
Since the embedding I : W0 → Lq(x)(Ω) is compact, it is known that the adjoint operator I∗ : Lq′(x)(Ω) → W∗

0
is also compact. Therefore, the compositions I∗ ◦ B and I∗ ◦ A : W0 → W∗

0 are compact. We conclude that
S = I∗ ◦ B + I∗ ◦ A is compact.

Lemma 3.5. Let Ω ⊂ RN (N ≥ 1) be a bounded open set with smooth boundary. If the hypotheses (H1) and (H2)
hold, then the set-valued operatorN defined above is bounded, upper semicontinuous (u.s.c.) and compact.

Proof. Let C : Lp(x)(Ω)→ 2Lp′ (x)(Ω) be a set-valued operator defined as follows

Cu =
{
h ∈ Lp′(x)(Ω)| ϕ(x,u(x)) ≤ h(x) ≤ ϕ(x,u(x)) a.e. x ∈ Ω

}
.

Let u ∈W0, by the assumption (H2) we obtain

max
{
|ϕ(x, s)| ; |ϕ(x, s)|

}
≤ d(x) + c(x)|s|ζ(x)−1,

for all (x, t) ∈ Ω ×R where 1 < ζ(x) < p(x) for all x ∈ R.
As a result∫

Ω

|ϕ(x,u(x))|p
′(x)dx ≤ 2p′++1

( ∫
Ω

|d(x)|p
′(x)dx +

∫
Ω

|c|p
′(x)
|u(x)|p(x)dx

)
.

A same inequality is shown forϕ(x, s), it follows that the set-valued operatorC is bounded on W0. It remains
to prove that C is upper semi-continuous (u.s.c.) of C, i.e.,

∀ε > 0, ∃δ > 0, ∥u − u0∥p < δ ⇒ Cu ⊂ Cu0 + Bε,

such that Bε is the ε-ball in Lp′(x)(Ω).
Come to an end, given u0 ∈ Lp(x)(Ω), let us consider the sets

Gm,ε =
⋂
t∈RN

Kt,

where

Kt =
{
x ∈ Ω, if |t − u0(x)| <

1
n
, then [ϕ(x, t), ϕ(x, t)] ⊂

]
ϕ(x,u0(x)) −

ε
R
, ϕ(x,u0(x)) +

ε
R

[}
,

n being an integer, |t| = max
1≤i≤N

|ti| and R is a constant to be determined in the following pages. In view of

Proposition 3.3, we define the sets of points as follows

Gn,ε =
⋂
r∈RN

a

Kr,
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where RN
a denotes the set of all rational grids in RN. For any r = (r1, · · · , rN) ∈ RN

a ,

Kr =
{
x ∈ Ω | u0(x) ∈ C

N∏
i=1

]
ri −

1
n
, ri +

1
n

[}
∪

{
x ∈ Ω | u0(x) ∈

N∏
i=1

]
ri −

1
n
, ri +

1
n

[}
∩

{
x ∈ Ω | ϕ(x, r) < ϕ(x,u0(x)) +

ε
R

and ϕ(x, r) > ϕ(x,u0(x)) −
ε
R

}
,

so that Kr and therefore Gn,ε are measurable. It is obvious that

G1,ε ⊂ G2,ε ⊂ · · ·

In light of the Proposition 3.3, we have
∞⋃

m=1

Gn,ε = Ω,

therefore there exists m0 ∈N such that

m(Gn0,ε) > n(Ω) −
ε
R
. (28)

But for each ε > 0, there is η = η(ε) > 0, such that n(T) < η yield

2p′+−1
∫

T
2|b(x)|p

′(x) + cp′(x)(x)(2p′+−1 + 1)|u0(x)|p(x)dx <
(ε
3

)p′+

, (29)

because of b ∈ Lp′(x)(Ω) and u0 ∈ Lp(x)(Ω).
Let now

0 < δ < min
{ 1
n0

(η
2

) 1
p−
,

1
2p+−2

( ε
6C

) p′+
θ
}
, (30)

R > max
{2ε
η
, 3

(
n(Ω)

) 1
p′−

}
. (31)

where

θ =

{
p+ if ∥u − u0∥p(x) ≤ 1
p− if ∥u − u0∥p(x) ≥ 1.

