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Abstract.The main crux of this paper is to give some new sufficient conditions for the existence and
uniqueness of solutions to a class of conformable fractional evolution equations with nondense domain in
a Banach space. The proofs of our main results are based on some basic tools of conformable fractional
calculus, conformable semigroup and Hile-Yosida theorem. As an application, a nontrivial example is
given to illustrate the theoretical results.

1. Introduction

The main crux of this work is to study the existence and uniqueness of solutions for the following
nonlinear conformable fractional evolution equation:

Dαu(t) = Aαu(t) + f (t,u(t)), t ∈ [0,T],

u(0) = u0 + 1(u),
(1)

where Dα is the conformable fractional derivative of order α ∈ (0, 1) and Aα is a nondensely α-infinitesimal
generator of α − C0-semigroup Tα(t) on a given Banach space X which will be defined in the sequal.
The case when Aα is densely defined operator has been widely studied in in [4] by G.D. Prato and E. Sines-
trari. They showed that the density is not necessary to solve their problem. A great number of researchers
considered evolution problems with nondensly defined operators. On the other hand, fractional calculus
has become the point of interest of a lot of mathematiciens. In particular, the conformable derivative,
which was introduced in [11], has been extensively used in applied mathematics. Its main charateristics
are its natural form, (i.e. its forme is very close to the form of the usual derivative), and the fact that it
satisfies most of the properties of the usual derivative, like the derivative of the product and the quotient
of two functions. In [5], the authors studied a class of nondensely defined fractional semilinear differential
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equation, they proved that under some assumptions, it has a unique integral solution. In [6], Y. Zhou et al
considered a nonhomogeneous fractional order evolution equation with nondensely defined operator, they
proved that the proposed problem is equivalent to an integral solution, by using the Laplace transform and
they showed that this problem has at least one solution by using the method of noncompact measure.
Motivated by the works mentioned above, we establish the existence and uniqueness results for the follow-
ing nonlinear conformable fractional evolution problem (1) by using the conformable Laplace transform,
fractional conformable semigroup and some suitable assumptions. The reader is advised to consult the
articles [1, 2, 7–10] and the references therein for more details on the existence and uniqueness results for
fractional differential equations.

Our paper is organized as follows. in Section 2, we will recall some basic definitions ans properties
concerning fractional conformable derivative, conformable semigroup, fractional Laplace transform and
the Hille-Yosida theorem associated to the conformable semigroup. In Section 3, we establish the existence
of solutions for the conformable fractional problem (1). As application, an illustrative example is presented
in Section 4 followed by conclusion in Section 5.

2. Auxiliary results

The aim of this section, is to introduce some basic definitions and properties concerning the conformable
derivative, the fractional Laplace transform, the conformable semigroup, and the Hille-Yosida theorem
associated with the conformable semigroup.

2.1. Conformable derivatives
In this subsection, we introduce the definition of the fractional conformable derivative adopted in this

work, but also the associated fractional integral.

Definition 2.1. [11] Let α ∈ (n,n + 1] and f : [0,∞) → R be n-differentiable at t > 0, then the conformable
fractional derivative of 1 of order α is defined by

1(α)(t) = lim
ϵ→0

1(n)(t + ϵtn+1−α) − 1(n)(t)
ϵ

,

1(α)(0) = lim
t→0
1(α)(t).

One of the main properties of the conformable derivative is the following result.

Remark 2.2. [11] Using the previous definition one can easily show that

1(α)(t) = tn+1−α1(n+1)(t).

where α ∈ (n,n + 1], and 1 is (n + 1)-differentiable at t > 0.

The fractional integral is defined as follows.

Definition 2.3. [11] Let α ∈ (0, 1], the fractional integral is giving by

(Iα1)(t) =
∫ t

0
sα−11(s)ds.

The composition of the fractional conformable derivative and the fractional integral is given in the following
theorem.

Theorem 2.4. [11] The fractional integral satisfies the following property,(
Iα1

)(α) (t) = 1(t),

for t ≥ 0.
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Example 2.5. We have,

Iαtp =
tα+p

α + p
,

and,

Iα(sin(t)) =
∞∑

n=0

(−1)n

(2n + 1)!
tα+2n+1

α + 2n + 1
.

If we take α = 1
2 , we get

I
1
2 (sin(t)) =

∞∑
n=0

(−1)nt2n+ 3
2

(2n + 3
2 )(2n + 1)!

.

2.2. Conformable fractional Laplace transform
The aim of this paragraph, is to give the definition of the fractional Laplace transform that will be used

in this work.

