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Abstract. In this paper, we focus on the continuous-time nonlinear fractional programming problems
including the objective functional given by the ratio of two integrals. Since the standard continuous-
time programming theory, such as optimal control theory, cannot be used directly to solve this type of
problems, we propose a new numerical method. At first we convert the original problem into an equivalent
continuous-time nonfractional problem which does not include integral term. Then, we utilize a Legendre
pseudospectral method to discretize the gained problem. We also analyze the feasibility of the obtained
discretized problem and the convergence of the method. Finally, we provide two numerical examples to
demonstrate the efficiency and capability of the method.

1. Introduction

The optimization problem in which the objective function appears as a ratio of two real-valued functions
is known as a fractional programming (FP) problem. Some applications of this type of optimization prob-
lem can be found in the information theory, stochastic programming, decomposition algorithm for large
linear systems, etc [13, 23, 29, 35, 36]. Several theoretical and computational issue, related to the fractional
programming, have presented in the last decades. Zalmai [48-51] investigated the continuous-time FP
(CTFP) problems. Stancu-Minsion and Tigon [37] studied the stochastic CT linear FP (CTLFP) problems.
They showed that, under some conditions, the CTLFP problems are equivalent to deterministic CTLFP
problem. Wen et al. [38] used the Charnes and Cooper’s transformations to develop a numerical algorithm
for solving a class of CTLFP problems. Also, Wen and Wu [39] and Wen [40-42] have developed computa-
tional procedures by combining the parametric method and discrete approximation method to solve some
classes of CTLFP. Moreover, Lur et al. [24] presented a hybrid of the parametric method and discretization
approach for a class of CT quadratic FP problems. To study more related works, we refer the reader to
[7, 44] and references therein.

In addition to the above-mentioned theoretical and computational methods, some researchers have at-
tempted to solve the CTFP problems by using Dinkelbach approach [5, 6]. By Dinkelbach approach the
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CTFP is transformed into an equivalent family of problems which the ratio disappears and the objective
function is given by the weighted difference of the numerator and the denominator of the ratio. For exam-
ple, in [3] a Dinkelbach-type algorithm is suggested to solve a class of CTLFP problems. In [43] a method
is given based on the Dinkelback approach for solving a special class of the CT fractional programming
problems, including affine integrals and linear dynamics. Enkhbat and Zhou [33] presented a global opti-
mization appreach for fractional optimal control problems based on the Dinkhelbach algorithm.

Despite the existence of some methods for special classes of CTFP problems, it seems that there does not
exist a practical powerful method to solve the CT nonlinear FP (CTNFP) problems. Hence, the main pur-
pose of this paper is to develop a pseudospectral method to solve CT fractional programming problems.
The pseudospectral methods [2, 8, 10-12, 15, 16, 18, 26] are one of the best numerical methods to solve
CT problems, since they have high accuracy (or exponential convergence) and easily application. Some
new applications of these methods are suggested in the works [17, 19-22, 25, 27, 28, 30, 31, 45-47]. Before
applying pseudospectral method, we present a new technique to convert the CTNLFP problem into a
nonfractional one.

The paper is organized as follows. In Section 2, we consider a CTNFP problem. In Section 3, we suggest
a technique to convert the CTNFP problem into an equivalent CT nonfractional programming problem.
In Section 4, we suggest a Legendre pseudospectral method to discretize the obtained CT nonfractional
programming problem. In Section 5, we analyze the feasibility of discretized problem. In Section 6, we
give the convergence analysis of the method. In Section 7, the conclusions suggestions and are given. In
Section 8, we solve two numerical examples to show the efficiency of method.

2. Problem statement

In this paper, we centralize on the following class of CTNFP problems

T
x(b), u(t))d
Minimize J(x,u) = fon(t x(t) u(t)) t .
I g(tx(®), ut))at
subjectto (1) = h(t,x(t), u®), 0<t<T, )
x(to) = a, >

where x : [0,T] = R" and u : [0, T] — R™ are the state and control variables, respectively, and a € R". Also,
we assume that functions f : [0, T X R" X R" - R, g:[0, T X R* X R" - Rand k : [0, T] x R* x R" — R"
are nonlinear, continuous and they have Lipschitz property on set Q = [0,T] x R" X R™. Moreover, we
assume that the denominator of the fraction in objective functional is strictly positive, i.e,

j; ' gt x(t), u(t))dt = & > 0. (4)

We suppose that the CTNFP problem (1)-(3) has at least one optimal solution. Up to now, many works
are done on the CTNFP problem (1)-(3) and the most of them are based on the following CT nonfractional
programming problem

T

Minimize J,(x,u) = f (f(t, x,u) —pg(t, x, u))dt (5)
0

subject to  x(f) = h(t,x,u), 0<t<T, (6)

x(0) = a, @)

where p is a parameter. Define Q = {(x, u) : * = h(t, x, u), x(0) = a} and

F@p) = Mi(nir)ngt)lm Jp(x, u). 8)
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It can be proved that for any p € IR, there is an optimal solution for the problem (5)-(7). Some properties of
function F(.) defined by (8) are given below.

