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Betti numbers of edge ideals of some graphs with application to graphs
assigned to groups
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Abstract. The article presents the Betti numbers of multiple complete split-like graphs, clique stars and
their generalization. As an applications, we also give the Betti numbers of the graphs defined on groups,
like power graphs of groups and commuting graphs of non-abelian groups. Also, we give their extremal
Betti numbers and their projective dimension.

1. The first section

2. Introduction

For a polynomial ring R = K[x1, x2, . . . , xN] over a fieldKwith standard degree grading. To every finite
simple graph G with vertex set V(G) = {x1, x2, . . . , xN} and edge set E(G), we can associate its edge ideal I(G)
(see, Villarreal [23]) defined as I(G) = (xix j|xi, x j ∈ E(G)) ⊆ R. The quotient R/I(G) is known as edge ring
of G. By Hilbert-Syzygy theorem, the graded R-module, R/I(G) exhibits a unique minimal N-graded free
resolution

0→
sp⊕

j=p+1

R(− j)βp, j → · · · −→

si⊕
j=i+1

R(− j)βi, j −→ · · ·→

s1⊕
j=2

R(− j)β1, j → R→ R/I(G)→ 0,

of length p ≤ n. The number p is the length of the minimal graded free resolution of R/I(G), and is called the
projective dimension of R/I(G), written as pd(R/I(G)) (or shortly pd(G)). R(− j) is a graded free R-module
of rank one generated in degree j and the number βi, j of generators of ith syzygy module in degree j is
called the ith graded Betti number of R/I(G) in degree j, denoted by βi, j(R/I(G)) (or simply βi, j(G)). There
are particular cases and equivalent ways to find the Betti numbers of I(G), but since I(G) is a square-free
monomial ideal, so our principal tool to study βi, j(I(G)) shall be Hochster’s formula (see, [13, 20]). The free
resolution of I(G) encodes several homological invariants of I(G) which are intimately related to the graph
invariants of G. Two such important invariants are (Castelnuovo-Mumford) regularity, which is defined as

regK(I(G)) = max{ j − i|βKi, j(I(G)) , 0},
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and the projective dimension, given as

pdK(I(G)) = max{i|βKi, j(I(G)) , 0 for some j}.

Many interesting papers can be found in this direction [10, 11, 15, 19, 23]. Mohammadi and Moradi [18]
investigated resolutions of unmixed bipartite graphs. Singh and Rohit [21] found the Betti numbers of
edge ideals of some split graphs. The Betti numbers, regularity and the projective dimension of I(G) of
G, in general, depends on both the graph and the characteristic of underlying field. However, in our
study, these invariants are independent of the characteristic of field. Thus, for the sake of brevity, we
write βKi, j(R/I(G)) = βi, j(G), regK(R/I(G)) = reg(G) and pdK(R/I(G)) = pd(G). A Betti number βi, j is called an
extremal Betti number if βr,s = 0 for all r ≥ i, s ≥ j + 1 and s − r ≥ j − i. Extremal Betti numbers of graded
algebras are widely studied, for some recent progress see [4, 14, 18] and the references cited therein.

The rest of the paper is organized as: In Section 3, we discuss the Betti numbers of multiple complete
split-like graphs, clique stars and the generalized clique stars and give exact formulae for their initial Betti
numbers. We also obtain their extremel Betti numbers and the projective dimension. Section 4 and 5
discuses the application of Section 3 to the power graphs of finite groups and the commuting graphs of
non-abelian groups. We end up the article with conclusion for future work.

3. Betti numbers of edge ideals of some graphs

Let G be a finite simple (without loops and multiple edges) graph with vertex set V(G) = {x1, x2, . . . , xN}

and edge set E(G). A subgraph G′ of G is called an induced subgraph if two vertices of G′ are adjacent if and
only if they are adjacent in G. The degree of a vertex v ∈ V(G) is denoted by dv. The union of two graphs
G1 and G2, denoted by G1 ∪ G2, is a graph with vertex set V(G1) ∪ V(G2) and edge set E(G1) ∪ E(G2). We
denote by kG, the union of k ≥ 2 (integer) copies of G. The join of two graphs G1 and G2, denoted by G1 ∗G2,
is obtained from G1 ∪ G2 along with the edge set {xy : for x ∈ V(G1) and y ∈ V(G2)}. The complement G of
G is a graph with the same vertex set as of G and the edge set E(G) = E(KN) \ E(G). A complete graph KN
on N vertices is a graph in which every pair of distinct vertices are adjacent. A subset S ⊆ V(G) is called
an independent (stable) set if its induced subgraph is totally disconnected (isomorphic to complement of
clique). However, a subset C of V(G) is called a clique if the induced subgraph on C is a complete graph. A
graph G is known as chordal graph if it does not contain an induced cycle of length greater than or equal
to 4. A graph G is said to be co-chordal if G is chordal.

A simplicial complex on the vertex set V(∆) = {x1, x2, . . . , xN} is a collection of subsets of V(∆) such that
each singleton {xi} ∈ ∆ for each i, and B ∈ ∆ for each B ⊆ F with F ∈ ∆, that is, roughly saying that ∆ is
closed under inclusion. An element of ∆ is known as face of ∆ and the maximal faces of ∆ under inclusion
are called facets. A face F ∈ ∆ is called an i-dimensional face (or i-face) if |F| − 1 = i. The dimension of
∆, denoted by dim, is defined to be d if max{|F| | F ∈ ∆} = d + 1. We represent the number of connected
components of ∆ by comp(∆). ∆′ said to be subcomplex of ∆ if ∆′ ⊆ ∆. The induced subcomplex ∆S on a
subset S of V(∆) is a simplicial complex ∆S = {F ∈ ∆ | F ⊆W}. A subcomplex of ∆ is said to be full provided
every face of ∆ having its elements in V(∆) also belongs to it. If ∆ and ∆′ are two simplicial complexes such
that V(∆) ∩ V(∆′) = ∅, then their join is the simplicial complex ∆ ∗ ∆′ = {σ ∪ τ | σ ∈ ∆, τ ∈ ∆′}.

Let G be a finite simple graph with vertex set V(G) = {x1, x2, . . . , xN}. Then the simplicial complex

∆(G) = {S | S is an independent subset of V(G)}

on V(G) is known as the independent complex of G. Given a simplicial complex ∆ with vertex set
{x1, x2, . . . , xN}, the squarefree monomial ideal I∆ in the polynomial ring R = K[x1, x2, . . . , xN] generated
by all squarefree monomials xi1 xi2 . . . xip such that {xi1 , xi2 , . . . , xip } is not a face of ∆ is known as Stanley-
Reisner ideal, that is,

I∆ = {xi1 xi2 . . . xip | {xi1 , xi2 , . . . , xip } < ∆} ⊂ R.
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The quotient ring K[∆] = R/I∆ is known as the Stanley-Reisner ring of ∆. Conversely, for each squarefree
monomial ideal I ⊂ R = K[x1, x2, . . . , xN] there is a simplicial complex ∆ on vertex set {x1, x2, . . . , xN} such
that I = I∆. Therefore, for an edge ideal I(G) in the polynomial ring R = K[x1, x2, . . . , xN], the simplicial
complex ∆(G) associated to graph G on vertex set {x1, x2, . . . , xN} given by

∆(G) = {{xi1 xi2 . . . xip } ⊆ V | {xi1 xi2 . . . xip } is an stable set},

is such that I(G) = I∆(G).
Next, we state an interesting result known as Hochster’s formula [13] (also see, [20]), which is an

important tool for the computation of graded Betti numbers of Stanley-Reisner ring K[∆]. This formula
describes the graded Betti numbers of I∆ in terms of the dimensions of the reduced homology of ∆.

Theorem 3.1 ([13]). The graded Betti number βi, j of the Stanley-Reisner ringK[∆] = R/I∆ in degree j is given by

βi, j(K[∆]) =
∑
S⊆V
|S|= j

dimKH̃ j−i−1(∆S;K), (1)

for each i, j ≥ 0.

A connected graph G is called a split graph if its vertex set can be put as a disjoint union of a clique and
a stable set. In addition, if each vertex of a clique is connected to every vertex of a stable set, then we say
G is the complete split graph. Further if there are n number of cliques Kb, b ≥ 2 on disjoint vertex sets such
that each vertex of such cliques are joined to every vertex of a stable set say of cardinality a, we obtain a
multiple complete split-like graph, denoted by MCSa

b,n. Thus, the multiple complete split-like graph G can

be written as G �MCSa
b,n = Ka ∗ nKb. If we replace a stable set Ka by a clique Ka, then we obtain a clique star

CSa
b,n = Ka ∗nKb. If we put n = 1 in MCSa

b,n, we obtain MCSa
b,1 � CSa

b,where CSa
b is a complete split graph with

clique size b and a stable set of size a. Next, we discuss the Betti numbers of a multiple complete split-like
graph, a clique star and its generalizations.