Definition 2.6. [7] Let a ∈ R, 0 < α ≤ 1 and f : [0,∞) → X be an X-valued Bochner function. The fractional
Laplace transform of order α is given by

L
α
a f (λ) =

∫
∞

a
e−s (t−a)α

α f (t)(t − a)α−1dt.

Now, we give the definition of the fractional convolution.

Definition 2.7. [7] Let 0 < α ≤ 1, and u, v be twoX-valued Bochner functions. We define the fractional convolution
of u and v of order α by

(u ∗α v)(t) =
∫ t

0
u((tα − τα)

1
α )v(τ)τα−1dτ.

As in the case of the classical Laplace transform, the fractional Laplace transform satisfies the following
property.

Proposition 2.8. [7] Let 0 < α ≤ 1 and u, v two Bochner functions, then we have

L
α
0 (u ∗α v)(λ) = Lα0 (u)(λ)Lα0 (v)(λ).

2.3. Conformable semigroup and its associated Hille-Yosida theorem
The purpuse of this subsection is to introduce the definition of the conformable semigroup, the con-

formable α-resolvent and the Hille-Yosida theorem for the α-semigroup. All the results that we are going to
present in this paragraph were first introduced in [9], [8], and [5]. So for more details see these references.
We begin by defining the notion of α-semigroup.

Definition 2.9. [9] Let α > 0. For a Banach space X, a family {Tα(t)}t≥0 ⊂ L(X,X) is called a fractional α-semigroup
if:

1. Tα(0) = I,
2. Tα

(
(s + t)

1
α

)
= Tα

(
s

1
α

)
Tα

(
t

1
α

)
, for all s, t ∈ [0,∞).

Example 2.10. [9] Let A be a bounded linear operator on X. Define Tα(t) = e2
√

tA. Then Tα(t)t≥0 is a 1
2 semigroup.

Indeed:

1. Tα(0) = e0A = I.
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2. ∀s, t ∈ [0,∞), Tα
(
(s + t)2

)
= e2(t+s)A = e2tAe2sA = Tα(s2)Tα(t2).

As in the case of the classical semigroup, we define the notion of an α − C0-semigroup.

Definition 2.11. [9] An α-semigroup Tα(t) is called a α-c0-semigroup if, for each fixed x ∈ X, Tα(t)x→ x as t→ 0+.

The conformable α-derivative of an α-semigroup Tα(t) at t = 0 is called the infinitesimal generator of Tα(t)
which we denote Aα and its domain is giving by

D(Aα) =
{
x ∈ X, lim

t→0
T(α)
α (t)x exists

}
.

A C0-α-semigroup, and its α-infinitesimal generator satisfy the following results.

Theorem 2.12. [9] Let Tα(t) be a C0-α-semigroup with the infinitesimal generator Aα and x ∈ D(Aα), then

T(α)
α (t)x = AαTα(t)x = Tα(t)Aαx.

Theorem 2.13. [8] Let Tα(t) be a C0 - α-semigroup where α ∈ (0, 1]. There exist constants ω ≥ 0 and M ≥ 1 such
that

∥Tα(t)∥ ≤Meωtα , for 0 ≤ t ≤ ∞.

Corollary 2.14. [8] If Tα(t) is a C0 - α-semigroup, then for every x ∈ X, t → Tα(t)x is a continuous function from
R+0 (the nonnegative real line) into X.

Theorem 2.15. [8] Let Tα(t) be aC0 - α-semigroup where α ∈ (0, 1] and let Aα be its α-infinitesimal generator. Then

• For x ∈ X

lim
ε→0

1
ε

∫ t+εt1−α

t

1
s1−αTα(s)xds = T(t)x, for every t > 0.

• For x ∈ X,
∫ t

0
1

s1−α Tα(s)xds ∈ D(Aα) and

Aα

(∫ t

0

1
s1−αTα(s)xds

)
= T(t)x − x.

• For x ∈ D(Aα),Tα(t)x ∈ D(Aα) and

dα

dtα
Tα(t)x = AαTα(t)x = Tα(t)Aαx.

• For x ∈ D(Aα)

Tα(t)x − Tα(s)x =
∫ t

s

1
u1−αTα(u)Aαx du =

∫ t

s

1
u1−αAαTα(u)xdu.

Corollary 2.16. [8] Let Aα be an α-infinitesimal generator of a C0 - α-semigroup Tα(t). Then Aα is closed and
densely defined linear operator.

