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Abstract. The Navier problem involving the p-biharmonic and the Leray-Lions operators with weights is
considered in this paper. Using the theory of weighted Sobolev spaces and the Browder-Minty theorem to
show the existence and uniqueness of weak solution to this problem. Firstly, we transform our problem
into an equivalent operator equation; secondly, we use the Browder-Minty theorem to prove the existence
and uniqueness of a weak solution to the problem concerned.

1. Introduction

In partial differential equations with weights, which have different types of singularities in the coef-
ficients, it’s natural to find solutions in weighted Sobolev spaces [13, 18]. Non-weighted Sobolev spaces
Wk,t(D), in general, appear as solution spaces for parabolic and elliptic partial differential equations.

There are a lot of examples of weight (see [18] ). A well-established class of weights, introduced by B.
Muckenhoupt [24] , is the class of Ap-weights (or Muckenhoupt class) . These classes have found many
useful applications in harmonic analysis [2, 14, 15, 25, 27, 29].

LetD is a bounded open set inRn, ϕ, ϑ1 and ϑ2 are a weight functions. Our goal in this paper is to show
the uniqueness and existence of a weak solution in the weighted Sobolev space W1,t

0 (D, ϑ) (see Definition
2.4) for the Navier problem associated to the degenerate elliptic equation such that∆

[
ϕ(z)a(z,∆w)

]
− div

[
ϑ1(z)K (z,∇w)

]
+ ϑ2(z)|w|p−2w = h(z) in D,

w(z) = ∆w(z) = 0 on ∂D,
(1)

where the functions a : D × Rn
−→ Rn, K : D × Rn

−→ Rn are Carathéodory functions that satisfy the
growth assumptions, monotonicity and ellipticity. Problem like (1) have been studied by many authors in
the non-weighted case, such as : a(z,∆w) = |∆w|p−2∆w ,K ≡ 0 and h depends on solution (see [5, 6]).
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The plan of this work is as follows. In Section 2, we give some basic results and some technical lem-
mas. In Section 3, we specify all the assumptions on K , a and we present the notion of weak solution for
the Problem (1). The main results will be proved in Section 4.

2. Preliminaries

To understand our findings, we must first review certain definitions and fundamental aspects which
are used during this paper. Full presentations can be found in the monographs by A. Torchinsky [27] and
J. Garcia-Cuerva et al. [16].

We will call a locally integrable function ϑ by a weight on Rn such that ϑ(z) > 0 for a.e. z ∈ Rn. Each
weight ϑ gives rise to a measure on the measurable subsets of Rn by integration. This measure will be
denoted ϑ. Thus,

ϑ(E) =
∫
E

ϑ(z)dz for measurable subset E ⊂ Rn.

For 0 < t < ∞, we denote by Lt(D, ϑ) the space of measurable functions ϑ onD such that

||h||Lt(D,ϑ) =

(∫
D

|h|tϑ(z)dz
) 1

t

< ∞,

where h is a weight, and D be open in Rn. It is widely known fact that the space Lt(D, ϑ), endowed with
this norm is a Banach space. We have also that the dual space of Lt(D, ϑ) is the space Lt′ (D, ϑ1−t′ ).

Let us now specify the conditions on the weight ϑ that ensure that the functions in Lt(D, ϑ) are locally
integrable onD.

Proposition 2.1. ([19, 23]). Let 1 ≤ t < ∞. If the weight ϑ is such that

ϑ
−1
t−1 ∈ L1

loc(D) if t > 1,

ess sup
z∈B

1
ϑ(z)

< +∞ if t = 1,

for every ball B ⊂ D. Then,

Lt(D, ϑ) ⊂ L1
loc(D).

As a result, and subject to the conditions of the Proposition 2.1, the convergence in Lt(D, ϑ) implies
convergence in L1

loc(D). In addition, every function in Lt(D, ϑ) has distributional derivatives. So it makes
sense to talk about distributional derivatives of functions in Lt(D, ϑ).

