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Abstract. In this study, we introduce two new types of fuzzy contraction principles, namely: fuzzy
FZ-ϑ f -contraction and modified fuzzy FZ-ϑ f -contraction mappings, and utilize the same to establish
some fixed point results in the framework of complete GV-fuzzy metric spaces. To further demonstrate the
accuracy of the established concepts and results, we provide some examples along with some illustrative
corollaries and remarks. The presented results unify, generalize, and improve various existing results in
the literature.

1. Introduction

One of the most increasingly prominent study areas in nonlinear functional analysis is fixed point
(FP) theory, which contains a wide variety of mathematical tools for addressing a multitude of issues
resulting from other fields of mathematics. The Banach contraction result is the first relevant metric FP
theorem, this innovative principle has been extended, developed, generalized, and refined in the setting of
numerous abstract spaces. By coining the concept of simulation functions, Khojasteh et al. [15] pioneered
a new framework for the study of FP theorems. Many researchers have continued to improve the idea of
simulation functions in different approaches (see e.g. [16, 18–20, 24, 25, 28]).

In 1965, L.A. Zadeh [1] offered the fuzzy set concept as a novel mathematical approach to dealing
with ambiguity and vagueness in practical applications. The conception of fuzzy sets has evolved into
a valuable and significant modeling tool. Finding a suitable and consistent definition of fuzzy metric is
one of the difficult issues in fuzzy topology. Many researchers have addressed at this concern in a variety
of approaches (see e.g [2, 3]). Kramosil and Michalek [4] established fuzzy metric (KM-fuzzy metric) by
generalizing the idea of probabilistic metric to the fuzzy backdrop. Thereafter, George and Veeramani [6]
revised Kramosil and Michalek’s definition of fuzzy metric space in order to gain a Hausdorff topology for
this class (GV-fuzzy metric), which has crucial applications in quantum mechanics, notably in the context
of string and ϵ(∞) theory [31]. Previous research has demonstrated that fuzzy metrics are effective in a broad
spectrum of applications, including color picture filtering, where fuzzy metrics have recently been used to
improve some filters by substituting traditional metrics [17].
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Over the last years, there has been an intense interest in studying the FP theory in fuzzy metric spaces.
In this direction, Gregori and Sapena [7] defined fuzzy contractive mappings and obtained some FP results.
Later on, Mihet [12] proposed the class of fuzzy ψ-contractive mappings. Wardowski [13] presented and
studied the concept of fuzzyH-contractive mappings. Inspired by the work of Khojasteh et al. [15], Melliani
and Moussaoui ([21, 22]) initiated a simulation function approach to the study of FP theory in fuzzy metric
spaces and proposed the concept of FZ-contractions. Recently, Saleh et al. [29] brought in the concept
of fuzzy ϑ f -contractive mappings, which was inspired by the results of Jleli et al. [26], by employing
an auxiliary function ϑ f : (0, 1) → (0, 1) fulfilling suitable conditions. For further insight into current
advancements in fuzzy metric FP theory and related approaches, we refer the reader to [5, 7, 13, 14, 21–
23, 25, 27, 30, 32–34]

We introduce two types of new fuzzy contractions called FZ-ϑ f -contraction and modified FZ-ϑ f -
contraction mappings by using the auxiliary function ϑ f embedded in FZ-simulation function. We prove
some FP results in the context of complete fuzzy metric spaces for such contractions. The presented results
unify, generalize, and improve on various existing concepts in the literature.

2. Preliminaries

In this section, we cover some central concepts and results that will be beneficial in the next section.

Definition 2.1. [11] An operation ∗ : [0, 1]2
→ [0, 1] is a continuous t-norm if ([0, 1], ∗) is an Abelien topological

monoid with unit 1 such that ȷ1 ∗ ȷ2 ≥ ȷ3 ∗ ȷ4 whenever ȷ1 ≥ ȷ3 and ȷ2 ≥ ȷ4, for all ȷi ∈ [0, 1], i = 1, 2, 3, 4.

Example 2.2. i) ȷ1 ∗m ȷ2 = min{ ȷ1, ȷ2},

ii) ȷ1 ∗L ȷ2 = max[0, ȷ1 + ȷ2 − 1],

iii) ȷ1 ∗p ȷ2 = ȷ1. ȷ2.