Theorem 3.2. Let G � MCSa
b,n be a complete split like graph of order N ≥ 3 and let l j

t , t = 1, 2, . . . ,n + 1 and
j = 1, 2, . . . ,n be positive integers. Then the initial Betti numbers of G are

βi,i+1(G) = n · i
(

b
i + 1

)
+ n

∑
l11+l12=i+1

l11,l
1
2≥1

l12

(
a
l11

)(
b
l12

)
+

(
n
2

) ∑
l21+l22+l23=i+1

l21,l
2
2,l

2
3≥1

(
a
l21

)(
b
l22

)(
b
l23

)

+

(
n
3

) ∑
l31+···+l34=i+1
l31,l

3
2,l

3
3,l

3
4≥1

(
a
l31

)(
b
l32

)(
b
l33

)(
b
l34

)
+

(
n
4

) ∑
l41+···+l45=i+1
l41,l

4
2,l

4
3,l

4
4,l

4
5≥1

(
a
l41

)(
b
l42

)(
b
l43

)(
b
l44

)(
b
l45

)
+

...

+

(
n

n − 1

) ∑
ln−1
1 +···+ln−1

n =i+1
ln−1
j ≥1, j=1,2,...,n

(
a

ln−1
1

)(
b

ln−1
2

)(
b

ln−1
3

)
. . .

(
b

ln−1
n−2

)(
b

ln−1
n−1

)(
b

ln−1
n

)

+
∑

ln1+···+lnn+1=i+1
lnj≥1, j=1,2,...,n,n+1

(
a
ln1

)(
b
ln2

)(
b
ln3

)
. . .

(
b

lnn−2

)(
b

lnn−1

)(
b
lnn

)(
b

lnn+1

)
.

Proof. Let G � Ka ∗ (nKb) be the multiple complete split-like graph of order a + nb, where a, b,n ≥ 1 are
positive integers. Let ∆ = ∆(G) be the simplicial complex of G. Let V1 denote the vertices of Ka and let
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U j = V(Kb), for j = 2, 3, . . . ,n + 1. Thus, by using Theorem 1, we have

βi,i+1(G) =
∑
S⊆V
|S|=i+1

dimKH̃0(∆S;K),

where V = V(G) and ∆ = ∆(G).
We note that V1 = {x1, x2, . . . , xa} is an independent subset of G of cardinality a and each of U j =

{yi1, yi2, . . . , yib} is a clique of same size. So, the above expression can be put as

βi,i+1(G) =
∑
S⊆V1
|S|=i+1

dimKH̃0(∆S;K) +
∑
S⊆U j
|S|=i+1

dimKH̃0(∆S;K) +
∑
S∈S
|S|=i+1

dimKH̃0(∆S;K), (2)

where S = {S ⊂ V(G) | |S| − 1 = i, S ∩ V1 , ∅ and S ∩
(
Uk1 ∪ Uk2 ∪ · · · ∪ Ukt

)
, ∅}, for 1 ≤ t ≤ n and

k1 < k2 < · · · < kt.
For S ⊆ V1, it is clear that ∆S is a − 1-simplex ⟨x1, x2, . . . , xa⟩ subcomplex of ∆ and it has zero reduced

homology. Thus comp(S) is one and dimKH̃0(∆S;K) = 0. Thus, it follows that
∑
S⊆U j
|S|=i+1

dimKH̃0(∆S;K) = 0.

Again, for S ⊂ U1, ∆S is a disjoint union of |S| simplexes of dimension zero ⟨y jk⟩, 1 ≤ k ≤ |S| and ∆S has
a non-zero reduced homology. Thus, such a subset contributes |S| − 1 = i to βi,i+1(G) and besides that the
number of subsets of U1 which contain exactly i + 1 elements are

(
|U1 |

i+1
)
=

( b
i+1

)
, since U1 is a clique of size b.

Therefore, i
( b

i+1
)

is the total contribution for S ⊆ U1 : |S| = i + 1 for βi,i+1(G). Similarly, repeating the same
process with the remaining subsets U j, j = 2, 3, . . . ,n, we see that i

( b
i+1

)
is repeated n − 1 times and from

Equation 2, we have

βi,i+1(G) = ni
(

b
i + 1

)
+

∑
S∈S
|S|=i+1

dimKH̃0(∆S;K). (3)

Next, we calculate the quantity
∑
S∈S
|S|=i+1

dimKH̃0(∆S;K) where where S = {S ⊂ V(G) | |S| − 1 = i, S ∩ V1 ,

∅ and S ∩
(
Uk1 ∪ Uk2 ∪ · · · ∪ Ukt

)
, ∅}, for 1 ≤ t ≤ n and k1 < k2 < · · · < kt. Therefore for any S ∈ S,

dimKH̃0(∆S;K) = comp(∆S) , 0 and has a non-zero contribution for βi,i+1(G). The following choices for
such S ∈ S are:
Case (1). t = 1.

S ⊆ V1 ∪Uk1 such that S ∩ V1 , ∅ and S ∩Uk1 , ∅,where 1 ≤ k1 ≤ n.

First for k1 = 1, and we see that ∆S is a disjoint union of a − 1-simplex and 0-simplexes. Let l11 and l22 be
the positive integers such that |S ∩ V1| = l11 and |S ∩ U1| = l12. Then in this case ∆S has l12 + 1 connected
components and such a subset will contribute l12 to βi,i+1(G), since dimKH̃0(∆S;K) + 1 = comp∆S. Thus the
net contributions of these type of subsets to βi,i+1(G) is∑

l11+l12=i+1
l11,l

1
2≥0

l12

(
|V1|

l11

)(
|U1|

l12

)
=

∑
l11+l12=i+1

l11,l
1
2≥0

l12

(
a
l11

)(
b
l12

)
.

Repeating the same process for j = 2, 3, . . . ,n − 1,n, we have n above type of contributions to βi,i+1(G).
Case (2). t = 2.

S ⊆ V1 ∪Uk1 ∩Uk2 such that S ∩ V1 , ∅,S ∩Uk1 , ∅ and S ∩Uk2 , ∅, for 1 ≤ k1 < k2 ≤ n.
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For k1 = 1 and k2 = 2, let l2t , t = 1, 2, 3 be the positive integers such that |S ∩ V1| = l21, |S ∩ U1| = l22 and
|S ∩U2| = l33. In this case ∆S contains two disjoint simplexes namely a − 1-simplex and the induced simplex
of ∆U1 ∗ ∆U2 and such a subset S will contribute 1 to βi,i+1(G). So, the total contributions of S to βi,i+1 is∑

l21+l22+l23=i+1
l21,l

2
2,l

2
3≥0

(
|V1|

l21

)(
|U1|

l22

)(
|U2|

l23

)
=

∑
l21+l22+l23=i+1

l21,l
2
2,l

2
3≥0

(
a
l21

)(
b
l22

)(
b
l23

)
.

We are done yet, since we considered only one case k2, the other cases are yet to be considered. There are
still n − 2 possibilities of k2 (it can be U3,U4, . . .Un). It follows that with k1 = 1 there are n − 1 choices for
k2. Similarly, for k1 = 2, k2 can be chosen in n − 2 ways, for k1 = 3, k2 can be chosen n − 3 ways, so on . . . ,
for k1 = n − 2, k2 can be chosen in 2 ways, lastly for k1 = n − 1, we are left with k2 = n. Summing all such
possibilities, Uk1 and Uk2 can be chosen in (n − 1) + (n − 2) + · · · + 3 + 2 + 1 = n(n−1)

2 =
(n−1

2
)

ways. Therefore
the net contribution of S to the βi,i+1 is(

n
2

) ∑
l21+l22+l23=i+1

l21,l
2
2,l

2
3≥0

(
a
l21

)(
b
l22

)(
b
l23

)
.

From the above calculations, we see that for any subset S ∈ S = {S ⊂ V(G) | |S| − 1 = i, S ∩ V1 ,

∅ and S∩
(
Uk1 ∪Uk2 ∪ · · · ∪Ukt

)
, ∅},with t ≥ 3, ∆S consists of two connected components, since it is disjoint

union of a − 1-simplex and the induced simplex of ∆Uk1
∗ ∆Uk2

∗ · · · ∗ ∆Ukt
for t ≥ 3. So with t ≥ 3 and for any

S ∈ S, dimKH̃0(∆S;K) = comp(∆S) − 1 = 2 − 1 = 1. Next, we consider the other cases along with the total
number of such subsets.
Case (3). With the similar procedure as above, for t = 3, the net contribution of any subset S intersecting
non-trivially V1 and the three mutually disjoint subsets Uα,Uβ and Uη, 1 ≤ α < β < η ≤ n, the total
contribution of such a subset to βi,i+1 is(

n
3

) ∑
l21+l22+l23=i+1
l31,l

3
2,l

3
3,l

3
4≥0

(
a
l31

)(
b
l32

)(
b
l33

)(
b
l34

)
,

where l3t , t = 1, 2, 3, 4 are positive integers satisfying |S ∩V1| = l31, |S ∩Uα| = l32, |S ∩Uβ| = l33 and |S ∩Uη| = l34.