Definition 2.2. Let 1 ≤ t < ∞. A weight ϑ is said to be an At-weight, or ϑ belongs to the Muckenhoupt class, if
there exists a positive constant ζ = ζ(t, ϑ) such that, for every ball B ⊂ Rn

(
1
|B|

∫
B
ϑ(z)dz

) (
1
|B|

∫
B

(ϑ(z))
−1
t−1 dz

)t−1

⩽ ζ if t > 1,

(
1
|B|

∫
B

h(z)dz
)

ess sup
z∈B

1
ϑ(z)

⩽ ζ if t = 1,

where |.| denotes the n-dimensional Lebesgue measure in Rn.
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The infimum over all such constants ζ is called the At constant of ϑ. We denote by At, 1 ≤ t < ∞, the set of
all At weights.

If 1 ≤ q ≤ t < ∞, then A1 ⊂ Aq ⊂ At and the Aq constant of f equals the At constant of f (we refer to
[17, 18, 28] for more informations about Ap-weights).

Proposition 2.3. ([30]). Let ϑ ∈ At with 1 ⩽ t < ∞ and let E be a measurable subset of a ball B ⊂ Rn. Then(
|E|
|B|

)t

⩽ C
ϑ(E)
ϑ(B)

,

where C is the At constant of ϑ.

The weighted Sobolev space Wk,t(D, ϑ) is defined as follows.

Definition 2.4. Let D ⊂ Rn be open, and let f be At-weights, 1 ⩽ t < ∞. We define the weighted Sobolev space
Wk,t(D, ϑ) as the set of functions w ∈ Lt(D, ϑ) with Dkw ∈ Lt(D, ϑ), for k = 1, ...,n. The norm of w in Wk,t(D, ϑ) is
given by

||w||Wk,t(D,ϑ) =

(∫
D

|w(z)|tϑdz +
∫
D

|∇w(z)|tϑdz
) 1

t

. (2)

We also define W1,t
0 (D, ϑ) as the closure of C∞0 (D) in W1,t(D, ϑ) with respect to the norm (2).

Equipped by this norm, W1,t(D, ϑ) and W1,t
0 (D, ϑ) are reflexive and separable Banach spaces ([19, Proposition

2.1.2.]. For more detail about the spaces W1,t(D, ϑ)) see [18, 23]. The dual of space W1,t
0 (D, ϑ) is the space

defined as[
W1,t

0 (D, ϑ)
]∗
=

h −
n∑

i=1

Dihi/,
hi

ϑ
∈ Lt′ (D, ϑ), i = 1, ...,n

 .
To show the main reasoning of this paper, we rely on the following results .

Definition 2.5. We denote byH =W1,p
0 (D, ϑ1) ∩W2,t

(
D, ϕ

)
with the norm

∥w∥H = ∥∆w∥Lt(D,ϕ) + ∥|∇w|∥Lp(D,ϑ1).

Theorem 2.6. ([13]). Let ϑ ∈ At, 1 ⩽ t < ∞, and letD be a bounded open set in Rn. If wn −→ w in Lt(D, ϑ), then
there exist a subsequence (wnm ) and ψ ∈ Lt(D, ϑ) such that

(i) wnm (z) −→ w(z), nm −→ ∞, ϑ-a.e. onD.

(ii) |wnm (z)| ⩽ ψ(z), ϑ-a.e. onD.

Theorem 2.7. ([10]). Let ϑ ∈ At, 1 < t < ∞, and letD be a bounded open set in Rn. There exist constants MD and
δ positive such that for all φ ∈W1,t

0 (D, ϑ) and all ν satisfying 1 ⩽ ν ⩽ n
n−1 + δ,

||φ||Lνt(D,ϑ) ⩽MD||∇φ||Lt(D,ϑ),

where MD depends only on n, t, the At constant of ϑ and the diameter ofD.