Lemma 2.1. (see [23]) Function F defined by (8) satisfies the following properties:

i) The function F is concave on R.

ii) The function F is strictly decreasing i.e., for any p1 and p, in R, p1 < p, implies F(p1) > F(p2).
iii) Equation F(p) = 0 has an unique real solution.

iv) For any (x,u) € Q, if

~ fOT f(t, x, u)dt

B fOT g(t, x, u)dt,
Then F(p) < 0.

The relation between function F(.) and optimal solution of the original problem (1)-(3) is given in the
following theorem [23].

Theorem 2.2. If F(p*) = J,-(x*,u*) = 0. Then

(t,x*, u*)dt (t, x, u)dt
* fo = Minimum fo

fo (t, x*, u*)dt (xa)eQ fo g(t, x, u)dt
and (x*,u*) is an optimal solution of problem (1)-(3).

By Theorem 1, solving problem (1)-(3) is equivalent to determining the root of the equation F(p) = 0, where
F(.) is defined by (8). Hence several researchers attempted to solve CTNFP problem (1)-(3) based on the
function F(.). But, the more works are for special class of CTNFP problems, such as problems with linear or
affine integrals and linear dynamics with respect to the state and control variables. Moreover, the presented
methods at previous, are dependent on the parameter p. Also, the standard theory of CT optimization (or
optimal control theory) cannot directly be used to solve CTNFP problems. Hence, in this paper, we apply a
pseudospectral method for solving the CTNFP problem (1)-(3), which is one of the best numerical methods
for solving CT problems. Here, we first show that the CTNFP problem (1)-(3) can be converted into an
equivalent nonfractional problem and the pseudospectral method can be applied to solve it, numerically.
We then will analyze the convergence of the method.

3. Converting the CTNFP problem into an equivalent nonfractional form

We define the new state variables y(.) and z(.) for CTNFP problem (1)-(3) as follows:

¢ ¢
y(t) = ‘fo ft,x,uydt, z(t) = j(; g(t,x,u)dt, 0<t<T. 9)

By (9), we get
{y(t) = f(tr X, u), y(O) =
Z(t) = g(t, x,u), z(0)=
Hence, we can write the CTNFP problem (1)-(3) as the following equivalent problem

y(T)

Minimize |= AT (10)
subjectto X = h(t, X, u), 0<t<T, 11
= f(t, X, u), 0<t<T, (12)
z=g(txu), 0<t<T (13)

x(0) =x, y(0)=0, z(0)=0 (14)
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Now, define A = y(T)’ where z(T) > 0. By this we can achieve the following CT nonlinear nonfractional
programming problem:

Minimize [=A (15)
subjectto X = (t, X, u), 0<t<T, (16)
(t, X, u), 0<t<T, (17)

g(t xu), 0<t<T, (18)

w(T) = Az(T) =0, (19)

x(0) =a, y(0) =0, z(0) = 0. (20)

Theorem 3.1. If (x*, y*,z*, u*, A*) is an optimal solution for the nonfractional problem (15)-(20), then (x*,u*) is an
optimal solution for the fractional problem (1)-(3).

Proof. Assume that (x*, u*) is not optimal for the CTNFP problem (1)-(3). So there exists a feasible solution
(%, 11) € Q for problem (1)-(3) such that J(x*, u") > J(%, it). Now, define

¢ ¢ _
:\fof(s,f,ﬁ)ds, Z(t):jo‘g(s,f,ﬁ)ds, 7\:%.

So we get
y=ftxa), z(t)=gtxa), 70)=0, 2z0)=0
Hence, (%, 7,2, 1, A) is a feasible solution for problem (15)-(20) and moreover,

oy@ o ooy
A _m_](xlu)>l(xlu)_m

which is a contradiction with optimality of (x*, y*, z*, u*, A*) for problem (15)-(20). O

-1

In next section, we extend a Legendre pseudospectral method to discretize the nonfractional problem
(15)-(20).