·

·

·

Case (n-1). For t = n − 1, we must choose n − 1 subsets among n subsets U j, j = 1, 2, . . . ,n, which can be
chosen in

( n
n−1

)
ways. Let S be a subset which intersects non-trivially S1 and the remaining n − 1 subsets

among Ut, t = 1, 2, . . . ,n and let ln−1
i be the positive integers such that |S ∩ V1| = ln−1

1 and each Ut have ln−1
i

elements common with S. The total contributions of such subsets to βi,i+1(G) is(
n

n − 1

) ∑
ln−1
1 +···+ln−1

n =i+1
ln−1
j ≥1, j=1,2,...,n

(
a

ln−1
1

)(
b

ln−1
2

)(
b

ln−1
3

)
. . .

(
b

ln−1
n−2

)(
b

ln−1
n−1

)(
b

ln−1
n

)
.

Case (n). For the last case with t = n. Let S ⊆ V1 ∪ U1 ∪ · · · ∪ Un and let lnt , t = 1, 2, . . . ,n be the positive
integers such that |S ∩V1| = ln1 , |S ∩U2| = ln2 , . . . , |S ∩Un−1| = lnn and |S ∩Un| = lnn+1. As ∆S has two connected
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components, the total contributions of such subsets to βi,i+1(G) is∑
ln1+···+lnn+1=i+1

lnj≥1, j=1,2,...,n,n+1

(
a
ln1

)(
b
ln2

)(
b
ln3

)
. . .

(
b

lnn−2

)(
b

lnn−1

)(
b
lnn

)(
b

lnn+1

)
.

Using all these values in Equations (2) and (3), we obtain the result.
For n = 1, the following result gives the Betti numbers of the complete split graph CSa

b = Ka ∗Kb, already
found in [21].

Corollary 3.3. Let CSa
b be a complete split graph of order N = a + b. Then the Betti numbers of CSa

b are

βi,i+1(G) = i
(

b
i + 1

)
+

∑
l11+l12=i+1

l11,l
1
2≥1

l12

(
a
l11

)(
b
l12

)
.

For a = 0,we get the Betti numbers of the complete graph CS0
b � Kb and for b = 1, we get the Betti numbers

of star graph Ka,1 as given below

βi(CS0
b) = i

(
b

i + 1

)
, and βi(CSa

0) =
(
a
i

)
.

The following is an immediate consequence of Theorem 3.2.

Corollary 3.4. Let G be the multiple complete split-like graph. Then for every i ≥ a + nb, we have

βi,i+1(G) = 0.

We will illustrate Theorem 3.2 with the help of the following example.

Example 3.5. For a = 3, b = 3 and n = 5 and using Theorem 3.2, the initial Betti numbers of the multiple complete
split-like graph G �MCS3

3,5 are given below:

βi,i+1(G) = 5 · i
(

3
i + 1

)
+ 5

∑
l11+l12=i+1

l11,l
1
2≥1

l12

(
3
l11

)(
3
l12

)
+

(
5
2

) ∑
l21+l22+l23=i+1

l21,l
2
2,l

2
3≥1

(
a
l21

)(
b
l22

)(
b
l23

)

+

(
5
3

) ∑
l31+···+l34=i+1
l31,l

3
2,l

3
3,l

3
4≥1

(
3
l31

)(
3
l32

)(
3
l33

)(
3
l34

)
+

(
5
4

) ∑
l41+···+l45=i+1
l41,l

4
2,l

4
3,l

4
4,l

4
5≥1

(
3
l41

)(
3
l42

)(
3
l43

)(
3
l44

)(
3
l45

)

+
∑

l51+l52+l53+l54+l55+l56=i+1
l51,l

5
2,l

5
3,l

5
4,l

5
5,l

5
6≥1

(
3
l51

)(
3
l52

)(
3
l53

)(
3
l54

)(
3
l55

)(
3
l56

)
.

Now, substituting particular values of i in the above expression, we have

β1,2(G) = 5 · 1
(
3
2

)
+ 5

(
3
1

)(
3
1

)
= 15 + 45 = 60

β2,3(G) = 5 · 2
(
3
3

)
+ 5

∑
l11+l12=3

l12

(
3
l11

)(
3
l12

)
+

(
5
2

) ∑
l21+l22+l23=3

(
3
l21

)(
3
l22

)(
3
l23

)

= 10 + 5
[
1
(
3
1

)(
3
2

)
+ 2

(
3
2

)(
3
1

)]
+ 10

(
3
1

)(
3
1

)(
3
1

)
= 10 + 135 + 270 = 415
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β3,4(G) = 0 + 5
∑

l11+l12=4

l12

(
3
l11

)(
3
l12

)
+

(
5
2

) ∑
l21+l22+l23=4

(
3
l31

)(
3
l32

)(
3
l33

)

+

(
5
3

) ∑
l31+l32+l33+l34=4

(
3
l41

)(
3
l42

)(
3
l43

)(
3
l44

)
= 5

[(3
1

)(
3
3

)
+ 2

(
3
2

)(
3
2

)
+ 3

(
3
3

)(
3
1

)]
+

(
5
2

)[(3
1

)(
3
1

)(
3
2

)
+

(
3
1

)(
3
2

)(
3
1

)
+

(
3
2

)(
3
1

)(
3
1

)]
+

(
5
3

)(
3
1

)(
3
1

)(
3
1

)(
3
1

)
= 150 + 810 + 810 = 1770

·

·

·

β15,16(G) =
∑

l51+l52+l53+l54+l55+l56=16

(
3
l51

)(
3
l52

)(
3
l53

)(
3
l54

)(
3
l55

)(
3
l56

)
=

(
3
1

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)

+

(
3
3

)(
3
1

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)
+

(
3
3

)(
3
3

)(
3
1

)(
3
3

)(
3
3

)(
3
3

)
+

(
3
3

)(
3
3

)(
3
3

)(
3
1

)(
3
3

)(
3
3

)
+

(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
1

)(
3
3

)
+

(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
1

)
+

(
3
2

)(
3
2

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)
+

(
3
2

)(
3
3

)(
3
2

)(
3
3

)(
3
3

)(
3
3

)
+

(
3
2

)(
3
3

)(
3
3

)(
3
2

)(
3
3

)(
3
3

)
+

(
3
2

)(
3
3

)(
3
3

)(
3
3

)(
3
2

)(
3
3

)
+

(
3
2

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
2

)
+

(
3
3

)(
3
2

)(
3
2

)(
3
3

)(
3
3

)(
3
3

)
+

(
3
3

)(
3
2

)(
3
3

)(
3
2

)(
3
3

)(
3
3

)
+

(
3
3

)(
3
2

)(
3
3

)(
3
3

)(
3
2

)(
3
3

)
+

(
3
3

)(
3
2

)(
3
3

)(
3
3

)(
3
3

)(
3
2

)
+

(
3
3

)(
3
3

)(
3
2

)(
3
2

)(
3
3

)(
3
3

)
+

(
3
3

)(
3
3

)(
3
2

)(
3
3

)(
3
2

)(
3
3

)
+

(
3
3

)(
3
3

)(
3
2

)(
3
3

)(
3
3

)(
3
2

)
+

(
3
3

)(
3
3

)(
3
3

)(
3
2

)(
3
2

)(
3
3

)
+

(
3
3

)(
3
3

)(
3
3

)(
3
2

)(
3
3

)(
3
2

)
+

(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
2

)(
3
2

)
= 18 + 45 + 36 + 27 + 18 + 9 = 153

β16,17(G) =
∑

l51+l52+l53+l54+l55+l56=17

(
3
l51

)(
3
l52

)(
3
l53

)(
3
l54

)(
3
l55

)(
3
l56

)
=

(
3
2

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)

+

(
3
3

)(
3
2

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)
+

(
3
3

)(
3
3

)(
3
2

)(
3
3

)(
3
3

)(
3
3

)
+

(
3
3

)(
3
3

)(
3
3

)(
3
2

)(
3
3

)(
3
3

)
+

(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
2

)(
3
3

)
+

(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
2

)
= 3 + 3 + 3 + 3 + 3 + 3 = 18

β17,18(G) =
∑

l51+l52+l53+l54+l55+l56=18

(
3
l51

)(
3
l52

)(
3
l53

)(
3
l54

)(
3
l55

)(
3
l56

)
=

(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)
= 1

The following tables gives exactly the same Betti numbers (4-th row) of MCS3
3,5 using the computer

calculations with the help of Macaulay 2 (see [12]).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

total: 1 60 505 2430 8035 19467 35753 50827 56688 50045 35171 19725 8799 3077 815 153 18 1

0: 1 . . . . . . . . . . . . . . . . .

1: . 60 415 1770 5610 13569 25389 37323 43615 40755 30459 18109 8463 3045 815 153 18 1

2: . . 90 390 670 570 240 40 . . . . . . . . . .