Proposition 2.8. ([7]). Let 1 < p < ∞.

(i) There exists a positive constant Mp such that for all η, µ ∈ Rn, we have∣∣∣∣|µ|p−2µ − |η|p−2η
∣∣∣∣ ≤Mp|µ − η|

(
|µ| + |η|

)p−2
.
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(ii) There exist two positive constants βp and τp such that for every z, y ∈ Rn, it holds that

βp

(
|z| + |y|

)p−2
|z − y|2 ≤

〈
|z|p−2z − |y|p−2y, z − y

〉
≤ τp

(
|z| + |y|

)p−2
|z − y|2.

Theorem 2.9. ([32]). Let S :H −→H∗ be a coercive, hemi-continuous and monotone operator on the real, separable,
reflexive Banach spaceH. Then the following statements are valid:

1- The equation Sw = T has a solution w inH, for all T ∈H∗ .

2- If the operator S is strictly monotone, then equation Sw = G has a unique solution w ∈H .

3. Basic assumptions and concept of solutions

3.1. Basic assumptions

Let’s give the specific conditions of the problem (1), we assume that the following assumptions: D
be a bounded open subset of Rn( n ≥ 2), 1 < t, p < ∞, let ϕ, ϑ1 and ϑ2 are a weights functions, and let
K : D × Rn

−→ Rn, with K (z, µ) =
(
K1(z, µ), ...,Kn(z, µ)

)
and a : D̄ × Rn

−→ Rn satisfying the following
assumptions:

(I) BeKk (for k = 1, ...,n), and a are Carathéodory functions.

(II) There exists a positive function h ∈ L∞(D), and a positive constant M0 and τ ∈ Lp′ (D, ϑ1)(
with 1

p +
1
p′ = 1

)
, such that :

|K (z, µ)| ≤ τ(z) + h(z)|µ|p−1,

and

|a(z, η)| ≤M0(1 + |η|t−1)(
with 1

t +
1
t′ = 1

)
.

(III) There exists a constant α > 0 such that :〈
K (z, µ) −K (z, µ

′

), µ − µ
′
〉
⩾ α|µ − µ

′

|
p,

and (
a(z, µ) − a(z, µ

′

)
)(
µ − µ

′
)
⩾ 0,

whenever µ, µ′ ∈ Rn with µ , µ
′

.

(IV) There exists a constant β > 0 such that : 〈
K (z, µ), µ

〉
⩾ β|µ|p,

and

a(z, µ) · µ ⩾ |µ|t.
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3.2. Concept of solutions

The definition of a weak solution for Problem (1) can be said the following.

Definition 3.1. One says w ∈H is a weak solution to Problem (1), provided that∫
D

a(z,∆w)∆vϕdz +
∫
D

⟨K (z,∇w),∇v⟩ϑ1 dz +
∫
D

|w|p−2w vϑ2 dz =
∫
D

hvdz,

for all v ∈H.

Remark 3.2. We seek to establish a relationship between ϑ1, ϑ2 , in order to ensure the existence and uniqueness of
solution for our Problem (1). At first we notice, for all ϑ1, ϑ2 ∈ Ap we have :

• If ϑ2
ϑ1
∈ Lr(D, ϑ1) where r = p

p−p′ and 1 < p′ < p < ∞, then, by Hölder inequality we obtain

||w||Lp′ (D,ϑ2) ⩽Mp,p′ ||w||Lp(D,ϑ1),

where Mp,p′ = ||
ϑ2

ϑ1
||

1/p′

Lr(D,ϑ1).

4. Main result

4.1. Result on the existence and uniqueness

The main result of this article is given in the next theorem.

Theorem 4.1. Let ϑi ∈ Ap(i = 1, 2) and ϕ ∈ At , 1 < p, t < ∞ and assume that the assumptions (I) − (IV) hold. If
h
ϑ1
∈ Lp′ (D, ϑ1) and ϑ2

ϑ1
∈ L

p
p−p′ (D, ϑ1) Then the problem (1) has exactly one solution w ∈H.