4. Legendre pseudospectral method

Before applying Legendre pseudospectral method, we utilize the time transformation = L (7 +1), -
7 < 1 and define

X(1) = x(g(T + 1)), Y(7) = y(g(f N 1)),
Z(7) = Z(%(T ; 1)), U(r) = u(g(T ; 1)).

By these definitions, the problem (15)-(20) converted into the following problem

Minimize ]=A (1)
subject to  X(1) = H(T, X(1), U(T)), -1<7<1, (22)
Y(1) = (1, X(0), U(r)), -1<7<]1, (23)
2(1) = G(r, X(1),U(1)), -1<7<1, (24)
Y(1) - AZ(1) =0, (25)

X(-1)=a, Y(-1) =0, Z(-1) = 0, (26)
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where
H(x, X(x), U(x)) = gh (%(T +1), x(Z(T +1)), u(I(T +1)),
F(r, X(7), U(r)) = f( (c+ 1,205 Lie v 1), w3 L 1))),
G(r, X(@), U()) = 59(5(1 +1), X(E(T +1), u(E(T +1).

Now, assume that p;(.) is the Legendre polynomial of degree j. This polynomial can be obtained with the
following recurrence formula

'+
pj+1(t) = 1 pi(T) — 1P] (1), -1<7<1

po(7) = 1, pi(7) = T.

Suppose that {7;}}\ are the roots of polynomial (1 — 72)p} (7). These roots are called the Legendre-Gauss-
Lobato points or nodes. For interpolating the variables of problem (21)-(26) we need the Lagrange polyno-
mial

N T—T;
Li(t) = H L 1<r<1.
]:01¢NT1_T]

Now, we approximate the optimal solutions of the problem (21)-(26) by the Lagrange interpolations as
follow

N N
X(1) ~ Xn(7) = lew U(r) ~ Un(1) = ) (o),
=0 1=0
. (27)
Y(1) ~ Yi(0) = ) BiLim),  Z(1) = Zn(e) = ) EL(),
1=0

1=0

z

where (X, 71,2, 1) for | = 0,1, ..., N are unknown coefficients. Since Li(7) = 1,k = 0,1,...,N and Li(t;) = 0,
for all j # k, we have (forallk = 0,1, ...,N)

{X(Tk) ~ Xn(tk) = X, U(ty) = Un(Th) = g, 28)
Y(ti) = Yn(th) = Tr,  Z(tk) = Zn(Tk) = Z,
Also,
N N
X/(t) ~ Xy(r) = ) 8D, Y'(t) % Yi(r) = ) 7iDx,
1=0 =0
- (29)
Z'(w) ~ Zy(w) = ) 2Dy, k=0,1,..,N,
1=0
where
NOeD
4
| W o<k,
Dy = Ll (’Ck) (Tk - Tl)pN(Tl) (30)
NN+D Oy
4
0, 1<k=I<N-1,
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and D = (D) is called matrix differentiation. Using (27), (28) and (29), we can approximate the CT problem
(21)-(26) by the following discrete-time (DT) problem:

Minimize Jy=A (31)
N

subjectto ) ®Dy = H(t, %, ), k=0,1,..,N (32)
1=0
N

Z lekl = F(Tkr Xk, L_lk), k= 0/ 1/ ceey N (33)
1=0
N

ZZ[DH = G(Tk, Xk, L_lk), k=0,1,..,N (34)
1=0

IN—-Azn =0, % =a, Jo=0,Z =0 (35)

where (%, 7,Z,i,A) = (X, ..., XN, Yo, s N, Z0, .-, ZN, Tlo..., TiN, A) is the variable of the problem. In next section,
we analyze the feasibility of DT problem (31)-(35).
5. Analyzing the feasibility of obtained discrete-time problem

Assume that W"#(m > 2,p > 1) is Sobolov space on [-1,1], that consists of all functions ¢ : [-1,1] = R"
such that (), j = 0,1,2,...,m lie in ¥ space with the following norm

m 1 ' %
|ww=ZUWWmWﬂ.
=1 Wt

In this section, we require the following Lemma.

Lemma 5.1. (see[4]) For any given function ¢ € W™Pon [-1, 1] there is a polynomial pn(.) of degree N or less such
that

lp(t) — pN(D)llo < ccoN7™, -1<7<1,
where c is a constant independent of N and ¢y = ||@|lwmr.