3: . . . 270 1350 2790 3050 1860 600 80 . . . . . . . .

4: . . . . 405 2295 5535 7365 5840 2760 720 80 . . . . . .

5: . . . . . 243 1539 4239 6633 6450 3992 1536 336 32 . . . .

Figure 1: Betti table of the minimal free resolution of R/I(MCS3
3,5).
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The minimalN-graded free resolution of R/I(MCS3
3,5) computed with the help of Macaulay 2 [12] is

0→ R[−18]1
→ R[−17]18

→ R[−16]153
→ R[−15]815

→ R[−14]3077
→ R[−13]8799

→ R[−12]19725
→ R[−11]35171

→ R[−10]50045
→ R[−9]56688

→ R[−8]50827
→ R[−7]35753

→ R[−6]19467
→ R[−5]8035

→ R[−4]2430
→ R[−3]505

→ R[−2]60
→ R→ R/I(MCS3

3,5)→ 0.

Theorem 3.6. Let G � Sa
b,n be a clique star graph of order N ≥ 3 and let l j

t , t = 1, 2, . . . ,n + 1 and j = 1, 2, . . . ,n be
positive integers. Then the initial Betti numbers of G are

βi,i+1(G) = i
(

a
i + 1

)
+ n · i

(
b

i + 1

)
+ n

∑
l11+l12=i+1

l11,l
1
2≥1

(l11 + l12 − 1)
(

a
l11

)(
b
l12

)

+

(
n
2

) ∑
l21+l22+l23=i+1

l21,l
2
2,l

2
3≥1

l21

(
a
l21

)(
b
l22

)(
b
l23

)
+

(
n
3

) ∑
l31+···+l34=i+1
l31,l

3
2,l

3
3,l

3
4≥1

l31

(
a
l31

)(
b
l32

)(
b
l33

)(
b
l34

)

+

(
n
4

) ∑
l41+···+l45=i+1
l41,l

4
2,l

4
3,l

4
4,l

4
5≥1

l41

(
a
l41

)(
b
l42

)(
b
l43

)(
b
l44

)(
b
l45

)
+

...

+

(
n

n − 1

) ∑
ln−1
1 +···+ln−1

n =i+1
ln−1
j ≥1, j=1,2,...,n

ln−1
1

(
a

ln−1
1

)(
b

ln−1
2

)(
b

ln−1
3

)
. . .

(
b

ln−1
n−2

)(
b

ln−1
n−1

)(
b

ln−1
n

)

+
∑

ln1+···+lnn+1=i+1
lnj≥1, j=1,2,...,n,n+1

ln1

(
a
ln1

)(
b
ln2

)(
b
ln3

)
. . .

(
b

lnn−2

)(
b

lnn−1

)(
b
lnn

)(
b

lnn+1

)
.

Proof. Let G = Sa
b,n � Ka ∗ (nKb) be the clique star of order a + nb, where a, b,n ≥ 1 are positive integers.

Let ∆ = ∆(G) be the simplicial complex of G. Let V1 denote the set of vertices of degree a − 1 + nb and let
U j = V(Kb), for j = 2, 3, . . . ,n + 1. Thus, by Hochster’s formula 1 with j = i + 1, we have

βi,i+1(G) =
∑
S⊆V
|S|=i+1

dimKH̃0(∆S;K), (4)

where V = V(G) and ∆ = ∆(G).
Since V1 and each of U j’s are cliques, so Expression (4) can be written as

βi,i+1(G) =
∑
S⊆V1
|S|=i+1

dimKH̃0(∆S;K) +
∑
S⊆U j
|S|=i+1

dimKH̃0(∆S;K) +
∑
S∈S
|S|=i+1

dimKH̃0(∆S;K), (5)

where S = {S ⊂ V(G) | |S| − 1 = i, S ∩ V1 , ∅ and S ∩
(
Uk1 ∪ Uk2 ∪ · · · ∪ Ukt

)
, ∅}, for 1 ≤ t ≤ n and

k1 < k2 < · · · < kt.
For S ⊆ V1 (respectively U j), then it follows that ∆S is a disjoint union of |S| simplexes of dimension

0 and any such subset S of V1(U j) will have a non zero contribution |S| − 1 to βi,i+1(G). Along with this
information and recalling that there are n copies of U j, Equation 5 can be reformulated as:

βi,i+1(G) = i
(
|V1|

i + 1

)
+ n · i

(
|U j|

i + 1

)
+ Θ, (6)
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whereΘ =
∑
S∈S
|S|=i+1

dimKH̃0(∆S;K).Next, consider V1 and one of U j’s (say U1) and let S be a subset intersecting

non-trivially both V1 and U1. Let l11 and l12 be the positive integers such that |S ∩ V1| = l11 and |S ∩ U1| = l12.
Also∆S is a disjoint union of |S| simplexes of dimension 0, so it will contribute l11+ l12−1 to βi,i+1(G). Therefore,
taking into account n choices of U j, j = 1, 2, . . . ,n, the total contribution of such subsets to βi,i+1(G) is given
as

n
∑

l11+l12=i+1
l11,l

1
2≥1

(l11 + l12 − 1)
(
|V1|

i + 1

)(
|U1|

i + 1

)
.

Further for any subset S ∈ S = {S ⊂ V(G) | |S| − 1 = i, S ∩ V1 , ∅ and S ∩
(
Uk1 ∪ Uk2 ∪ · · · ∪ Ukt

)
, ∅},

with t ≥ 2, since t = 1 is done above. Now, for t ≥ 2, ∆S consists of a zero dimensional simplexes and the
induced simplex of ∆Uk1

∗ ∆Uk2
∗ · · · ∗ ∆Ukt

where t ≥ 2. Let lz1, z = 2, 3, . . . ,n be the positive integer such that
|S ∩ V1| = lz1 and S intersects non-trivially each of the Uk1 ∪ Uk2 ∪ · · · ∪ Ukt , for t ≥ 2. Then such a subset
S will always contribute lz1 to βi,i+1(G), since dimKH̃0(∆S;K) = comp(∆S) − 1 = lz1, for z = 2, 3, . . . ,n. Now,
following the cases (2) to (n) of Theorem 3.2, and using them in (6), the required formulae for βi,i+1 can be
established as in the statement.

The following is an immediate consequence of Theorem 3.2.

Corollary 3.7. Let G � Sa
b,n be the clique star graph. Then for every i ≥ a + nb, we have

βi,i+1(G) = 0.

We will illustrate Theorem 3.6 by the following example.

Example 3.8. For a = 3, b = 3 and n = 5 and using Theorem 3.6, the initial Betti numbers of the clique star graph
G � S3

3,5 are given below:

βi,i+1(G) = i
(

3
i + 1

)
+ 5 · i

(
3

i + 1

)
+ 5

∑
l11+l12=i+1

l11,l
1
2≥1

(l11 + l12 − 1)
(
3
l11

)(
3
l12

)

+

(
5
2

) ∑
l21+l22+l23=i+1

l21,l
2
2,l

2
3≥1

l21

(
3
l21

)(
3
l22

)(
3
l23

)
+

(
5
3

) ∑
l31+···+l34=i+1
l31,l

3
2,l

3
3,l

3
4≥1

l31

(
3
l31

)(
3
l32

)(
3
l33

)(
3
l34

)

+

(
5
4

) ∑
l41+l42+l43+l44+l45=i+1

l41,l
4
2,l

4
3,l

4
4,l

4
5≥1

l41

(
3
l41

)(
3
l42

)(
3
l43

)(
3
l44

)(
3
l45

)

+
∑

l51+l52+l53+l54+l55+l56=i+1
l5j≥1, j=1,2,...,5,6

ln1

(
3
ln1

)(
3
ln2

)(
3
ln3

)(
3

lnn−2

)(
3

lnn−1

)(
3
lnn

)
.