4.2. Proof of Theorem 4.1

The essential one of our proof is to reduce the (1) to an operator problemAw = G and apply the Theorem
2.9.

We define
F :H ×H −→ R

and
G :H −→ R,

where F and G are defined below.
Then w ∈ H is a weak solution of (1) if and only if

F (w, v) = G(v), for all v ∈H.

The proof of Theorem 4.1 is divided into several nots.

4.2.1. Equivalent operator equation
In this subsection, we prove that the Problem (1) is equivalent to an operator equationAw = G.
Using Hölder inequality, Theorem 2.7, we obtain

|G(v)| ≤
∫
D

|h|
ϑ1
|v|ϑ1 dz

≤ ||h/ϑ1||Lp′ (D,ϑ1)||v||Lp(D,ϑ1)

≤MD||h/ϑ1||Lp′ (D,ϑ1)||v||H.
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Since f/ϑ1 ∈ Lp′ (D, ϑ1), then G ∈H∗.
The operator F is broken down into the from

F (w, v) = F1(w, v) + F3(w, v) + F4(w, v),

where Fi :H ×H −→ R, for i = 1, 2, 3, are defined as

F1(w, v) =
∫
D

⟨K (z,∇w),∇v⟩ϑ1dz , F2(w, v) =
∫
D

a(z,∆w)∆vϕdz

and F3(w, v) =
∫
D

|w|p−2w vϑ2 dz.

Then, we have

|F (w, v)| ≤ |F1(w, v)| + |F2(w, v)| + |F3(w, v)|. (3)

On the other hand, we get by using (II), Hölder inequality and Theorem 2.7,

|F1(w, v)| ≤
∫
D

|K (z,∇w)||∇v|ϑ1dz

≤

∫
D

(
τ + h|∇w|p−1

)
|∇v|ϑ1dz

≤ ||τ||Lp′ (D,ϑ1)||∇v||Lp(D,ϑ1) + ||h||L∞(D)||∇w||p−1
Lp(D,ϑ1)||∇v||Lp(D,ϑ1)

≤

(
||τ||Lp′ (D,ϑ1) + ||h||L∞(D)||w||

p−1
H

)
||v||H,

and
Analogously, using (II), Hölder inequality, Remark 3.2 (ii) and Theorem 2.7, we obtain

|F2(w, v)| ≤
∫
D

|a(z,∆w)||∆v|ϕdz

≤M0

∫
D

(1 + |∆w|t−1)|∆v|ϕdz

≤M0

[
||∆w||Lt(D,ϕ) + (ϕ(D))1/t′

]
||∆v||Lt(D,ϕ)

≤M0

[
∥w∥H + (ϕ(D))1/t′

]
||v||H.

Next, we get

|F3(w, v)| ≤
∫
D

|w|p−1
|v|ϑ2dz

≤

( ∫
D

|w|pϑ2dz
)1/p′( ∫

D

|v|pϑ2dz
)1/p

= ||w||p−1
Lp(D,ϑ2)||v||Lp(D,ϑ2)

≤ Mp−1
D

MD||∇w||p−1
Lp(D,ϑ2)||∇v||Lp(D,ϑ2)

≤ Mp
D

Mp
p,p′ ||w||

p−1
H
||v||H.

Hence, in (3) we obtain, for all w, v ∈ H

|F (w, v)| ≤
[
||τ||Lp′ (D,ϑ1) + ||h||L∞(D)||w||

p−1
H + Mp

D
Mp

p,p′ ||w||
p−1
H
+M0

[
∥w∥H + (ϕ(D))1/t′

]]
∥v∥H.