Now, to guarantee the feasibility of DT problem (31)-(35), we relax its constraints and rewrite the problem
as follows:

Minimize Jy=A (36)
N
subject to Z %Dy — H(te, %, )| < (N=1)2", k=0,1,..,N, (37)
1=0 00
N
Y 7D - Flug %, i) < (N=1)37", k=0,1,..,N, (38)
1=0
N
2Dy — G(tk, T k)| < N = 1)2™, k=0,1,..,N, (39)
1=0
v = A2y S (N1, [Ifo—all < (N-1)27", (40)
|70] < (N=1)F™, |z < (N -1)37™, (41)

where m > 2. The above relaxation is based on the Polak’s theory of consistent approximation [32]. We note
that when N tends to infinite, there is no different between constraints of problems (31)-(35) and (36)-(41).
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Remark 5.2. Since functions F, G and H are Lipschitz property, there are constants My, My and M such that for all
(X, U) and (X, U) we have

IF(t, X, T) = F(t, X, W] < My(IIX = XII + 11T - Ull)

IG(t, X, 1) — G(t, X, U)] < Ma(IX = X1l + 1T~ Ul

IH(t, X, 0) = H(t, X, U)] < Ms(I1X = X1 + (1T - Ul
Theorem 5.3. (Feasibility) Let (X*,Y",Z*, U", A*) be an optimal solution for the CT problem (21)-(26). Then there

exists a positive integer K such that for any N > K, the DT problem (36)-(41) has a feasible solution (%, 7,Z,1,A) =
(X0, ++r XN, 70, oy YN, 20, s ZN, 0., TN, A) SUch that i = U*(tx) and

IX* (k) = Zlloo < LiN =1, k=0,1,2..,N, (42)
V(%) — 7kl < LL(N - 1)'™, k=0,1,2..,N, (43)
|Z°(t3) — 2 < Ls(N - 1™, k=0,1,2...,N, (44)

where L1, Ly and Lg are positive constants independent of N.

Proof. Let P(.),Q(.) and R(.) be (N — 1)th order best polynomial approximations of X*(.), Y*(.) and Z*(.),
respectively. By Lemma 5, there are the constants ¢y, c; and c3 independent of N such that

1K) = POl < c1(N = 1)1, (45)

V' (2) - Q)| < 2N = 1)1, (46)

12(2) = R@D)| < es(N = 1), 47)
Define

mm=MAH[fwmmm=£p@mmm=LMM& (48)

A=A, % = Xn(ti), ik = YN(Tk), Zk = Zn(Tk), il = Un(Tk), k=0,1,...,N. (49)

We first show that (¥, i) satisfies relation (37). By (45), (48) and (49) we get (for all T € [-1,1])

M%%WWMFWLWM—%WSSIJ@W—%MJS

e

<c(N-1 f ds < 2¢;(N = 1)1, (50)
-1
By a similar procedure, we have
V(1) = YN(1) < 2,(N = 1)'™, (51)
|Z*(1) = ZN(7)| < 2c3(N = 1)}, (52)

Moreover, since x*(-1) = a, we get

1% — all = IX*(=1) = all < (X (=1) = @) = (%o ~ )| = [IX*(=1) = oll < 2c1(N =)',
So

%0 — all < [IX*(=1) = all + 2c1(N = 1) = 2¢; (N = 1)'7"™. (53)
Similarly, we can show that

|70l < 2e2(N =)™, |20l < 2¢3(N —1)'™". (54)
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Also, since A = A* and Y*(1) — A*Z*(1) = 0, we get

Yi() = AZ(D)l = (Y1) = 1Z(1)) - (Yn(D) = AZw(D)
Y (1) = Yn(D) = A(Z (1) - Zn (D)
<[Y*(1) = Yn (D)l + A1Z°(1) - Zn()]

(@)l
1Z*(1)]

< (262 + 2C3) (N - 1)1—m. (55)

So, if we select K such that for any N > K,

Y@l
1Z*(1)|

max {2c1, 2¢2,2¢3,2c2(N = 1) + 2¢3 } <(N-1)2,

then (%, 7, z, i1, A) satisfies the constraints (37)-(41). Hence, we can imply that (¥, 7, z, i1, A) is a feasible solution

for DT problem (36)-(41). Finally, by selecting L; = 2c1, Ly = 2¢; and Lz = 2c3, we can achieve (42)-(44) from
(50)-(52). O

Remark 5.4. Wenote that in the proof of Theorem 3, by attention to the relation (4), we have Z*(1) = f_11 G (T’ X, U(’L’))dt _
% fOT g(t' x(t), u(t))dt >e>0.