Definition 2.3. [6] The 3-tuple (E, ω, ∗) is said to be a GV-fuzzy metric space (GV-FMS) if E is an arbitrary set, ∗
is a continuous t-norm and ω is a fuzzy set on E2

× (0,+∞) satisfying:

(GV1) ω(ϕ,φ, γ) > 0,

(GV2) ω(ϕ,φ, γ) = 1 iff ϕ = φ,

(GV3) ω(ϕ,φ, γ) = ω(φ,ϕ, γ),

(GV4) ω(ϕ, χ, γ + δ) ≥ ω(ϕ,φ, γ) ∗ ω(φ, χ, δ),

(GV5) ω(ϕ,φ, .) : (0,+∞)→ [0, 1] is continuous.

for all ϕ,φ, χ ∈ E and γ, δ > 0.

In the next examples, assume that d is a metric onE and h : R+ → R+ is a continuous increasing function.

Example 2.4. [9] Define the mapping ω by

ω(ϕ,φ, γ) =
h(γ)

h(γ) +md(ϕ,φ)
for all ϕ,φ ∈ E, γ > 0 with m > 0. (1)

Then (E, ω, ∗p) is a GV-FMS. In particular, if we set h(γ) = γn, n ∈N and m = 1, then (1) yields

ω(ϕ,φ, γ) =
γn

γn + d(ϕ,φ)
for all ϕ,φ ∈ E, γ > 0.

Then (E, ω, ∗m) is GV-FMS, as shown in [8].
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Example 2.5. [9] Define the mapping ω by

ω(ϕ,φ, γ) = exp(
−d(ϕ,φ)

h(γ)
) for all ϕ,φ ∈ E, γ > 0. (2)

Then (E, ω, ∗p) is an FMS. More notably, if we take h as the identity mapping, then (2) gives

ω(ϕ,φ, γ) = exp(
−d(ϕ,φ)

γ
) for all ϕ,φ ∈ E, γ > 0.

In this instance, (E, ω, ∗m) is a GV-FMS [6].

Lemma 2.6. [5] ω(ϕ,φ, .) is nondecreasing function for all ϕ,φ in E.

Definition 2.7. [6] Let (E, ω, ∗) be a GV-FMS.

1. A sequence {ϕn} ⊆ E is said to be convergent or converges to ϕ ∈ E if limn→∞ ω(ϕn, ϕ, γ) = 1 for all γ > 0.
2. A sequence {ϕn} ⊆ E is said to be an Cauchy sequence if for all ε ∈ (0, 1) and γ > 0, there exists n0 ∈ N such

that ω(ϕn, ϕm, γ) > 1 − ε for all n,m≥ n0 .
3. A GV-FMS in which each Cauchy sequence is convergent is called a complete GV-FMS.

Definition 2.8. [7] Let (E, ω, ∗) be a GV-FMS. A mapping T : E → E is said to be a fuzzy contractive mapping if
there exists k ∈ (0, 1) such that

1
ω(Tϕ,Tφ, γ)

− 1 ≤ k
(

1
ω(ϕ,φ, γ)

− 1
)
,

for all ϕ,φ ∈ E and γ > 0.

Definition 2.9. [7] A sequence {xn} in a GV-FMS (E, ω, ∗) is said to be fuzzy contractive if there exists k ∈ (0, 1)
such that

1
ω(ϕn+1, ϕn+2, γ)

− 1 ≤ k
(

1
ω(ϕn, ϕn+1, γ)

− 1
)
,

for all n ∈N and γ > 0.

Theorem 2.10. [7] Let (E, ω, ∗) be a complete GV-FMS in which fuzzy contractive sequences are Cauchy. If
T : E → E is a fuzzy contractive mapping then T has a unique fixed point.

As a result of his study the following theorem was established by Tirado [10].

Theorem 2.11. [10] Let (E, ω, ∗L) be a complete GV-FMS and T : E → E be a mapping such that

1 − ω(Tϕ,Tφ, γ) ≤ k
(
1 − ω(ϕ,φ, γ)

)
,

for all ϕ,φ ∈ E, γ > 0 and for some k ∈ (0, 1). Then T has a unique fixed point.

Recently, Hayel et al. [29] introduced the following class of functions. Let Ω be the class of functions
ϑ f : (0, 1) −→ (0, 1) such that

(Ω1) ϑ f is non-decreasing,

(Ω2) ϑ f is continuous,

(Ω3) limn→+∞ ϑ f (βn) = 1 if and only if limn→+∞ βn = 1, where {βn} is a sequence in (0, 1).