Theorem 2.17. [8] Let Tα(t) and Sα(t) be fractional C0 - α-semigroups of bounded linear operators, where Aα and
Bα are their infinitesimal generators, respectively. If Aα = Bα, then Tα(t) = Sα(t) for t ≥ 0.

Before announcing the Hille-Yosida theorem for the α-semigroup, we define the notion of an α-resolvent.
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Definition 2.18. [5, 8] The resolvent of Aα is set of all λ ∈ R satisfying

Rα (λ,Aα) x = (λI − Aα)−1 x

=

∫
∞

0

e−
λtα
α Tα(t)
t1−α xdt

∀x ∈ D(Aα).

Theorem 2.19. [5] A linear operator Aα is an α-infinitesimal generator of a α-c0-semigroup if only if

1. Aα is closed.
2. R+ ⊂ ρ(Aα) and for every λ > 0

∥ Rα(λ,Aα) ∥≤
1
λ
.

3. Main results

We will use the above results to define the integral solution to the problem given in the following lemma.

Lemma 3.1. The problem Dαu(t) = Aαu(t) + h(t), t ∈ [0,T],
u(0) = u0 + 1(u),

(2)

is equivalent to the following integral equation

u(t) = u0 + 1(u) + Iα (Aαu(t)) + Iα (h(t)) . (3)

Proof. By applying Dα to (3), we obtain the problem (2). conversaly, if we apply Iα to the problem (2), we
get

u(t) − u0 − 1(u) = Iα(Aαu(t)) + Iα(h(t)).

Which completes the proof.

We begin by introducing some notations which we will use throughout this paper. We denote by I the
following time interval I = [0,T], by X a real Banach space, and by C the set of all continuous functions
from I into X, with the norm ∥x∥ = supt∈I |x(t)|. For r > 0, we set Cr (I,X) =

{
f ∈ C, tr f ∈ C

}
. Notice that

Cr (I,X) endowed with the norm ∥ f ∥Cr= supt∈I ∥ tr f (t) ∥ is a Banach space.
Now, let Aα

0 the part of Aα in D(Aα) defined byD(Aα
0 ) =

{
x ∈ D(Aα), Aαx ∈ D(Aα)

}
,

Aα
0 x = Aαx.

(4)

We need the following assumption to ensure that Aα
0 generates a C0-α-semigroup.

• (H1) the operator Aα : D (Aα) ⊂ X → X satisfies the Hille-Yosida condition, i.e, there is M > 0 and
ω > 0 such that (ω,∞) ⊂ ρ(Aα), and

sup
{
(λ − ω)n

∥ Rα (λ,Aα) ∥: n ∈N, λ > ω
}
≤M. (5)

Then Aα
0 generates a c0-α-semigroup {Tα(t)}t≥0 on D(Aα). The following assumption will also be useful to

prove the existence of the integral solution.
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• (H2) The operator Tα(t) generated by Aα
0 is compact in D(Aα) when t > 0, continuous in the uniform

topology, and
sup

t∈I
∥ Tα(t) ∥ ≤MT.

Let us first introduce the definition of the integral solution to the problem (2).

Definition 3.2. We say that a function u : I → X is an integral solution of (2) on I if the following conditions are
satisfied:

1. u ∈ Cr, r < α.
2. (Iαu) (t) ∈ D(Aα).
3.

u(t) = u0 + 1(u) + Aα

∫ t

0

u(s)
s1−α ds + Iαh(t), t ∈ I. (6)

Lemma 3.3. If u is an integral solution of (2) on I, then u(t) ∈ D(Aα), in particular u(0) ∈ D(Aα).

Proof. For h > 0 satisfying t + h ∈ I. We have

1
h

∫ t+ht1−α

t
u(s)sα−1ds ∈ D(Aα),

sinc Iαu(t) ∈ D(Aα). Thus,

u(t) = lim
h→0

1
h

∫ t+ht1−α

t
u(s)sα−1ds ∈ D(Aα),

and in particular, u(0) ∈ D(Aα).

Definition 3.4. [6] The following function,

Mq(θ) =
∞∑

n=1

(−θ)n−1

(n − 1)!γ(1 − qn)
,

is called the Wright function, and satisfies∫
∞

0
θδMq(θ)dθ =

Γ(1 + δ)
Γ(1 + qδ)

, for δ ≥ 0.

Let us consider the following notation,
Bαλ = λRα(λ,Aα).

Remark 3.5. The operator Bαλ satisfies,
lim
λ→∞
∥ Bαλ ∥ ≤M.