6. Convergence of the method

In this section, we show that the sequence of optimal solutions of DT problem (36)-(41) is convergent to
the optimal solution of the CT problem (21)-(26). The method is a generalization of convergence analysis
given in [23] which is based on Polak’s theory of consistent approximation.

Let (X}, 7, 2, i1, AY), k=0,1, ..., N be an optimal solution to the DT problem (36)-(41). Define

N N N
X3y(7) = kZO BL(T), Yiy(1) = kZO FLi(r), Zy(7) = kZO 2 1i(1), (56)
N
Uz, (1) = Z TLr), -1<t<1, (57)

k=0

where Li(.),k =0, 1, ..., N are the Lagrange polynomials. Thus, we have a sequence of optimal solutions and
their sequence of interpolating polynomials as follows respectively

(&, 51,2, 1, A0k = 0,1, N (300, YR, 230, u;,(.))}:le :

Assumption 1. We assume that the sequence {(3?6, For 2o, X5 (), YR, Z50), Uy (), A;\])}:_N has a subsequence
=iN1

that uniformly converges to (xg", vo 2o q1(), 920, g3(), U (), )\*) where g;(.),i = 1,2,3 are continuous func-

tions.

Theorem 6.1. (Convergence) Assume that interpolating polynomials (56) and (57) satisfy Assumption 1. Then
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¢*() = (X*(), Y (), Z(.), U*(.), A*) is an optimal solution for the CT problem (21)-(26) where

X(1) = x5 + f gi(syds,-1 <t <1, (58)
-1
Y'(7) = f go(s)ds,-1 <t <1, (59)
-1
Z (1) = f gs(s)ds,-1 <t <1, (60)
-1
AT = 1\1;15& AN- (61)
Proof. By Assumption 1, there exists a subsequence N; € {1,2, ...} with lim N; = co such that
Him X5, () = q10), im Y5, 0) = 20), im Z3, () = ga(), lim Ay, = A" ()
Hence, by (58)-(60) and (62) we get
lim X3, (1) = X*(.), limY3()=Y'() LmZy()=2(). (63)
1—00 ! 1—00 ! i—00 !

We now follow the proof in three steps. In step 1, we show that ¢*(.) is a feasible solution to the CT problem
(21)-(26). In step 2, we prove the convergence of J; N o where I, and J* are the optimal values of objective
functionals of the problem (36)-(41) and (21)-(26), respectively. Flnally, we show that ¢*(.) is an optimal
solution for the CT problem (21)-(26).

Step 1. We will show that ¢(.) satisfies the constraints (22)-(26). Assume that ¢*(.) is not a solution of the
equation (22). Then, there is a time 7 € [-1, 1] such that

X(r) - H(z, X(1), U(D)) # 0. (64)

Since the LGL points are dense in [-1, 1] (see [14]), there is a sequence {ky,};*; such that 0 < ky, < N; and
lim 7, = 7. Thus,

i—oo

lim (X (T, ) = H(Ty , X(Tiy, ), U(Tsy,)) = X*(7) = H(7, X'(), U'(7)) # 0. (65)

1—00

Now, since lim(N; — 1)%"” = 0, by constraint (22) we get
1—00

lim (X3 (T, ) = H(tiy,, X(tiy,), Ulti,)) = 0,

which is a contradiction with (65). Thus ¢*(.) satisfies the equation (22). By a similar process we can see
that ¢*(.) satisfies equations (23) and (24). Now, we show that ¢(.) satisfies constraint (25). We have

0<

V() = 2] = Tim (13, (0) = 45, 23y 1)

= Tim [}, (1) = A3, Z3, (D] = lim [73, = A3, 23|

<HEm(N;—=1)F" =0

1—00
So Y*(1) = A*Z*(1) = 0. Also, by a similar procedure we get X*(—1) = a. Moreover, it is trivial that X*(.) and
Y*(.) satisty relations Y(-1) = 0 and Z(-1) =
Step 2. By relations (31) and (61) we get
J =A"=1lim Ay = lim ]y,
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Step 3. Assume that 5(.) = ()?(.), ?(.), Z(.), FLVI(.),AA) is an optimal solution of the CT problem (21)-(26). By

(o)

using the same discussion in Theorem 1, there exists a sequence of feasible solutions {¥, 7, Z, 7, ;\N}Nle, for
DT problem (36)-(41), such that its corresponding interpolating polynomial converges uniformly to (}5(.).
Now, by optimality of ¢(.) we get

J=A<T =1 =limAy <limAy, =]

1—00 1—00

SoA* = A. Hence, ¢*(.) is a feasible solution which achieves the optimal value of functional J. O

7. Numerical examples

In this section, we apply our proposed method to solve two CTNFP problems. We utilize the FMINCON
command in MATLAB software to solve the corresponding DT problem (31)-(35). Moreover, we calculate
the absolute error of approximate optimal solutions by the following relations

ex(tk) = |x*(tk) - xkll eu(tk) = |u*(tk) - ﬂkl, k = 0/ 1/2/ ceey N/
where (x*(.), u*(.)) and (x(.), u(.)) are the exact and approximate optimal solutions, respectively.