Now, substituting particular values of i in the above expression, we have

β1,2(G) =
(
3
2

)
+ 5

(
3
2

)
+ 5

(
3
1

)(
3
1

)
= 3 + 15 + 45 = 60

β2,3(G) = 2
(
3
3

)
+ 5 · 2

(
3
3

)
+ 5

∑
l11+l12=3

(l11 + l12 − 1)
(

3
l11

)(
3
l12

)
+

(
5
2

) ∑
l21+l22+l23=3

l21

(
3
l21

)(
3
l22

)(
3
l23

)
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= 2 + 10 + 5
[
2
(
3
1

)(
3
2

)
+ 2

(
3
2

)(
3
1

)]
+ 10

(
3
1

)(
3
1

)(
3
1

)
= 2 + 10 + 180 + 270 = 462

β3,4(G) = 0 + 5
∑

l11+l12=4

(l11 + l12 − 1)
(

3
l11

)(
3
l12

)
+

(
5
2

) ∑
l21+l22+l23=4

l21

(
3
l31

)(
3
l32

)(
3
l33

)

+

(
5
3

) ∑
l31+l32+l33+l34=4

l31

(
3
l41

)(
3
l42

)(
3
l43

)(
3
l44

)
= 5

[
3
(
3
1

)(
3
3

)
+ 3

(
3
2

)(
3
2

)
+ 3

(
3
3

)(
3
1

)]
+ 10

[(3
1

)(
3
1

)(
3
2

)
+

(
3
1

)(
3
2

)(
3
1

)
+ 2

(
3
2

)(
3
1

)(
3
1

)]
+ 10

(
3
1

)(
3
1

)(
3
1

)(
3
1

)
= 225 + 1080 + 810 = 2115

·

·

·

β15,16(G) =
∑

l51+l52+l53+l54+l55+l56=16

l51

(
3
l51

)(
3
l52

)(
3
l53

)(
3
l54

)(
3
l55

)(
3
l56

)
= 1

(
3
1

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)

+ 3
(
3
3

)(
3
1

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)
+ 3

(
3
3

)(
3
3

)(
3
1

)(
3
3

)(
3
3

)(
3
3

)
+ 3

(
3
3

)(
3
3

)(
3
3

)(
3
1

)(
3
3

)(
3
3

)
+ 3

(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
1

)(
3
3

)
+ 3

(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
1

)
+ 2

(
3
2

)(
3
2

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)
+ 2

(
3
2

)(
3
3

)(
3
2

)(
3
3

)(
3
3

)(
3
3

)
+ 2

(
3
2

)(
3
3

)(
3
3

)(
3
2

)(
3
3

)(
3
3

)
+ 2

(
3
2

)(
3
3

)(
3
3

)(
3
3

)(
3
2

)(
3
3

)
+ 2

(
3
2

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
2

)
+ 3

(
3
3

)(
3
2

)(
3
2

)(
3
3

)(
3
3

)(
3
3

)
+ 3

(
3
3

)(
3
2

)(
3
3

)(
3
2

)(
3
3

)(
3
3

)
+ 3

(
3
3

)(
3
2

)(
3
3

)(
3
3

)(
3
2

)(
3
3

)
+ 3

(
3
3

)(
3
2

)(
3
3

)(
3
3

)(
3
3

)(
3
2

)
+ 3

(
3
3

)(
3
3

)(
3
2

)(
3
2

)(
3
3

)(
3
3

)
+ 3

(
3
3

)(
3
3

)(
3
2

)(
3
3

)(
3
2

)(
3
3

)
+ 3

(
3
3

)(
3
3

)(
3
2

)(
3
3

)(
3
3

)(
3
2

)
+ 3

(
3
3

)(
3
3

)(
3
3

)(
3
2

)(
3
2

)(
3
3

)
+ 3

(
3
3

)(
3
3

)(
3
3

)(
3
2

)(
3
3

)(
3
2

)
+ 3

(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
2

)(
3
2

)
= 3 + 5 · 9 + 2 · 5 · 9 + 3 · 10 · 9 = 408

β16,17(G) =
∑

l51+l52+l53+l54+l55+l56=17

l51

(
3
l51

)(
3
l52

)(
3
l53

)(
3
l54

)(
3
l55

)(
3
l56

)
= 2

(
3
2

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)

+ 3
(
3
3

)(
3
2

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)
+ 3

(
3
3

)(
3
3

)(
3
2

)(
3
3

)(
3
3

)(
3
3

)
+ 3

(
3
3

)(
3
3

)(
3
3

)(
3
2

)(
3
3

)(
3
3

)
+ 3

(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
2

)(
3
3

)
+ 3

(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
2

)
= 6 + 9 + 9 + 9 + 9 + 9 = 51

β17,18(G) =
∑

l51+l52+l53+l54+l55+l56=18

l51

(
3
l51

)(
3
l52

)(
3
l53

)(
3
l54

)(
3
l55

)(
3
l56

)
= 3

(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)(
3
3

)
= 3

The following tables (Figure 2) gives exactly the same Betti numbers (4-th row) of MCS3
3,5 using the

computer calculations with the help of Macaulay 2 (see [12]). The minimal N-graded free resolution of
R/I(S3

3,5) computed with the help of Macaulay 2 [12] is

0→ R[−18]3
→ R[−17]51

→ R[−16]408
→ R[−15]2040

→ R[−14]7172
→ R[−13]18900

→ R[−12]38744
→ R[−11]63056

→ R[−10]82220
→ R[−9]86003

→ R[−8]71848
→ R[−7]47492

→ R[−6]24472
→ R[−5]9610

→ R[−4]2775
→ R[−3]552

→ R[−2]63
→ R→ R/I(S3

3,5)→ 0.

Theorem 3.6 can be generalized to a more result in the following theorem. Let Sa
b,c,n be the clique star of

order N = a + b + cn, such that a vertices of Ka are connected to every vertices of Kb and Kc (which are n
copies in Sa

b,c,n).
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

total: 1 63 552 2775 9610 24472 47492 71848 86003 82220 63056 38744 18900 7172 2040 408 51 3

0: 1 . . . . . . . . . . . . . . . . .

1: . 63 462 2115 7185 18574 37128 58344 72930 72930 58344 37128 18564 7140 2040 408 51 3

2: . . 90 390 670 570 240 40 . . . . . . . . . .

3: . . . 270 1350 2790 3050 1860 600 80 . . . . . . . .

4: . . . . 405 2295 5535 7365 5840 2760 720 80 . . . . . .

5: . . . . . 243 1539 4239 6633 6450 3992 1536 336 32 . . . .

Figure 2: Betti table of the minimal free resolution of R/I(S3
3,5).

Theorem 3.9. Let G � Sa
b,c,n be a graph of order N = a+b+cn ≥ 3 and let r1k ,with k = 1, 2, . . . ,n+2, 1 = 1, 2, . . . ,n+1

and l j
t , with t = 1, 2, . . . ,n + 1, j = 1, 2, . . . ,n be positive integers. Then the initial Betti numbers of G are

βi,i+1(G) = i
(

a
i + 1

)
+ i

(
b

i + 1

)
+ n · i

(
c

i + 1

)
+

∑
r1

1+r1
2=i+1

r1
1,r

1
2≥1

i
(

a
r1

1

)(
b
r1

2

)
+ n

∑
l11+l12=i+1

l11,l
1
2≥1

i
(

a
l11

)(
c
l12

)

+ n
∑

r2
1+r2

2+r2
3=i+1

r2
1,r

2
2,r

2
3≥1

r2
1

(
a
r2

1

)(
b
r2

2

)(
c
r2

3

)
+

(
n
2

) ∑
l21+l22+l23=i+1

l21,l
2
2,l

2
3≥1

l21

(
a
l21

)(
c
l22

)(
c
l23

)

+

(
n
2

) ∑
r3

1+r3
2+r3

3=i+1
r3

1,r
3
2,r

3
3≥1

r3
1

(
a
r3

1

)(
b
r3

2

)(
c
r3

3

)(
c
r3

4

)
+

(
n
3

) ∑
l31+···+l34=i+1
l31,l

3
2,l

3
3,l

3
4≥1

l31

(
a
l31

)(
c
l32

)(
c
l33

)(
c
l34

)

+

...

+

+

(
n

n − 2

) ∑
rn−1

1 +···+rn−1
n =i+1

rn−1
j ≥1, j=1,2,...,n

rn−1
1

(
a

rn−1
1

)(
b

rn−1
2

)(
c

rn−1
3

)
. . .

(
c

rn−1
n

)

+

(
n

n − 1

) ∑
ln−1
1 +···+ln−1

n =i+1
ln−1
j ≥1, j=1,2,...,n

ln−1
1

(
a

ln−1
1

)(
c

ln−1
2

)
. . .

(
c

ln−1
n

)

+

(
n

n − 1

) ∑
rn

1+···+rn
n+1=i+1

rn
j≥1, j=1,2,...,n+1

rn
1

(
a
rn

1

)(
b
rn

2

)(
c
rn

3

)
. . .

(
c

rn
n+1

)

+
∑

ln1+···+lnn+1=i+1
lnj≥1, j=1,2,...,n,n+1

ln1

(
a
ln1

)(
c
ln2

)(
c
ln3

)
. . .

(
c

lnn+1

)

+
∑

rn+1
1 +···+rn+1

n+2=i+1
rn+1

j ≥1, j=1,2,...,n+1,n+2

rn+1
1

(
a

rn+1
1

)(
b

rn+1
2

)(
c

rn+1
3

)
. . .

(
c

rn+1
n+2

)
.

Next, we find the extremal Betti numbers and the projective dimension of the graphs considered in Theorems
3.2, 3.6 and 3.9.
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Theorem 3.10. The following hold for the extremal Betti numbers of a graph of order N.

(i) The extremal Betti number of MSCa
b,n is βN−1,N = 1

(ii) The extremal Betti number of Sa
b,n is βN−1,N = a

(iii) The extremal Betti number of Sa
b,c,n is βN−1,N = a

Proof. We prove the more general case (iii), other can be similarly proved.
Let G � Sa

b,c,n be a graph of order N. Since reg(I(G)) = reg(G) + 1, where reg(G) = reg(R/I(G)). So, it implies
that a Betti number βi, j of the edge ring of G is the extremal Betti number if j = i+ 1 and i = max{r|βr,r+1 = 0}.
Let ∆ = ∆(G), by Hochster’s formula, we have

βi,i+1(G) =
∑
S⊆V
|S|=i+1

dimKH̃0(∆S;K).