Proof. Under the assumption (H0) we have

∥Bαλ∥ = ∥λRα(λ,Aα)∥ ≤
λM
λ − ω

,

which implies the result.
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Let us now consider the following auxiliary problem u(α)(t) = Aα
0 u(t) + h(t), t ∈ I

u(0) = u0 + 1(u).
(7)

By Definition 3.2, the integral solution of (7) is given by

u(t) = u0 + 1(u) + Aα
0

∫ t

0

u(s)
s1−α ds + Iαh(t), (8)

for u(0) ∈ D(Aα) and t ∈ I. The fractional Laplace transform allows us to introduce an equivalent form of
(8).

Lemma 3.6. If h is D(Aα)-valued, then (8) can be rewritten in the following way

u(t) = Qα(tα)(u0 + 1(u)) + α
∫ t

0
Qα(tα − τα)h(τ)τα−1dτ, (9)

where,

Qα(t) =
∫
∞

0

1
θα
ψ1(θ)Tα

(( t
θ

) 1
α
)
dθ. (10)

Proof. We begin by applying the fractional Laplace transform to (8), we obtain

Lα(u(t))(λ) =
1
λ

(u0 + 1(u)) +
1
λ

Aα
0Lα(u(t))(λ) +

1
λ
Lα(h(t)(λ).

Thus,

Lα(u(t))(λ) = (λI − Aα
0 )−1(u0 + 1(u)) + (λI − Aα

0 )−1
Lα(h(t))(λ)

= I1 + I2.

We have

I1 = (λI − Aα
0 )−1(u0 + 1(u))

=

∫
∞

0
e−λ

tα
α Tα(t)tα−1(u0 + 1(u))dt

=
1
α

∫
∞

0
e−λ

s
α Tα(s

1
α )(u0 + 1(u))dt

By using the fact that,∫
∞

0
e−λθψq(θ)dθ = e−λq, (11)

we get,

I1 =
1
α

∫
∞

0

∫
∞

0
e−

λsθ
α ψ1(θ)Tα(s

1
α )(u0 + 1(u))dθds

=

∫
∞

0
e
−λt
α

∫
∞

0

1
αθ
ψ1(θ)Tα

(( t
θ

) 1
α
)
(u0 + 1(u))dθdt

= Qα(tα)(u0 + 1(u)).
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In the other hand, we have

I2 = (λI − Aα
0 )−1
Lα( f (t,u(t))(λ)

=

∫
∞

0
e−λ

tα
α Tα(t)tα−1

Lα(h(t))(λ)dt

=
1
α

∫
∞

0

∫
∞

0

∫
∞

0
e−

λτ
α

1
θ
ψ1(θ)Tα

(( τ
θ

) 1
α
)
e−

λtα
α h(t)tα−1dθdtdτ

= αLα(Qα(tα))(λ)Lα(h(t))(λ).

By applying the inverse Laplace transform as well as its properties we obtain the result.

Proposition 3.7. [13] Under the assumption (H2), Qα(t) is continuous in the uniform topology.

Remark 3.8. According to [13], ∫
∞

0

1
θqψq(θ)dθ =

1
Γ(1 + q)

,

thus, under the assumption (H2) we have,
|Qα(t)x| ≤MT |x|.

If we assume that h is D(Aα)-valued, then (9) can have the following form,

u(t) = Qα(tα)(u0 + 1(u)) + α
∫ t

0
Qα(tα − τα) lim

λ→∞
Bαλh(τ)τα−1dτ. (12)

Or,

u(t) = Qα(tα)(u0 + 1(u)) + lim
λ→∞

α

∫ t

0
Qα(tα − τα)Bαλh(τ)τα−1dτ. (13)

Due to the fact that
lim
λ→+∞

Bαλx = x,

for x ∈ D(Aα).

Remark 3.9. If the values of h are in X and not in D(Aα), then the limit in (13) exists, however the limit in (12) does
not exist.

Lemma 3.10. The solutions of (6) which are D(Aα)-valued can be represented by (13).

Proof. Let us first consider the following notations,

uαλ(t) = Bαλu(t), hαλ(t,u(t)) = Bαλh(t), uαλ = Bαλ(u0 + 1(u)).

We begin by applying Bαλ to (6), we obtain

u(t) = u0 + 1(u) + Aα
0 Iαu(t) + Iαhαλ(t).