A. Moussaoui et al. / Filomat 38:6 (2024), 1973–1985 1976

Definition 2.12. [29] Let (E, ω, ∗) be a GV-FMS. A mappingT : E → E is said to be a fuzzyϑ f -contractive mapping
w.r.t ϑ f ∈ Ω if there exists k ∈ (0, 1) such that

ω(Tϕ,Tφ, γ) < 1⇒ ϑ f (ω(Tϕ,Tφ, γ)) ≥
[
ϑ f (ω(ϕ,φ, γ))

]k
,

for all ϕ,φ ∈ E and γ > 0.

Theorem 2.13. [29] Let (E, ω, ∗) be a complete GV-FMS and T : E −→ E be a fuzzy ϑ f -contractive mapping, then
T has a unique FP.

Definition 2.14. ([21],[22]) The function Ξ : (0, 1] × (0, 1] −→ R is an FZ-simulation function if:

(Ξ1) Ξ(1, 1) = 0,

(Ξ2) Ξ(a, b) < 1
b −

1
a for all a, b ∈ (0, 1),

(Ξ3) if {an}, {bn} are sequences in (0, 1] such that limn→∞ an = limn→+∞ an < 1, then limn→+∞ supΞ(an, bn) < 0.

The collection of all FZ-simulation functions is denoted by FZ.

Definition 2.15. ([21, 22]) Let (E, ω, ∗) be a GV-FMS, T : ϑ −→ ϑ be a mapping and Ξ ∈ FZ. Then T is called
an FZ-contraction w.r.t Ξ if

Ξ(ω(Tϕ,Tφ, γ), ω(ϕ,φ, γ)) ≥ 0 for all ϕ,φ ∈ E, γ > 0.

Example 2.16. If k ∈ (0, 1) and we define ΞGS : (0, 1] × (0, 1]→ R by

ΞGS(a, b) = k
(1

b
− 1

)
−

1
a
+ 1 for all a, b ∈ (0, 1],

then ΞGS is an FZ-simulation function.

Example 2.17. Let ψ : (0, 1] −→ (0, 1] be a nondecreasing and continuous mapping such that ψ(c) > c, for all
c ∈ (0, 1), then

ΞM(a, b) =
1
ψ(b)

−
1
a

for all a, b ∈ (0, 1],

is an FZ-simulation function.

Example 2.18. If η : (0, 1] −→ [0,+∞) is a strictly decreasing function and transforms (0, 1] onto [0,+∞), and we
define ΞW : (0, 1] × (0, 1]→ R by

ΞW(a, b) =
1

η−1(k.η(b))
−

1
a

for all a, b ∈ (0, 1],

where k ∈ (0, 1), then ΞW is an FZ-simulation function.

3. Main results

In this section, we initiate a very general type of fuzzy contractions on FMSs, and we establish related
existence and uniqueness FP theorems.

Let OFZ be the collection of all functions Ξ : (0, 1] × (0, 1] −→ R satisfying (Ξ1), (Ξ3) and (Ξ′2) (instead
of (Ξ2)):

(Ξ′2) : Ξ(a, b) ≤
1
b
−

1
a

for all a, b ∈ (0, 1).
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Definition 3.1. Let (E, ω, ∗) be a GV-FMS, T : E −→ E be a mapping and Ξ ∈ OFZ. Then T is called an
FZ − ϑ f -contraction w.r.t Ξ and ϑ f ∈ Ω if there exists k ∈ (0, 1) such that

ω(Tϕ,Tφ, γ) < 1 implies Ξ
(
ϑ f (ω(Tϕ,Tφ, γ)), (ϑ f (ω(ϕ,φ, γ)))k

)
≥ 0, (3)

for all ϕ,φ ∈ E and γ > 0.

Example 3.2. Every fuzzy contractive mapping is an FZ-ϑ f -contraction w.r.t ΞM ∈ OFZ and ϑ f ∈ Ω defined by

ΞAB(a, b) = 1
b −

1
a for all a, b ∈ (0, 1) and ϑ f (β) = e1− 1

β for all β ∈ (0, 1).

Example 3.3. Every Tirado contraction is an FZ-ϑ f -contraction w.r.t Ξ ∈ OFZ and ϑ f ∈ Ω defined by Ξ = ΞAB
and ϑ f (β) = eβ−1 for all β ∈ (0, 1).

Example 3.4. Let E = [0, 1] be endowed with the a GV-fuzzy metric ω given by ω(ϕ,φ, γ)) = γ
γ+d(ϕ,φ) for all

ϕ,φ ∈ E, γ > 0, where d is the usual metric. Then, (E, ω, ∗p) is a GV-FMS,. Consider the mapping T : E → E given
byTϕ = ϕ

ϕ+1 , for all ϕ ∈ E.Define the control functionΞ : (0, 1]×(0, 1] −→ R byΞ(a, b) = 1
b −

1
a for all a, b ∈ (0, 1).