It is well known that dimKH̃0(∆S;K) is one less than the number of connected components of ∆. So, βi,i+1(G)
is non-zero if the number of connected components of S is greater than one. Let S = V(G). Then S = ∆.
Recall that V′ = V(Ka) form a clique in G and each vertex of V′ is connected to every other vertex of G.Also
the induced subcomplex ∆V′ of ∆ consists of |V′| zero-dimensional facets. Hence, ∆ has exactly a facets of
dimension 0. Further ∆V(G)\V′ is an induced subcomplex of ∆. Thus, the comp(V(G) \ V′) = 1. Therefore,
the number of connected components of ∆ is exactly a + 1 and we have

βN−1,N(G) = a.

From the above theorem and the fact that pd(G) ≥ |V(H)| − 1, where H is induced sugbraph of G and its
complement is disconnected (see [15]). We have the following consequence for the projective dimension of
the graphs considered in Theorems 3.2, 3.6 and 3.9 and the proof is immediate form Theorem 3.10.

Corollary 3.11. If G is any of the graphs MSCa
b,n,S

a
b,n and Sa

b,c,n of order N, then pd(G) = N − 1.

4. Betti numbers of some power graphs of non-abelian groups

Kelarev and Quinn [17] introduced the directed power graph of a semigroup S′ as a directed graph with
vertex set S′, where two vertices x, y ∈ S′ are joined by an arc from x to y if and only if x , y and yi = x
for some positive integer i. Let G be a finite group of order N and identity represented by e. Chakrabarty et
al. [5] defined the undirected power graph P(G) of a group G as an undirected graph with vertex set as G,
where two vertices x, y ∈ G are adjacent if and only if xi = y or y j = x, for 2 ≤ i, j ≤ N.

The dihedral group of order N = 2n,n ≥ 2 is denoted by D2n and is represented as follows

D2n = ⟨a, b | an = b2 = e, bab = a−1
⟩.

Since ⟨a⟩ generates a cyclic subgroup {e, a, a2, . . . , an−1
} of order n and is isomorphic to Zn. Also D2n has

n elements of order two and they represent K2’s as induced subgraphs in P(D2n). These n elements of order
2 form an independent set of P(D2n) sharing the identity element e. Therefore, the structure of the power
graph of the dihedral group D2n can be obtained from the power graph P(Zn) by adding the n pendent
vertices at the identity vertex e. If n = pz, where z is a positive integer, then it well know that P(Zn) is the
complete graph (see, [5]). Therefore, in this case, the power graph of D2n is

P(D2n) = Kn−1 ∗ K1 ∗ Kn, (7)

since the identity share n pendent vertices (the elements of order two in P(D2n)). The graph given in
Equation 7 is known as the pineapple graph (a graph obtained from the clique by adding pendent vertices
at any vertex of the clique). For n = 22, the structure of the power graph of D8 is shown in Figure 4.

Our next result gives the Betti numbers of the pineapple graph and as a consequence, we obtain the
Betti numbers of P(D2n).
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e

a a3

a2

b
ab ab2

ab3

Figure 3: Power graph P(D8) of D8.

Theorem 4.1. Let G � Pb
a be a pineapple graph with clique size a and independent set of size b. Then the initial Betti

numbers of G are

βi,i+1(G) = i
(

a
i + 1

)
+

(
b
i

)
+

∑
r1+r2=i
r1,r2≥1

(
a − 1

r1

)(
b
r2

)
,

where r1 and r2 are positive integers.

Proof. Let G denote the pineapple graph of order a + b. Let ∆ = ∆(G) be the simplicial complex of G. Let
V = V1 ∪ V2 ∪ V3 be the vertex set of G, where V1 consists of the vertices of degree a − 1, V2 denote the
vertex of a + b and V2 denote the pendent vertices of G. By Hochster’s formula (1), we have

βi,i+1(G) =
∑
S⊆V
|S|=i+1

dimKH̃0(∆S;K),

where V = V(G) and ∆ = ∆(G).
As V1 ∪ V2 is a clique and V3 is an independent subset of G, so from above, we have

βi,i+1(G) =
∑

S⊆V1∪V2
|S|=i+1

dimKH̃0(∆S;K) +
∑

S⊆V3
|S|=i+1

dimKH̃0(∆S;K) +
∑

S⊆V2∪V3
|S|=i+1

dimKH̃0(∆S;K) + Θ, (8)

where Θ =
∑
S⊆V
|S|=i+1

dimKH̃0(∆S;K), and such a subset S satisfies S ⊆ V | |S| = i + 1, S ∩ V1 , ∅, S ∩ V2 ,

∅ and S ∩ V3 , ∅.
For S ⊆ V1 ∪ V2, we see that ∆S consists of simplexes of dimension zero and comp(∆S) is same as the

size of S. Therefore, for |S| = i + 1, S will contribute i to βi,i+1(G). The total number of choices S intersects
V1 ∪ V2 are

(
|V1∪V2 |

i+1
)
. Also, for S ⊆ V3, ∆S is a full subcomplex of ∆. So, ∆S is homotopic to a point and

hence dimKH̃0(∆S;K) = 0 and contributes zero to βi,i+1(G). Again for S ⊆ V2 ∪ V3, then ∆S is a disjoint
union of two simplexes, a point simplex and a full simplex and dimKH̃0(∆S;K) = 1, since comp(∆S) = 2.
Besides choosing one element from V2 and i elements from V3, the total number of choices S intersects
non-trivially V2 and V3 are

(b
i
)
. Lastly, let S ⊂ V1 ∪ V2 ∪ V3 and let ri, i = 1, 2, 3 be the positive integers such

that |S ∩ V1| = r1, |S ∩ V2| = r2 and |S ∩ V3| = r3. In this case ∆S contains two disjoint simplexes namely a
point simplex of dimension zero and an induced simplex of ∆V1 ∗ ∆V2 and such a subset S will contribute 1
to βi,i+1(G). Thus the total contributions of S to βi,i+1 is∑

r1+r2=i
r1,r2≥0

(
a − 1

r1

)(
b
l2

)
.
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With these values in (8), we obtain the required formula.
The following result is the consequence of above result and gives the Betti numbers of P(D2pz ), z ≥ 2.

Corollary 4.2. The Betti numbers of P(D2n), for n = pz, z ≥ 2 are

βi,i+1(P(D2n)) = i
(

n
i + 1

)
+

(
n
i

)
+

∑
r1+r2=i
r1,r2≥1

(
n − 1

r1

)(
n
r2

)
.

The following example illustrates Theorem 4.1 and Corollarly 4.2 for the power graph of D8.

Example 4.3. For a = b = 4 in Theorem 3.6 (or n = 4 in Corollarly 4.2), we have

βi,i+1(P(D8)) = i
(

4
i + 1

)
+

(
4
i

)
+

∑
r1+r2=i
r1,r2≥1

(
4 − 1

r1

)(
4
r2

)
.

Now, substituting particular values of i in the above expression, we have

β1,2(P(D8)) =
(
4
2

)
+

(
4
1

)
= 6 + 4 = 10

β2,3(P(D8)) = 2
(
4
3

)
+

(
4
2

)
+

(
3
1

)(
4
1

)
= 8 + 6 + 12 = 26

β3,4(P(D8)) = 3
(
4
4

)
+

(
4
3

)
+

(
3
1

)(
4
2

)
+

(
3
2

)(
4
1

)
= 3 + 4 + 18 + 12 = 37

β4,5(P(D8)) =
(
4
4

)
+

(
3
1

)(
4
3

)
+

(
3
2

)(
4
2

)
+

(
3
3

)(
4
1

)
= 1 + 12 + 18 + 4 = 35

β5,6(P(D8)) =
(
3
1

)(
4
4

)
+

(
3
2

)(
4
3

)
+

(
3
3

)(
4
2

)
= 3 + 12 + 6 = 21

β6,7(P(D8)) =
(
3
3

)(
4
3

)
+

(
3
2

)(
4
4

)
= 4 + 3 = 7

β7,8(P(D8)) =
(
3
3

)(
4
4

)
= 1.

Table 4 gives exactly the same Betti numbers of P(D8) using the computer calculations with the help of
Macaulay 2 (see [12]).

0 1 2 3 4 5 6 7

total: 1 10 26 37 35 21 7 1

0: 1 . . . . . . .

1: . 10 26 37 35 21 7 1

Figure 4: Betti table of the minimal free resolution of P(D8).

The minimalN-graded free resolution of R/I(D8) computed with the help of Macaulay 2 [12] is

0→ R[−8]1
→ R[−7]7

→ R[−6]21
→ R[−5]35

→ R[−4]37
→ R[−3]26

→ R[−2]10
→ R

→ R/I(P(D8))→ 0.