Using the Lemma 3.6, we get

uαλ(t) = Qα(tα)uλ + α
∫ t

0
Qα(tα − τα)hαλ(τ)dτ,

since u(t), u0 + 1(u) ∈ D(Aα), then

uαλ(t)→ u(t), uαλ → u0 + 1(u), Qα(t)uλ → Qα(u0 + 1(u)), as λ→∞.

Which implies the result.
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We define the following operator,

Xα(t)x = lim
λ→∞

α

∫ t

0
Qα(tα − τα)Bαλxτα−1dτ = lim

λ→∞
α

∫ t

0
Qα(τα)Bαλxτα−1dτ, (14)

for x ∈ X, and t ≥ 0.

Proposition 3.11. If x ∈ X and t ≥ 0, then the limit in (14) exists. Furthermore, Xα(t) is a bounded linear operator.

Proof. We begin by defining the operator

X
0
α(t)x = α

∫ t

0
sα−1Qα(tα − sα)xds = α

∫ t

0
sα−1Qα(sα)xds, (15)

for x ∈ D(Aα) and t ≥ 0. Then
Xα = (λI − A)X0

α(t)(λI − A)−1.

for λ > ω, which implies that Xα(t) extends X0
α(t) from D(Aα) to X. Since Xα(t) maps X into D(Aα), then

Xα(t)x = lim
λ→∞

BαλXα(t)x = lim
λ→∞
X

0
α(t)Bαλx.

Which completes the proof.

Proposition 3.12. Let x ∈ D(Aα) and t ≥ 0, then Dα
X

0
α(t)x = I1−α(αQα(tα))x and Qα(tα)x = AX0

α(t)x + x.

Proof. We have

Dα
X

0
α(t)x = Dαα

∫ t

0
sα−1Qα(tα − sα)xds

= Dαα

∫ t

0
sα−1Qα(sα)xds

= I1−α(αQα(tα))x.

Let us now prove the second point of the proposition,

AX0
α(t)x = A

( ∫ t

0

∫
∞

0

1
θ
ψ1(θ)Tα

( s

θ
1
α

)
dθsα−1xds

)
=

∫
∞

0

1
θ
ψ1(θ)A

( ∫ t

0
Tα

( s

θ
1
α

)
sα−1ds

)
dθ

= Qα(tα)x − x.

Lemma 3.13. 1. Let x ∈ X and t ≥ 0, then Iα(W)α(t) ∈ D(Aα), and

Xα(t)x = Aα(IαXα(t)x) +
tα

α
x.

2. Let x ∈ D(Aα), then
X(t)Aαx + x = Qα(tα)x.
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Proof. 1. Let x ∈ X and t ≥ 0, we consider the following function

W(t) = λIαX0
α(t)(λI − A)−1x +

1
α

tα(λI − A)−1x − X0
α(t)(λI − A)−1x.

Obviously, W(0) = 0. And we have

DαW(t)x = λX0
α(t)(λI − A)−1x + (λI − A)−1x −Dα

X
0
α(t)(λI − A)−1x

= λX0
α(t)(λI − A)−1x + (λI − A)−1x −Qα(tα)(λI − A)−1x

= λX0
α(t)(λI − A)−1x + (λI − A)−1x − AαX

0
α(t)(λI − A)−1x − (λI − A)−1x

= λX0
α(t)(λI − A)−1x − AαX

0
α(t)(λI − A)−1x

= (λI − A)X0
α(t)(λI − A)−1x

= Xα(t)x.

Then,
W(t) = IαXα(t)x +W(0) = IαXα(t)x,

and,
(λI − A)W(t) = (λI − A)TαXα(t)x

= λIαXα(t)x − AIαXα(t)x
= λIαXα(t)x − IαQα(tα)x + Iαx

= λIαXα(t)x − X0
α(t)x +

1
α

tαx

2. Let x ∈ D(Aα), we have

Xα(t)Ax = lim
λ→∞

α

∫ t

0
Qα(τα)BαλAxτα−1dτ

= AX0
α(t)x

= Qα(tα)x − x.

Which completes the proof.

Theorem 3.14. u(t) is an integral solution of (2) if and only if

u(t) = Qα(tα)(u0 + 1(u)) + lim
λ→∞

α

∫ t

0
Qα(tα − τα)Bαλh(τ)τα−1dτ, (16)

for t ∈ I and u(0) ∈ D(Aα).