For all ϕ,φ ∈ E, we have

1
4

(1 −
1

ω(ϕ,φ, γ)
) <

1
(ϕ + 1)(φ + 1)

(1 −
1

ω(ϕ,φ, γ)
)

=
1

(ϕ + 1)(φ + 1)
(−

d(ϕ,φ)
γ

)

= −
d(Tϕ,Tφ)

γ

= 1 −
1

ω(Tϕ,Tφ, γ)
.

Consider the function ϑ f ∈ Ω defined by ϑ f (β) = e1− 1
β for all β ∈ (0, 1) with k = 1

4 . Then, we derive that

1(
ϑ f (ω(ϕ,φ, γ))

)k
=

1(
e1− 1

ω(ϕ,φ,γ)
)k
>

1

e1− 1
ω(Tϕ,Tφ,γ)

=
1

ϑ f (ω(Tϕ,Tφ, γ))
.

Hence

Ξ
(
ϑ f (ω(Tϕ,Tφ, γ)), (ϑ f (ω(ϕ,φ, γ)))K

)
=

1(
ϑ f (ω(ϕ,φ, γ))

)k
−

1
ϑ f (ω(Tϕ,Tφ, γ))

=
1(

e1− 1
ω(ϕ,φ,γ)

)k
−

1

e1− 1
ω(Tϕ,Tφ,γ)

> 0.

Therefore T is an FZ-ϑ f -contraction w.r.t Ξ ∈ OFZ and ϑ f ∈ Ω.

Definition 3.5. Let (E, ω, ∗) be a GV-FMS,, T : E −→ E a mapping and Ξ ∈ OFZ. Then T is said to be a modified
FZ-ϑ f -contraction w.r.t Ξ and ϑ f ∈ Ω if there exists k ∈ (0, 1) such that

ω(Tϕ,Tφ, γ) < 1 implies Ξ
(
ϑ f (ω(Tϕ,Tφ, γ)), (ϑ f (Γ(ϕ,φ, γ)))k

)
≥ 0, (4)

for all ϕ,φ ∈ ϑ and γ > 0, where Γ(ϕ,φ, γ)) = min{ω(ϕ,φ, γ), ω(ϕ,Tϕ, γ), ω(φ,Tφ, γ)}
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Example 3.6. Let E = [0, 1] endowed with the fuzzy metricω given byω(ϕ,φ, γ)) = γ
γ+d(ϕ,φ) for all ϕ,φ ∈ E, γ > 0,

where d is the usual metric. Then, (E, ω, ∗p) is a GV-FMS,. Let T : E → E be defined by

Tϕ =


1
4 if ϕ = 1,

1
2 if 0 ≤ ϕ < 1.

and ϑ f (β) = e1− 1
β for all β ∈ (0, 1). We consider two cases:

� If ϕ ∈ [0, 1
4 ) and φ = 1, then

Γ(ϕ, 1, γ) = min{ω(ϕ, 1, γ), ω(ϕ,Tϕ, γ), ω(1,T 1, γ)}
= ω(ϕ, 1, γ)

=
γ

γ+ | ϕ − 1 |
.

� If ϕ ∈ [ 1
4 , 1) and φ = 1, then

Γ(ϕ, 1, γ) = min{ω(ϕ, 1, γ), ω(ϕ,Tϕ, γ), ω(1,T 1, γ)}
= ω(1,T 1, γ)

=
γ

γ + 3
4

.

Thus, in all cases if we take ϑ f (β) = e1− 1
β for all β ∈ (0, 1), k = 1

3 and Ξ = ΞAB, then we obtain that

Ξ
(
ϑ f (ω(Tϕ,Tφ, γ)), (ϑ f (ω(ϕ,φ, γ)))k

)
≥ 0, that is, T is an FZ-ϑ f -contraction w.r.t Ξ and ϑ f .

Theorem 3.7. Let (E, ω, ∗) be a complete GV-FMS, and T : E → E be an FZ-ϑ f -contraction w.r.t Ξ. Then T has
a unique FP.