Since the regularity of edge ideals is at least 2. The classification of graphs with regularity 2 is referred
to as Fröberg’s characterization. The following result due to Fröberg characterizes all graphs whose edge
ideals have regularity 2.
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Lemma 4.4 ([11]). Let G be a finite simple graph. Then reg(I(G)) = 2 if and only if G is a co-chordal graph.

In the next result we obtain regularity, extremal Betti number and projective dimension of Pb
a.

Theorem 4.5. Let G � Pb
a be the pineapple graph of order N = a + b. The the follwing hold.

(i) The regularity of G is 2.

(ii) The extremel Betti number of G is 1.

(iii) The projective dimension of G is N.

Proof. (i) Clearly G � K1 ∪ Kb ∗ Ka−1 and It is trivial to see that G has no induced cycle of length strictly
greater than 3. So G is co-chordal and by Lemma 4.4, result follows.
(ii) Also reg(I(G)) = reg(G) + 1, so, it folows that a Betti number βi, j of the edge ring of G is the extremal
Betti number if j = i + 1 and i = max{r|βr,r+1 = 0}. For S ⊆ V(G) and with ∆ = ∆(G), it is well known
that dimKH̃0(∆S;K) is one less than the number of connected components of ∆. So, βi,i+1(G) is non-zero
if the number of connected components of S is greater than one. As there is only one dominating vertex
(connected to all other vertices) in G, it gives that ∆ has one facet of dimension 0 and remaining vertices
form an induced subcomplex of ∆. Therefore, the number of connected components of ∆ is exactly 2 and
we have

βN−1,N(G) = 1.

(iii) follows from (ii).
The dicyclic groups of order 4n are denoted by Qn and is presented as follows

Qn = ⟨a, b | a2n = e, b2 = an, ab = ba−1
⟩.

If n is a power of 2, then Qn is called the generalized quaternion group of order 4n. It is clear that (aib)2 = an for
all 0 ≤ i ≤ 2n − 1, and

⟨aib⟩ = ⟨an+ib⟩ = {e, aib, an, an+ib} for all 0 ≤ i ≤ n − 1. (9)

Beside each element of Qn − ⟨a⟩ is of the form aib for some 0 ≤ i ≤ 2n − 1. Further, it follows that ⟨a⟩ is
a cyclic group order 2n and its power graph is isomorphic to P(Z2n). Now, for n = 2z, z ≥ 2 it follows
that P(Z2n) � K2n, since n is prime power and power graph of prime order is complete (see, [5]) . Again
P(Z2n) � K2n = K2n−2 ∗ K2, where V(K2) = {e, an

}. Also, representation given in 9 implies that an is adjacent
to aib for every 0 ≤ i ≤ 2n. Thus, we see that {e} and {an

} are adjacent to every other element of Q2n in P(Qn).
From (9), and Qn − ⟨a⟩, each of the elements aib form the cycles C4’s, for some 0 ≤ i ≤ 2n − 1. From this
calculation, it follows that the elements {e, an

} ofP(Qn) are adjacent to every such aib, for some 0 ≤ i ≤ 2n−1.
Therefore, the power graph of Qn,n = 2z, z ≥ 2 can be written as

P(Qn) � K2n−2 ∗ K2 ∗ nK2.

For n = 22, the power graph of Q16 is shown in Figure 5.
As an application of Theorem 3.9 with a = 2, b = 2n − 2 and c = 2, we have the following result for the

Betti numbers of P(Qn).

Theorem 4.6. Let G � P(Qn) be the power graph of the generalized quaternion group of order N = 4n where
n = 2z, z ≥ 2 is a positive integer. Then the initial Betti numbers of G are

βi,i+1(G) = i
(

2
i + 1

)
+ i

(
2n − 2
i + 1

)
+ n · i

(
2

i + 1

)
+

∑
r1
1+r1

2=i+1

r1
1 ,r

1
2≥1

i
(

2
r1

1

)(
2n − 2

r1
2

)
+ n

∑
l11+l12=i+1

l11 ,l
1
2≥1

i
(

2
l11

)(
2
l12

)
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e a4
a7

a6

b5

a

a2

a3

b a4b

ab a5b

ab2 a6bab3 a7b

Figure 5: Power graph P(Q16) of Q16.

+ n
∑

r2
1+r2

2+r2
3=i+1

r2
1 ,r

2
2 ,r

2
3≥1

r2
1

(
2
r2

1

)(
2n − 2

r2
2

)(
2
r2

3

)
+

(
n
2

) ∑
l21+l22+l23=i+1

l21 ,l
2
2 ,l

2
3≥1

l21

(
2
l21

)(
2
l22

)(
2
l23

)

+

(
n
2

) ∑
r3
1+r3

2+r3
3=i+1

r3
1 ,r

3
2 ,r

3
3≥1

r3
1

(
2
r3

1

)(
2n − 2

r3
2

)(
2
r3

3

)(
2
r3

4

)
+

(
n
3

) ∑
l31+···+l34=i+1

l31 ,l
3
2 ,l

3
3 ,l

3
4≥1

l31

(
2
l31

)(
2
l32

)(
2
l33

)(
2
l34

)

+ · · · +

(
n

n − 1

) ∑
ln−1
1 +···+ln−1

n =i+1

ln−1
j ≥1, j=1,2,...,n

ln−1
1

(
2

ln−1
1

)(
2

ln−1
2

)
. . .

(
2

ln−1
n

)

+

(
n

n − 1

) ∑
rn
1+···+rn

n+1=i+1
rn

j ≥1, j=1,2,...,n+1

rn
1

(
2
rn

1

)(
2n − 2

rn
2

)(
2
rn

3

)
. . .

(
2

rn
n+1

)

+
∑

ln1+···+lnn+1=i+1
lnj ≥1, j=1,2,...,n,n+1

ln1

(
2
ln1

)(
2
ln2

)(
2
ln3

)
. . .

(
2

lnn+1

)

+
∑

rn+1
1 +···+rn+1

n+2=i+1

rn+1
j ≥1, j=1,2,...,n+1,n+2

rn+1
1

(
2

rn+1
1

)(
2n − 2
rn+1

2

)(
2

rn+1
3

)
. . .

(
2

rn+1
n+2

)
.

Now, we find the Betti numbers of cyclic and non-cyclic groups when order is product of two primes.
Suppose G is cyclic group of order pq, (p < q) are primes, then G has ϕ(n) elements elements, which form a
clique and each such vertex is of full degree, since they generate all elements. Also, the identity is always
adjacent to every other vertex, so it gives us an induced subgraph Kϕ(pq+1). Clearly, G has a unique p-
Sylow subgroup and a unique q-Sylow subgroup, and their induced subgraphs are Kp and Kq, respectively.
Similarly, if G is not cyclic, then no elements generates all other elements, so the identity element is the
only element adjacent to all other elements of G. In this case, G has q number of p-Sylow subgroups and a
unique q-Sylow subgroup. The above observations are made precise in the following result.

Lemma 4.7 ([7]). Let G be a finite group of order pq, where p < q, p and q are two distinct primes, and ϕ is the Euler
function. Then

(i) G is cyclic if and only if P(G) � Kp−1 ∗ Kϕ(pq)+1 ∗ Kq−1.

(ii) G is non cyclic if and only if P(G) � qKp−1 ∗ K1 ∗ Kq−1.
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Theorem 4.8. Let G denote the power graph of a finite group of order pq, where p < q, p and q are two distinct
primes. Then the following hold.

(i) If G is cyclic, then we have

βi,i+1(G) = i
(
ϕ(n) + 1

i + 1

)
+ i

(
p − 1
i + 1

)
+ i

(
q − 1

i

)
+

∑
r1

1+r1
2=i+1

r1
1,r

1
2≥1

i
(
ϕ(n) + 1

r1
1

)(
p − 1

r1
2

)

+
∑

l11+l12=i+1
l11,l

1
2≥1

i
(
ϕ(n) + 1

l11

)(
q − 1

l12

)
+

∑
r2

1+r2
2+r2

3=i+1
r2

1,r
2
2,r

2
3≥1

r2
1

(
ϕ(n) + 1

r2
1

)(
p − 1

r2
2

)(
q − 1

r2
3

)
.

(ii) If G is non cyclic, then we have

βi,i+1(G) = i
(
q − 1
i + 1

)
+ q · i

(
p − 1
i + 1

)
+ i

(
q − 1

i

)
+ q · i

(
p − 1

i

)
+ q

∑
r1
1+r1

2=i

r1
1 ,r

1
2≥1

(
q − 1

r1
1

)(
p − 1

r1
2

)

+

(
q
2

) ∑
l11+l12=i

l11 ,l
1
2≥1

(
p − 1

l11

)(
p − 1

l12

)
+

(
q
2

) ∑
r2
1+r2

2+r2
3=i

r2
1 ,r

2
2 ,r

2
3≥1

(
q − 1

r2
1

)(
p − 1

r2
2

)(
p − 1

r2
3

)

+

(
q
3

) ∑
l21+l22+l23=i

l21 ,l
2
2 ,l

2
3≥1

(
p − 1

l21

)(
p − 1

l22

)(
p − 1

l23

)
+ · · ·

+

(
q

q − 1

) ∑
lq−2
1 +···+lq−2

q−1=i

lq−2
j ≥1, j=1,2,...,q−1

(p − 1

lq−2
1

)(p − 1

lq−2
2

)
. . .