Then for each w ∈ H, F (w, .) is linear and continuous . Thus, there exists a linear and continuous operator
on H denoted byA such that

⟨Aw, v⟩ = F (w, v), for all w, v ∈H.
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Moreover, we have

∥Aw∥∗ ≤
[
||τ||Lp′ (D,ϑ1) + ||h||L∞(D)||w||

p−1
H + Mp

D
Mp

p,p′ ||w||
p−1
H
+M0

[
∥w∥H + (ϕ(D))1/t′

]]
,

where
∥Aw∥∗ := sup

{
|⟨Aw, v⟩| = |F (w, v)| : v ∈ H, ∥v∥H = 1

}
,

is the norm inH∗. This gives us the operator

A :H −→H∗

w 7−→ Aw.

It is therefore possible that the equation of the problem (1) is equivalent to the equation of the operator

Aw = G, w ∈H.

4.2.2. Monotonicity and Coercivity of the operatorA
⋆ Now, we show thatA is strictly monotone. Indeed.

Let v1, v2 ∈Hwith v1 , v2. We have〈
Av1 −Av2, v1 − v2

〉
= F (v1, v1 − v2) − F (v2, v1 − v2)

=

∫
D

〈
K (z,∇v1),∇(v1 − v2)

〉
ϑ1dz −

∫
D

〈
K (z,∇v2),∇(v1 − v2)

〉
ϑ1dz

+

∫
D

a(z,∆v1)∆(v1 − v2)ϕdz −
∫
D

a(z,∆v2)∆(v1 − v2)ϕdz

+

∫
D

|v1|
p−2v1(v1 − v2)ϑ2dz −

∫
D

|v2|
p−2v2(v1 − v2)ϑ2dz

=

∫
D

〈
K (z,∇v1) −K (z,∇v2),∇(v1 − v2)

〉
ϑ1dz

+

∫
D

(
a(z,∆v1) − a(z,∆v2)

)
∆
(
v1 − v2

)
ϕdz

+

∫
D

(
|v1|

p−2v1 − |v2|
p−2v2

)(
v1 − v2

)
ϑ2dz.

Thanks to (III) and Proposition 2.8 (ii), we obtain〈
Av1 −Av2, v1 − v2

〉
≥ α

∫
D
|∇(v1 − v2)|p ϑ1 dz + βp

∫
D

(
|v1| + |v2|

)p−2
|v1 − v2|

2 ϑ2 dz

≥ α

∫
D

|∇(v1 − v2)|pϑ1dz

≥ α∥∇(v1 − v2)∥pLp(D,ϑ1).

Therefore,A is strictly monotone .
⋆ In this not, we prove that the operatorA is coercive. let w ∈H, we have

⟨Aw,w⟩ = F (w,w)
= F1(w,w) + F3(w,w) + F4(w,w)

=

∫
D

⟨K (z,∇w),∇w⟩ϑ1dz +
∫
D

a(z,∆w)∆w ϕdz +
∫
D

|w|pϑ2dz.

Moreover, from (IV) and Theorem 2.7(with ν = 1), we obtain

⟨Aw,w⟩ ≥
∫
D

|∆w|tϕdz + β1

∫
D

|∇w|pϑ1dz +
∫
D

|w|pϑ2dz

≥

∫
D

|∆w|tϕdz +min(β1, 1)
[∫
D

|∇w|pϑ1dz +
∫
D

|w|pϑ2dz
]

≥ min(β1, 1)∥w∥p
H
.
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Hence, we obtain
⟨Aw,w⟩
∥w∥H

≥ min(β1, 1)∥w∥p−1
H
.

Therefore, since p > 1, we have
⟨Aw,w⟩
∥w∥H

−→ +∞ as ∥w∥H −→ +∞,

that is,A is coercive.