Suppose that ∥u − u0∥p(x) < δ and define the set G = {x ∈ Ω \ |u(x) − u0(x)| ≥
1
n0
}, we get

n(G) < (n0δ)p(x) <
η

2
. (32)

If x ∈ Gn0,ε\G, then, for any h ∈ Cu,

|u(x) − u0(x)| <
1
n0

and
h(x) ∈

]
ϕ(x,u0(x)) −

ε
R
, ϕ(x,u0(x)) +

ε
R

[
.

Let

K0 =
{
x ∈ Ω; h(x) ∈

[
ϕ(x,u0(x)), ϕ(x,u0(x))

]}
,

K− =
{
x ∈ Ω; h(x) < ϕ(x,u0(x))

}
,

K+ =
{
x ∈ Ω; h(x) > ϕ(x,u0(x))

}
,
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and

w(x) =


ϕ(x,u0(x)), for x ∈ K+;
h(x) for x ∈ K0;
ϕ(x,u0(x)), for x ∈ K−.

Hence w ∈ Cu0 and

|w(x) − h(x)| <
ε
R

for all x ∈ Gn0,ε\G. (33)

From (31) and (33), we have∫
Gn0,ε\G

|w(x) − h(x)|p
′(x)dx <

( ε
R

)p′+

n(Ω) <
(ε
3

)p′+

. (34)

Assume that V is a coset in Ω of Gn0,ε\G, then V = (Ω\Gn0,ε) ∪ (Gn0,ε ∩ G) and

n(V) ≤ n(Ω\Gn0,ε) + n(Gn0,ε ∩ G) <
ε
R
+ n(G) < η.

According to (28), (31) and (32). From (H2), (29) and (30), we obtain∫
V
|w(x) − h(x)|p

′(x)dx ≤
∫

V
|w(x)|p

′(x) + |h(x)|p
′(x)dx

≤ 2p′+−1
( ∫

V
|d(x)|p

′(x) + cp′(x)(x)|u0(x)|p(x) + |d(x)|p
′(x) + cp′ (x)|u(x)|p(x)dx

)
≤ 2p′+−1

( ∫
V

2|d(x)|p
′(x) + cp′(x)(x)(2p+−1 + 1)|u0(x)|p(x)dx

)
+ 2p′+−1

( ∫
V

2p+−1cp′(x)(x)|u(x) − u0(x)|p(x)dx
)

(35)

≤ 2p′+−1
∫

V
2|d(x)|p

′(x) + cp′(x)(x)(2p+−1 + 1)|u0(x)|p(x)dx

+ 2p++p′+−2
∥cp′+
∥L∞(Ω)

∫
V
|u(x) − u0(x)|p(x)dx

≤

(ε
3

)p′+

+ 2p++p′+−2
∥cp′+
∥L∞(Ω)δ

θ
≤ 2

(ε
3

)p′+
≤ εp′+ .

Thanks to (34), (35) and (9), we get ∥w − h∥p′(x) ≤
∫
Ω
|w(x) − h(x)|p

′(x)dx + 1 < ε.
Hence C is upper semicontinuous (u.s.c.). Hence N = I∗ ◦ C ◦ I is clearly bounded, upper semicontinuous
(u.s.c.) and compact.

Next, we give the proof of Theorem 3.1.

Let S := A + N : Ws,p(x,y)
0 (Ω) → 2

(
Ws,p(x,y)

0 (Ω)
)∗

, where A and N be defined in Lemma 3.4 and in Section 2
respectively. This means that a point u ∈Ws,p(x,y)

0 (Ω) is a weak solution of (1) if and only if

Fu ∈ −Su, (36)

with F is setting in (8). By the properties of the operator F given in Lemma 3.2 and the Minty-Browder’s
Theorem on monotone operators in [34, Theorem 26 A], we guarantee that the inverse operator E := F−1 :(
Ws,p(x,y)

0 (Ω)
)∗
→ Ws,p(x,y)

0 (Ω) is continuous, of type (S+) and bounded. Moreover, thanks to Lemma 3.4 the
operator S is quasi-monotone, upper semicontinuous (u.s.c.) and bounded. As a result, the equation (36) is
equivalent to the abstract Hammerstein equation

u = Ev and v ∈ −S ◦ Ev. (37)



H. El Hammar et al. / Filomat 38:6 (2024), 2109–2125 2123

To solve the equations (37), we will use the notion of degrees discussed in Section 3. We begin by displaying
the following. Lemma

Lemma 3.6. The set

B :=
{

v ∈
(
W0

)∗
such that v ∈ −tS ◦ Ev for some t ∈ [0, 1]

}
is bounded.