Proof. It is sufficient to show that (16) is an integral solution to problem (2). We only need to prove that it
is true for u(0) = 0. To this end, we will proceed as follows
Step 1
If f is continuously differentiable, then for t ∈ I, we have

uλ(t) = α
∫ t

0
Qα(sα)Bαλh(s)dαs

= α

∫ t

0
Qα(sα)Bαλ(h(0) +

∫ s

0
h′(τ)dτ)dαs

= α

∫ t

0
Qα(sα)Bαλh(0)dαs + α

∫ t

0
Qα(sα)Bαλ(

∫ s

0
h′(τ)dτ)dαs

= X0
α(t)Bαλh(0) +

∫ t

0
X

0
α(t − τ)Bαλh′(τ)dτ.



H. El Asraoui et al. / Filomat 38:6 (2024), 2127–2142 2137

And we have
u(t) = lim

λ→+∞
uλ(t)

= Xα(t)h(0) +
∫ t

0
Xα(t − s)h′(s)ds

= Aα(Iα(t)h(0)) +
tα

α
h(0)

+

∫ t

0

[
Aα(IαXα(t − s)h′(s)) +

(t − s)α

α
h′(s)

]
ds

= Aα

(
IαXα(t)h(0) +

∫ t

0
IαXα(t − s)h′(s)ds

)
+

tα

α
h(0) +

∫ t

0

(t − s)α

α
h′(s)ds

= AαIαu(t) + Iαh(t).

Step 2
In this step, we consider an approximation of h by continuously differentiable functions hn such that

sup
t∈I
|h(t) − hn(t)| −→ 0, as n −→ +∞.

We set

un(t) = lim
λ→+∞

α

∫ t

0
Qα(tα)Bαλhn(s)ds.

According to the first step, we have

un(t) = Aα(Iαun(t)) + Iαhn(t). (17)

Then

|un(t) − um(t)| = | lim
λ→+∞

∫ t

0
αQα(tα)Bαλ(hn(s) − hm(s))ds|

≤ αMTM
∫ t

0
|hn(s) − hm(s)|ds

≤ αMTMT∥hn − hm∥,

hence, {un} is a Cauchy sequence, and it has a limit which we denote by u(t).
By passing to the limit in (17), we get

u(t) = Aα(Iαu(t)) + Iαh(t).

Consequently, (16) is the integral solution of (2).

The following part of this paper is dedicated to study the existence and uniqueness of solutions for the
problem (1).
We will need the following hypotheses:

• (H3) f : I ×X→ X is continuous and for any k > 0 there exists a positive function µk ∈ L∞ (I,R+) such
that

sup
||x||≤k
∥ f (t, x) ∥ ≤ µk(t)

• (H4) 1 : C → D(A) is continuous, and there exists a constant η such that

∥ 1(x) − 1(y) ∥≤ η ∥ x − y ∥ ∀x, y ∈ X
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According to Theorem 3.14, the integral solution to problem (1) is equal to the solution of

u(t) = Qα(tα)(u0 + 1(u)) + lim
λ→∞

α

∫ t

0
Qα(tα − τα)Bαλ f (τ,u(τ))τα−1dτ. (18)

Theorem 3.15. [5] Let B be a closed convex and nonempty subset of a Banach space X. Let L1 and L2 be two operators
such that

1. L1x + L2y ∈ B whenever x, y ∈ B.
2. L1 is contracting mapping.
3. L2 is compact and continuous.

Then there exists z ∈ B such that z = L1z + L2z

In this section we set

• (L1u)(t) = Qα(tα)(u0 + 1(u)),

• (L2u)(t) = limλ→∞ α
∫ t

0 τ
α−1Qα(tα − τα)Bαλ f (τ,u(τ))dτ.

Theorem 3.16. Assume that H1 −H4 hold. If MTη < 1 then (1) has at least one integral solution on I.

Proof. Step 1.
Choose r ≥ MT

1−MTη

(
||u0|| + ||1(0)|| + MTα

α ||µ||L∞(I,R+)

)
, we set Br the unit ball of (C, ||.||C). And, let u, v ∈ Br.

∥ (L1u)(t) + (L2v)(t) ∥ ≤MT

(
||u0 + 1(u)||

)
+ lim
λ→∞

α

∫ t

0
sα−1
||Qα(tα − sα)Bαλ f (s,u(s))||ds

≤MT

(
||u0|| + ||1(0)|| + ηr

)
+MMTTα||µr||L∞(I,R+)

≤ r

And for t ∈ I, u, v ∈ Cwe have
∥ (L1u)(t) − (L1v)(t) ∥≤MTη||u − v||.

However MTη < 1, then L1 is a contraction.
Step 2.
Let (Un) be a sequence in Br, such that un → u in Br.
As f is continuous,

f (τ,un(τ))→ f (τ,u(τ)), as n→∞.