4.2.3. Continuity of the operatorA
We need to show that the operator A is continuous, i.e. We will show that Awn −→ Aw inH∗, that is

to say we need to show the following convergences

Bkwn −→ Bkw in Lp′ (D, ϑ1), (4)

Nwn −→ Nw in Lt′ (D, ϕ), (5)

and

Jwn −→ Jw in Lp′ (D, ϑ2). (6)

Let wn −→ w inH as n −→ ∞. Then ∇wn −→ ∇w in (Lp(D, ϑ1))i. Hence, thanks to Theorem 2.6, there exist
a sub sequence (wnm ) and ψ ∈ Lp(D, ϑ1) such that

∇wnm (z) −→ ∇w(z), a.e. inD

|∇wnm (z)| ≤ ψ(z), a.e. inD.
(7)

The following notes are required to demonstrate this convergence.
Not 1:
For k = 1, ...,n, we define the operator

Bk : H −→ Lp′ (D, ϑ1)
(Bkw)(z) = Kk(z,∇w(z)).

We need to show that Bkwn −→ Bkw in Lp′ (D, ϑ1).
In Banach spaces, we will use the convergence principle and the Lebesgue theorem .

• Let w ∈H. Using (II) and Theorem 2.7(with ν = 1), we obtain

∥Bkw∥p
′

Lp′ (D,ϑ1)
=

∫
D

|Bkw(z)|p
′

ϑ1dz =
∫
D

|Kk(z,∇w)|p
′

ϑ1dz

≤

∫
D

(
τ + h|∇w|p−1

)p′
ϑ1dz

≤ Mp

∫
D

(
τp′ + hp′

|∇w|p
)
ϑ1dz

≤ Mp

[
∥τ∥p

′

Lp′ (D,ϑ1)
+ ∥h∥p

′

L∞(D)∥∇w∥pLp(D,ϑ1)

]
≤ Mp

[
∥τ∥p

′

Lp′ (D,ϑ1)
+ ∥h∥p

′

L∞(D)∥w∥
p
H

]
,

where the constant Mp depends only on p.
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• Let wn −→ w inH as n −→ ∞. By (II) and (7), we obtain

∥Bkwnm − Bkw∥p
′

Lp′ (D,ϑ1)
=

∫
D

|Bkwnm (z) − Bkw(z)|p
′

ϑ1dz

≤

∫
D

(
|Kk(z,∇wnm )| + |Kk(z,∇w)|

)p′

ϑ1dz

≤ Mp

∫
D

(
|Kk(z,∇wnm )|p

′

+ |Kk(z,∇w)|p
′
)
ϑ1dz

≤ Mp

∫
D

[(
τ + h|∇wnm |

p−1
)p′
+

(
τ + h|∇w|p−1

)p′
]
ϑ1dz

≤ Mp

∫
D

[(
τ + hψp−1

)p′
+

(
τ + hψp−1

)p′
]
ϑ1dz

≤ 2MpM
′

p

∫
D

(
τp′ + hp′ψp

)
ϑ1dz

≤ 2MpM
′

p

[
∥τ∥p

′

Lp′ (D,ϑ1)
+ ∥h∥p

′

L∞(D)∥ψ∥
p
Lp(D,ϑ1)

]
.

Hence, thanks to (I), we get, as n −→ ∞

Bkwnm (z) = Kk(z,∇wnm (z)) −→ Kk(z,∇w(z)) = Bkw(z), a.e. z ∈ D.

Therefore, by Lebesgue’s theorem, we obtain

∥Bkwnm − Bkw∥Lp′ (D,ϑ1) −→ 0,

that is,
Bkwnm −→ Bkw in Lp′ (D, ϑ1).

Finally, in view to convergence principle in Banach spaces, we have

Bkwn −→ Bkw in Lp′ (D, ϑ1). (8)

Not 2:
We define the operator

N :H −→ Lt′ (D, ϕ)
(Nw)(z) = b(z,∆w(z)).

In this not, we will show that Nwn −→ Nw in Lt′ (D, ϕ).