(p − 1

lq−2
q−1

)

+

(
q

q − 1

) ∑
rq−1
1 +···+rq−1

q =i

rq−1
j ≥1, j=1,2,...,q

(q − 1

rq−1
1

)(p − 1

rq−1
2

)(p − 1

rq−1
3

)
. . .

(p − 1

rq−1
q

)

+
∑

lq−1
1 +···+lq−1

q =i

lq−1
j ≥1, j=1,2,...,q

(p − 1

lq−1
1

)
. . .

(p − 1

lq−1
q

)
+

∑
rq
1+···+rq

q+1=i

rq
j≥1, j=1,2,...,q+1

(
q − 1

rq
1

)(
p − 1

rq
2

)
. . .

(
p − 1

rq
q+1

)
.

A group G is said to be an elementary abelian group (sometimes elementary abelian p-group) if every
non-trivial element has order p. For an elementary abelian group of prime power order |G| = pz, z ≥ 2, we
note that there are pz

− 1 elements of order p. Thus, G has exactly pn
−1

p−1 distinct subgroups of order p and has
pn
−1

p−1 induced subgraphs Kp−1. Also, identity is adjacent to all the elements of G. The structure of G is given
in the following result.

Lemma 4.9 ([7]). Let G be an elementary abelian group of order pn for some prime number p and positive integer n.
Then P(G) � K1 ∗ lKp−1, where l = pn

−1
p−1 .

Now as the consequence of Theorem 3.6, we have the following result regarding the Betti numbers of the
power graph of the elementary abelian group of prime power order.

Theorem 4.10. Let G be an elementary abelian group such that |G| = pz where p is prime and z ≥ 1 is an integer.
Then the Betti numbers of P(G) are

βi,i+1(G) = l · i
(
p − 1
i + 1

)
+ l · i

(
p − 1

i

)
+

(
l
2

) ∑
l11+l12=i
l11,l

1
2≥1

(
p − 1

l11

)(
p − 1

l12

)
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+

(
l
3

) ∑
l21+l22+l23=i
l21,l

2
2,l

2
3≥1

l21

(
p − 1

l21

)(
p − 1

l22

)(
p − 1

l23

)
+ . . .

+

(
l

l − 1

) ∑
ll−2
1 +···+ll−2

l−1=i
ll−2
j ≥1, j=1,2,...,l−1

(
p − 1

ll−2
1

)(
p − 1

ll−2
2

)
. . .

(
p − 1

ll−2
l−1

)

+
∑

ll−1
1 +···+ll−1

l =i
ll−1
j ≥1, j=1,2,...,l

(
p − 1

ll−1
1

)(
p − 1

ll−1
2

)
. . .

(
p − 1

ll−1
n

)
.

5. Betti numbers of commuting graphs of non-abelian groups

Consider a finite group G of order n with identity e. If ∅ , X ⊆ G is any set, then the commuting
graph of G associated to X, denoted by C(G,X), defined as the graph with vertex set X and two different
vertices x and y are adjacent in C(G,X) if and only if they commute in X. There is a vast literature available
on the commuting graphs of non-abelian groups, the commuting graphs of matrix rings and semirings
over finite fields can be seen in [1, 9]. The metric dimension, resolving polynomial, clique number and
chromatic number of commuting graphs of the dihedral groups were studied in [3, 6]. Recent results on
the commuting graphs of the generalized dihedral groups can be found in [8, 16].

Clearly, the commuting graph C(Zn,Zn) is the complete graph Kn, as every element of Zn commutes
with every other element. So, usually the commuting graphs have non-trivial structures for non-abelian
groups. Let Z(G) denote the center of group G. It is clear that Z(D2n) =

{
e, a

n
2

}
, for even n and Z(D2n) = {e},

for odd n. Also, the center of the dicyclic group Q4n is Z(Q4n) = {e, an
}. For the commuting graph [3]

G = C(D2n,Z(D2n)), G is K1, for odd n and G is K2, for even n. So, the commuting graphs C(G,Z(G)) have
simple structures as Z(G) usually contains commuting elements. So, it is of interest to consider subsets of
G such that the corresponding commuting graphs have non-trivial structures. For the dihedral group with
X = D2n,n = 2z + 1, z ≥ 1, the identity is the only element adjacent to all other vertices of C(D2n,Z(D2n)),
while for even n, {e, a

n
2 } are adjacent to every other vertices. This observation is given by Ali, Salman and

Huang [3] in the following result.

Lemma 5.1 ([3]). The commuting graph of the dihedral group D2n is

C(D2n,D2n) =

Kn−1 ∗ K1 ∗ Kn, if n is odd;
Kn−2 ∗ K2 ∗

n
2 K2, if n is even.

The Betti numbers of C(D2n,D2n) for odd n are given in Corollary 4.2 and for the even n, the Betti
numbers of C(D2n,D2n) can be obtained from Theorem 4.6 by replacing n by n

2 .
The semidihedral group SD8n of order 8n is represented by:

SD8n = ⟨a, b : a4n = e = b2, ab = ba2n−1
⟩,

and in list representation, we have

SD8n = {e, a, a2, . . . , a4n−1, b, ba, ba2, . . . , ba4n−1
}.

For odd n, it is clear that Z(SD8n) = {e, an, a2n, a3n
} and for even n, Z(SD8n) = {e, a2n

}. Thus, it follows that these
center elements are connected to every other vertex in their respective commuting graphs with X = D8n.
The next lemma gives the complete structure of the commuting graph of the semidihedral group SD8n.
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Lemma 5.2 ([22]). The structure of the commuting graph of SD8n is given as:

C(SD8n,D8n) =

K4n−4 ∗ K4 ∗ nK4, if n is odd;
K4n−4 ∗ K2 ∗ 2nK2, if n is even.

By using Theorem 3.9, the Betti numbers of C(SD8n,D8n) can be obtained as in Theorem 4.6.
The commuting graph C(Q4n,Q4n) [2] of Q4n is C(Q4n,Q4n) = K2n−2 ∗ K2 ∗ nK2, we note that C(Q4n,Q4n)

is isomorphic to P(Q4n),n = 2z, z ≥ 2. Therefore, the Betti numbers of C(Q4n,Q4n) are exactly same as in
Theorem 4.6. There are several other non-abelian groups like Um,n of order mn as given below

Um,n = ⟨a, b|a2n = e, bm = 3, aba−1 = b−1
⟩,m > 2 and n > 1,

If m is not a multiple of 2, then ⟨a2
⟩ is in the Z(Um,n) with cardinality n and each such vertices are connected

to every other vertices of C(Um,n,Um,n). For even m, Z(Um,n) = ⟨a2, a
m
2 ⟩ and its order is 2n. Thus, with this

observation, the commuting graph of Um,n (also see [22]) is

C(Um,n,Um,n) =

Kmn−2n ∗ K2n ∗
m
2 K2n, if 2 divides m;

Kmn−n ∗ Kn ∗mKn, if 2 does not divide m.

The Betti numbers of C(Um,n,Um,n) can be obtained from Theorem 3.9 with a = 2n, b = mn − 2n, c = 2n
and n = m

2 for 2 | m and a = n, b = mn − n, c = n and n = m for 2 ∤ m.
The other well known non-abelian group of order 8n is

V8n = ⟨a, b|a2n = b4 = e, ba = a−1b−1, b−1a = a−1b⟩.

Similarly, forG � V8n, then the center ofG is generated by ⟨b2
⟩ if 2 ∤ n and is generated by ⟨an, b2

⟩ if 2 | n.
The commuting graph of G (see [22]) is

C(V8n,V8n) =

K4n−2 ∗ K2 ∗ 2nKn, if 2 does not n;
K4n−4 ∗ K4 ∗ nK4, if 2 divides n.

The corresponding Betti numbers can be obtained from Theorem 3.9 by putting a = 2, b = 4n − 2, c = n and
n = 2n provided 2 ∤ n and by using a = 4, b = 4n − 4, c = 4 for 2 | n.

6. Conclusion

In this article, the formulae for the initial Betti numbers of multiple complete split-like graphs, clique
stars and their generalizations are obtained. Also their extremal Betti numbers are given along with their
corresponding projective dimensions. The other Betti numbers and the regularity are yet to be discussed,
which is non-trivial for such graphs. In the future work, the other Betti numbers, regularity, Hilbert series of
such graphs (along with the power graphs of finite groups and commuting graphs of non-abelian groups)
can be taken taken into account.
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