In other hand, we have

∀t ∈ I, ∥τα−1( f (τ,un(τ)) − f (τ,u(τ)))∥ ≤ 2τα−1
∥ηr∥L1 ∈ L1(I,R+).

Then, by the Lebesgue dominated convergence theorem we obtain that,

∥τα−1( f (τ,un(τ)) − f (τ,u(τ)))∥ → 0 asn→∞,

which implies that L2 is continuous.
Now, we will show that {(L2u)(t),u ∈ Br}, is compact. To this end, we will show that {(L2u)(t),u ∈ Br} is
equicontinuous and uniformly bounded and for any t ∈ I, {(L2u)(t),u ∈ Br} is relatively compact in X.
Let 0 < t1 < t2 < T, we have

∥(L2u)(t2) − (L2u)(t1)∥ ≤ lim
λ→∞

∥∥∥∥α∫ t2

t1

Qα(tα2 − τα)Bαλ f (τ,u(τ))τα−1dτ
∥∥∥∥

+ lim
λ→∞

∥∥∥∥α∫ t1

0
(Qα(tα2 − τ

α) −Qα(tα1 − τ
α))Bαλ f (τ,u(τ))τα−1dτ

∥∥∥∥
≤MTM∥µ∥L∞(I,R)

+ Tα∥µ∥L∞(I,R) sup
s∈[0,t1]

|Qα(tα2 − sα) −Qα(tα1 − sα)|
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According to Proposition 3.7, the second term in the right hand side of the last inequality tends to 0 as t1
tends to t2.
Hence, {(L2u)(t),u ∈ Br} is equicontinuous.
Further, we have (L2u) is uniformly bounded.
Let us prove that ∀t ∈ I, V(t) = {(L2u)(t),u ∈ Br} is relatively compact in X.
Let t ∈ (0,T] be fixed, for each h ∈ (0, t), for each δ > 0 and u ∈ Br, we define the operator

(Lh,δu)(t) = lim
λ→∞

α

∫ t−h

0

∫
∞

δ

1
θ
ψ1(θ)Tα

(( tα − τα

θ

) 1
α
)
τα−1 f (τ,u(τ))dθdτ

= Tα
((h
δ

) 1
α
)

lim
λ→∞

α

∫ t−h

0

∫
∞

δ

1
θ
ψ1(θ)Tα

(( tα − τα

θ

) 1
α
−

(h
δ

) 1
α
)
τα−1 f (τ,u(τ))dθdτ

where u ∈ Br. The compactness of Tα
((

h
δ

) 1
α
)

implies that the set
{
(Lh,δu)(t),u ∈ Br

}
is relatively compact in X,

∀h ∈ (0, t) and δ > 0. Furthermore, we have

∥(L2u)(t) − (Lh,δu)(t)∥ = α
∥∥∥∥∫ t

0

∫ δ

0

1
θ
ψ1(θ)τα−1Tα

(( tα − τα

δ

)α−1)
τα−1 f (τ,u(τ))dθdτ

+

∫ t

0

∫
∞

δ

1
θ
τα−1ψ1(θ)Tα

(( tα − τα

δ

)α−1)
f (τ,u(τ))dθdτ

−

∫ t−h

0

∫
∞

δ

1
θ
τα−1ψ1(θ)Tα

(( tα − τα

δ

)α−1)
f (τ,u(τ))dθdτ

∥∥∥∥
≤ α

∥∥∥∥∫ t

0

∫ t

0

∫ δ

0

1
θ
τα−1ψ1(θ)Tα

(( tα − τα

δ

)α−1)
f (τ,u(τ))dθdτ

∥∥∥∥
+ ∥

∫ t

t−δ

∫
∞

δ

1
θ
τα−1ψ1(θ)Tα

(( tα − τα

δ

)α−1)
f (τ,u(τ))dθdτ∥

≤MT∥µt∥L∞(I,R+) +MT∥µt∥L∞(I,R+)Tα + (T − δ)α.

We conclude that V(t), t ∈ (0,T] is relatively compact, and V(0) is also relatively compact, then according to
Arzela-Ascoli theorem, {(L2u)(t),u ∈ Br} is completely continuous ∀t ∈ I.
Hence, Krasnoselskii’s theorem implies that L1+L2 has at least one fixed point on Br. Therefore, our nonlocal
Cauchy problem (1) has at least one mild solution.

In what follows, we are going to give additional assumptions under which the existence of the mild solution
of problem (1) is unique.