• Let w ∈ H. Using (II) we obtain

∥Nw∥t′
Lt′ (D,ϕ)

=

∫
D

|a(z,∆w)|t
′

ϕdz

≤ Mt′
0

∫
D

(
1 + |∆w|t−1

)t′
ϕdz

≤ Mt′
0 Mt

∫
D

(
1 + |∆w|t

)
ϕdz

≤ Mt′
0 Mt

[
(ϕ(D))1/t′ + ∥∆w∥tLt(D,ϕ)

]
≤ Mt′

0 Mt

[
(ϕ(D))1/t′ + ∥w∥tH

]
,

where the constant Mt depends only on t.

• Let wm → w in H as m → 0. We need to show that Nwm → Nw in Lt′
(
D, ϕ

)
. If wm → w in H then

∆wm → ∆w in Lt
(
D, ϕ

)
. Using Theorem 2 , there exist a subsequence

{
wmk

}
and a functionΦ ∈ Lt

(
D, ϕ

)
such that
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∆wmk (z)→ ∆w(z) a.e. inD∣∣∣∆wmk (z)
∣∣∣ ≤ Φ(z) a.e. inD.

By (II) , we get

∥Nwnm −Nw∥t′
Lt′ (D,ϕ)

=

∫
D

∣∣∣∣Nwnm (z) −Nw(z)
∣∣∣∣t′ϕdz

≤

∫
D

(
|a(z,∆wnm )| + |a(z,∆w)|

)t′

ϕdz

≤ Mt

∫
D

(
|a(z,∆wnm )|t

′

+ |a(z,∆w)|t
′
)
ϕdz

≤ Mt′
0 Mt

∫
D

[(
1 + |∆wnm |

t−1
)t′

+
(
1 + |∆w|t−1

)t′]
ϕdz

≤ Mt′
0 Mt

∫
D

[(
1 + |Φ|t−1

)t′

+
(
1 + Φt−1

)t′]
ϕdz

≤ 2Mt′
0 MtM′

t

[
(ϕ(D))1/t′ + ∥Φ∥tLt(D,ϕ)

]
,

next, using condition (I), we deduce, as n −→ ∞

Nwnm (z) = a(z,∆wnm (z)) −→ a(z,∆w(z)) = Nw(z), a.e. z ∈ D.

Therefore, by the Lebesgue’s theorem, we obtain

∥Nwnm −Nw∥Lt′ (D,ϕ) −→ 0,

that is,
Nwnm −→ Nw in Lt′ (D, ϕ).

We conclude, from the convergence principle in Banach spaces, that

Nwn −→ Nw in Lt′ (D, ϕ). (9)

Not 3:
We define the operator

J : H −→ Lp′ (D, ϑ2)
(Jw)(z) = |w(z)|p−2w(z).

In this not, we will demonstrate that Jwn −→ Jw in Lp′ (D, ϑ2).

• Let w ∈H. Using remark 3.2, we have

∥Jw∥p
′

Lp′ (D,ϑ2)
=

∫
D

|Jw|p
′

ϑ2dz

=

∫
D

|w|(p−1)p′ϑ2dz

=

∫
D

|w|pϑ2dz

≤ Mp,p′∥w∥
p
H
.

• Let wn −→ w inH as n −→ ∞. Then wn −→ w in Lp(D, ϑ2). Hence, thanks to Theorem 2.6, there exist
a subsequence (wnm ) and φ ∈ Lp(D, ϑ2) such that

wnm (z) −→ w(z), a.e. inD

|wnm (z)| ≤ φ(z), a.e. inD.
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Next, we get