Proof. Let v ∈ B , so, v + ta = 0 for every t ∈ [0, 1], with a ∈ S ◦ Ev. setting u := Ev, we can write
a = Au + φ ∈ Su, where ϑ ∈ Nu, namely,

⟨ϑ,u⟩ =
∫
Ω

h(x)u(x)dx,

for each h ∈ Lp′(x)(Ω) with ϕ(x,u(x)) ≤ h(x) ≤ ϕ(x,u(x)) for almost all x ∈ Ω.
If ∥u∥W0 ≤ 1, then ∥Ev∥W0 is bounded.
If ∥u∥W0 > 1, then we get by the implication (i) in Proposition 2.1 and the inequality (10) and using (H0), the
Young inequality, the compact embedding W0 ↪→↪→ Lq(x)(Ω), the estimate

∥Ev∥p
−

W0
= ∥u∥p

−

W0

≤ ρp(·,·)(u)
≤ t|⟨a,Ev⟩|

≤ t
∫
Ω

|u|q(x) dx + t
∫
Ω

C|H(x,u)|udx + t
∫
Ω

|hu|dx

≤ t
∫
Ω

|u|q(x) + tCp′

∫
Ω

|CH(x,u)|q
′(x)dx + tCp

∫
Ω

|u|q(x) dx

+ Cζt
( ∫
Ω

|u|ζ(x)dx
)
+ Cζ′ t

( ∫
Ω

|h|ζ
′(x)dx

)
≤ Const

(
∥u∥q

−

q(x) + ∥u∥
q+

q(x) + ∥u∥
ζ−

ζ(x) + ∥u∥
ζ+
ζ(x) + 1

)
≤ Const

(
∥u∥q

−

W0
+ ∥u∥q

+

W0
+ ∥u∥ζ

−

W0
+ ∥u∥ζ+W0

+ 1
)

≤ Const
(
∥Ev∥q

+

W0
+ ∥Ev∥ζ

+

W0
+ 1

)
.

Hence it is obvious that
{

Ev \ v ∈ B
}

is bounded.

As the operator S is bounded and from (37), we deduce the set B is bounded in
(
W0

)∗
.

Thanks to Lemma 3.6, we can find a positive constant R such that

∥v∥(
W0

)∗ < R for any v ∈ B.

This says that
v ∈ −tS ◦ Ev for each v ∈ ∂BR(0) and each t ∈ [0, 1].

Under the Lemma 2.9, we get

I + S ◦ E ∈ FE(BR(0)) and I = F ◦ E ∈ FE(BR(0)).

Now, we are in a position to consider the affine homotopy H : [0, 1] × BR(0)→ 2

(
W0

)∗
setting by

H(t, v) := (1 − t)Iv + t(I + S ◦ E)v for (t, v) ∈ [0, 1] × BR(0).
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By applying the normalization and homotopy invariance property of the degree d fixed in Theorem 2.12,
we have

d(I + S ◦ E,BR(0), 0) = d(I,BR(0), 0) = 1.

It follows that, we can get a function v ∈ BR(0) such that

v ∈ −S ◦ Ev.

Which implies that u = Ev is a weak solution of (1). This completes the proof.
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[23] X.L. Fan and D. Zhao: On the Spaces Lp(x)(Ω) and Wm,p(x)(Ω). J. Math. Anal. Appl. 263, 424-446(2001).
[24] Kaufmann, U., Rossi, J. D., and Vidal, R. E., Fractional Sobolev spaces with variable exponents and fractional p(x) - Laplacians,

Electron. J. Qual. Theory Differ. Equ. 2017 Paper No. 76, 10 pp(2017).
[25] Kim, I. H., Bae, J. H., and Kim,Y. H., Existence of a weak solution for discontinuous elliptic problems involving the fractional

p(.)-Laplacian.Journal of Nonlinear and Convex Analysis Volume 21, Number 1,2020,89-103.
[26] Kim, I.S., A topological degree and applications to elliptic problems with discontinuous nonlinearity, J. Nonlinear Sci. Appl.,

10, 612-624 (2017).



H. El Hammar et al. / Filomat 38:6 (2024), 2109–2125 2125

[27] Kirchhoff, G. (1883). Mechanik. Leipzig: Teubner.
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