Theorem 3.17. We suppose that f : I × X→ X is continuous and there exists a functions µ ∈ L∞ (I,R+) such that

∥ f (t, x) − f (t, y) ∥≤ µ1(t) ∥ x − y ∥, ∀t ∈ I, x, y ∈ X

and the function φ : t→MT

(
η + tαMT ∥ µ1 ∥L1(I,R+)

)
: I→ R+, satisfies

0 < φ(t) < τ < 1, ∀t ∈ I

Then under H1 −H4 and if u(0) ∈ D(Aα) the problem (1) has a unique integral solution in C.

Proof. Define P : C → C by

(Pu) (t) = Qα(tα)
(
u0 + 1(u)

)
+ lim
λ→∞

α

∫ t

0
sα−1Qα(tα − sα)Bα fλ f (s,u(s))ds
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Observing that P is well defined on C.
Now take t ∈ I and x, y ∈ C, we have

∥ (Pu) (t) − (Pv) (t) ∥ ≤ η ∥ Qα(t) ∥∥ u − v ∥

+ lim
λ→∞

∫ t

0
sα−1
∥ Qα(tα f − sα f ) ∥∥ Bαλ ∥ f (s,u(s)) − f (s, v(s)) ∥ ds

≤MT

(
η + tαMT ∥ µ1 ∥L1(I,R+)

)
||u − v||

< τ ∥ u − v ∥

4. An illustrative example

In this section, we give an example to illustrate the above results. Consider the following conformable
fractional equation

∂αu(t,x)
∂tα =

∂u(t,x)
∂x + f (t,u(t, x)), 0 ≤ t ≤ T, 0 ≤ x ≤ π,

u(t, 0) = u(t, π) = 0, t ∈ [0,T],

u(x, 0) = 1(u), 0 ≤ x ≤ π.

(19)

Where
f (t,u(t, x)) = e−tu(t, x) + e−t

and 1 is a continuous D(Aα)-valued function defined by

1(u)(x) =
j=1∑
s

p ju(t j, x), 0 < t1 < ... < ts < T, x ∈ [0, π],

with
s∑

j=1

|p j| ≤
1
2
.

Let m(t) = e−t, we have
sup
|u(t,x)|≤k

| f (t,u(t, x)| ≤ µk(t) = (k + 1)m(t), for k > 0.

which implies that (H3) is satisfied.
On the other hand, we have

|1(u1) − 1(u2)| ≤
s∑

j=1

|p j|∥u1 − u2∥X.

Hence, (H4) is satisfied. Let X = C[0, π] and consider the following operator

Aα : D(Aα) ⊂ X −→ X,

defined by
D(Aα) = {u ∈ C1[0, π], u(0) = u(π) = 0}.

and

Aαu =
∂
∂x

u, ∀u ∈ D(Aα).
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Note that
D(Aα) = {u ∈ C[0, π], u(0) = u(π) = 0} , X.

In the other hand, we have

(λ − Aα)−1u(t) =
∫ +∞

0
e−

λtα
α tα−1u(t)dt,

it is easy to see that

∥(λ − Aα)−1u∥X ≤
1
α
∥u∥X.

Thus our assumption (H1) is satisfied, and the part Aα
0 of Aα generates a C0 − α-semigroup Tα(t). And

according to [9], Aα
0 generates the following C0 − α-semigroup

Tα(t)u(s) = u
(
s +

tα

α

)
, ∀t ≥ 0,∀s ∈ [0,T].

Observe that Tα maps any bounded set to a bounded set, then the assumption (H2) is also satisfied. Then
the conditions of the Theorem 3.16 are satisfied, consequently our problem has at least one integral solution
given by

u(t) = Qα(tα)(u0 + 1(u)) + lim
λ→∞

α

∫ t

0
Qα(tα − τα)Bαλ f (τ,u(τ))τα−1dτ.

Where

Qα(tα)u(s) =
∫ +∞

0

1
θα
ψ1(θ)u

(
s +

t
θα

)
dθ.

5. Conclusion

The existence and uniqueness of solutions for conformable fractional evolution equations with nondense
domain in Banach spaces is demonstrated in this article. As a preliminary step, we construct a generic struc-
ture of solutions associated with our proposed model utilizing conformable fractional calculus tools and
some basic properties of conformable fractional derivative and conformable fractional integral. Our main
results are established by using Hile-Yosida theorem associated with conformable fractional semigroup.
Finally, by using an appropriate example, the investigation of our theoritical result has been illustrated.
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