∥Jwnm − Jw∥p
′

Lp′ (D,ϑ2)
=

∫
D

∣∣∣∣Jwnm (z) − Jw(z)
∣∣∣∣p′ϑ2dz

≤

∫
D

(
|Jwnm (z)| + |Jw(z)|

)p′

ϑ2dz

≤Mp

∫
D

(
|Jwnm (z)|p

′

+ |Jw(z)|p
′
)
ϑ2dz

≤Mp

∫
D

(
||wnm |

p−2wnm |
p′ + ||w|p−2w|p

′
)
ϑ2dz

≤Mp

∫
D

(
|wnm |

(p−1)p′ + |w|(p−1)p′
)
ϑ2dz

≤Mp

∫
D

(
|wnm |

p + |w|p
)
ϑ2dz

≤Mp

∫
D

(
|φ|p + |φ|p

)
ϑ2dz

≤ 2Mp

∫
D

|φ|pϑ2dz

≤ 2Mp∥φ∥
p
Lp(D,ϑ2).

Therefore, by Lebesgue’s theorem, we obtain

∥Jwnm − Jw∥Lp′ (D,ϑ2) −→ 0,

that is,
Jwnm −→ Jw in Lp′ (D, ϑ2).

We conclude, in view to convergence principle in Banach spaces, that

Jwn −→ Jw in Lp′ (D, ϑ2). (10)

Finally, let v ∈ H and using Hölder inequality, we obtain

|F1(wn, v) − F1(w, v)| = |

∫
D

⟨K (z,∇wn) −K (z,∇w),∇v⟩ϑ1dz|

≤

n∑
k=1

∫
D

|Kk(z,∇wn) −Kk(z,∇w)||Dkv|ϑ1dz

=

n∑
k=1

∫
D

|Bkwn − Bkw||Dkv|ϑ1dz

≤

n∑
k=1

∥Bkwn − Bkw∥Lp′ (D,ϑ1)∥Dkv∥Lp(D,ϑ1)

≤

 n∑
k=1

∥Bkwn − Bkw∥Lp′ (D,ϑ1)

 ∥v∥H,
and

|F2(wn, v) − F2(w, v)| ≤
∫
D

|a(z,∆wn) − a(z,∆w)||∆v|ϕdz

=

∫
D

|Nwn −Nw||∆v|ϕdz

≤ ∥Nwn −Nw∥Lt′ (D,ϕ)∥∆v∥Lt(D,ϕ)

≤ ∥Nwn −Nw∥Lt′ (D,ϕ)∥v∥H.
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and by not 4 and Remark 3.2 we get

|F3(wn, v) − F3(w, v)| ≤
∫
D

∣∣∣∣|wi|
p−2wi − |w|p−2w

∣∣∣∣|v|ϑ2dz

=

∫
D

|Jwn − Jw||v|ϑ2dz

≤ Mp,p′∥Jwn − Jw∥Lp′ (D,ϑ2)∥v∥H.

Hence, for all v ∈ H, we have

|F (wn, v) − F (w, v)| ≤
3∑

j=1

∣∣∣∣F j(wn, v) − F j(w, v)
∣∣∣∣

≤

[ n∑
k=1

(
∥Bkwn − Bkw∥Lp′ (D,ϑ1)

)
+ Mp,p′∥Jwn − Jw∥Lp′ (D,ϑ2)

+ ∥Nwm −Nw∥Lt′ (D,ϕ)
]
∥v∥H.

Then, we get

∥Awn −Aw∥∗ ≤
[ n∑

k=1

(
∥Bkwn − Bkw∥Lp′ (D,ϑ1)

)
+ Mp,p′∥Jwn − Jw∥Lp′ (D,ϑ2)

+ ∥Nwm −Nw∥Lt′ (D,ϕ)
]
.

Combining (8), (9), and (10), we deduce that

∥Awn −Aw∥∗ −→ 0 as n −→ ∞,

that is,Awn −→ Aw inH∗. Hence,A is continuous and this implies thatA is hemicontinuous.
Therefore, by Theorem 2.9, the operator equationAw = G has exactly one solution w ∈ H and it is the

unique solution for problem (1).

Finally, the proof of Theorem 4.1 is completed.
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