Exercise 7.1. Consider the following CTNFP problem

I(Pa) - ety +1)dt

Minimize | = - )
b (1= Gty = e = (utt) - 12)dt

subjectto  x(t) = x(t)(uP(H)e' — Px(t) +1), 0<t<1, -

x(0) = 1. @)

The exact optimal solution of this problem is (x*(.),u*(.)) = (¢!, t). Also, the optimal value of objective functional is
J* = 1. The corresponding DT problem (31)-(35) for (66)-(68) is as follows

Minimize Jy=A

N
subjectto Y %Dy = %xk(afe%(”‘“) - (%(rk + 1))2xk +1), k=0,1,2,..,N,
j=0
N
Y 5Dk = 5((5 0+ D) (8- H@ Y 1), k=0,1,2,.N,
j=0
o 1 e 1
szij = 5(1 — (e — 2@ DY — (- S+ 1)), k=0,1,2,..,N,
j=0

N—AZn=0, %=1 $o=20=0,

<

where X = (%o, %1, ..., %n), T = ({o, J1,-- In),Z = (20,21, .., 2N) and @ = (g, @y, ..., 1iN) are the variables of the
problem. Having solved this DT problem for N = 5, we achieve the approximate solution (%, ) for the CTNFP
problem (66)-(68), which is illustrated in Figures (1) and (2), Also, the errors of approximate solutions for the state
and control are illustrated in Figure (3) and (4). Her,e we get the approximate optimal value A* = J5 = 1+2.11x107,
Results show that the presented approach has a good accuracy.
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Exercise 7.2. Consider the following CTNFP problem

Jo" (1 + (x(t) cost — u(t) sin £)?)dt

Minimize [= — (69)
Jo" (1= Get) = sin £ = (u(t) — cos )2 )dt

subjectto X(t) =u(t), 0<t<m, (70)

x(0) = 0. (71)

The exact optimal solution and optimal value of objective functional are (x*(.),u*(.)) = (sint,cost) and J* = 1,
respectively. The corresponding DT problem (31)-(35) for CT problem (69)-(71) is as follows

Minimize Jy=A7
al i

subject to X;Dyj = Eﬂk' k=0,1,...,N,
=0

A

7Dy = —(1 + (% cos (%(rk +1) - sin(%(’ck + 1)))2), k=0,1,.,N,

N

= 1D

Il
(=)

Z]'ij = (1 - (fk - sin(%(’[k + 1)))2 - <1/_lk — COS (%(Tk + 1)))2), k=0,1,..,N,

N3

]
In—AzZn =0, %o =1o =2 =0.

We solve this DT problem for N = 10 and obtain the approximate optimal solution (X, i), which are given in Figures
5 and 6. Moreover in Figure 7 and 8, we illustrate the absolute errors of approximate optimal solutions. Here, we
obtain A* = J; =1+ 1.88 x 10 which shows the efficiency of method.

o Approximate optimal state
Exact optimal state 7

N
o
T

-
M A O

-

Figure 1: The exact and approximate optimal states for Example 1.



o Approximate optimal control
Exact optimal control

Figure 2: The exact and approximate optimal controls for Example 1.
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Figure 4: The absolute error ¢,(.) for Example 1.
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Figure 8: The absolute error ¢,(.) for Example 2.

8. Conclusions

In this paper, we showed that the Legandre pseudospectral method can be extended to solve the gen-
eral form of continuous-time nonlinear fractional programming problems. Without using the Dinkelbach
algorithm, we presented a new technique to convert the problem into an equivalent nonfractional form.
Moreover, the obtained nonfractional problem can be discretized at the Legendre-Gauss-Lobatto points.
We generalized the convergence analysis of pseudospectral methods to the suggested method. For future
works, we will suggest the presented approach in this article to numerically solve the continuous-time frac-
tional programming problems including the fixed-order and variable-order fractional dynamical systems
[1,9,34].
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