Proof. Define {ϕn} in E by
Tϕn = ϕn+1,

for all n ≥ 0. If there exists m ∈ N such that ϕn0 = ϕn0+1, then it follows that ϕn0 is a FP of T . Assume that
ϕn , ϕn+1 for all n ∈N. Then ω(ϕn, ϕn+1, γ) < 1 for all n ∈N and γ > 0. From (3), we get

0 ≤ Ξ
(
ϑ f (ω(Tϕn,Tϕn−1, γ)), (ϑ f (ω(ϕn, ϕn−1, γ)))k

)
(5)

≤
1

(ϑ f (ω(ϕn, ϕn−1, γ)))k
−

1
ϑ f (ω(Tϕn,Tϕn−1, γ))

.

(6)

Consequently,

ϑ f (ω(ϕn, ϕn−1, γ)) < (ϑ f (ω(ϕn, ϕn−1, γ)))k
≤ ϑ f (ω(Tϕn,Tϕn−1, γ)),

which means that

ω(ϕn, ϕn−1, γ) < ω(ϕn+1, ϕn, γ). (7)

It follows that {ω(ϕn, ϕn−1, γ)} is a nondecreasing sequence. Thus there exists l(γ) ≥ 1 such that
limn→+∞ ω(ϕn, ϕn−1, γ) = l(γ) for all γ > 0. We shall prove that l(γ) = 1. Suppose that l(γ0) < 1 for
some γ0 > 0. Take the sequences {ω(ϕn+1, ϕn, γ0) and {ω(ϕn, ϕn−1, γ0)} and considering (Ξ3), we get

0 ≤ lim
n→+∞

supΞ
(
ϑ f (ω(ϕn+1, ϕn, γ0)), (ϑ f (ω(ϕn, ϕn−1, γ0)))k

)
< 0,
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a contradiction. Therefore,

lim
n→+∞

ω(ϕn, ϕn−1, γ) = 1 for all γ > 0. (8)

Next, we prove the Cauchyness of the sequence {ϕn}. Suppose that {ϕn} is not a Cauchy sequence. Then
there exists ϵ ∈ (0, 1), γ0 > 0 and two subsequences {ϕnk } and {ϕmk } of {ϕn} with mk > nk ≥ k for all k ∈ N
such that

ω(ϕmk , ϕnk , γ0) ≤ 1 − ϵ. (9)

From Lemma 2.6, we derive that

ω(ϕmk , ϕnk ,
γ0

2
) ≤ 1 − ϵ. (10)

By considering nk as the lowest value fulfilling (10), we get

ω(ϕmk−1, ϕnk ,
γ0

2
) > 1 − ϵ. (11)

Using (3) with ϕ = ϕmk−1 and φ = ϕnk−1, we obtain

0 ≤ Ξ
(
ϑ f (ω(Tϕmk−1,Tϕnk−1, γ0)), (ϑ f (ω(ϕmk−1, ϕnk−1, γ0)))k

)
= Ξ

(
ϑ f (ω(ϕmk , ϕnk , γ0)), (ϑ f (ω(ϕmk−1, ϕnk−1, γ0))k

)
≤

1
(ϑ f (ω(ϕmk , ϕnk , γ0)))k

−
1

ϑ f (ω(ϕmk−1, ϕnk−1, γ0))
, (12)

which implies that

ϑ f (ω(ϕmk−1, ϕnk−1, γ0) < (ϑ f (ω(ϕmk−1, ϕnk−1, γ0)))k
≤ ϑ f (ω(ϕmk , ϕnk , γ0)).

Since ϑ f is nondecreasing, we have

ω(ϕmk−1, ϕnk−1, γ0) < ω(ϕmk , ϕnk , γ0) (13)

On account of (9),(11),(13) and the condition (GV4) of fuzzy metric, we have

1 − ϵ ≥ ω(ϕmk , ϕnk , γ0)
> ω(ϕmk−1, ϕnk−1, γ0)

≥ ω(ϕmk−1, ϕnk ,
γ0

2
) ∗ ω(ϕnk−1, ϕnk ,

γ0

2
)

> (1 − ϵ) ∗ ω(ϕnk−1, ϕnk ,
γ0

2
).

Taking the limit as k→ +∞ in both sides of the last inequality, by (8), we derive

lim
k→+∞

ω(ϕmk , ϕnk , γ0) = lim
k→+∞

ω(ϕmk−1, ϕnk−1, γ0) = 1 − ϵ. (14)

Passing to the limit as k→ +∞ in (12), using (14) and the continuity of ϑ f , we get(
ϑ f (1 − ϵ)

)k

≤ ϑ f (1 − ϵ),

a contradiction. Therefore, {ϕn} is a Cauchy sequence. As (E, ω, ∗) is a complete GV-FMS, there exists ϕ ∈ E
such that ϕn → ϕ as n→ +∞, that is,

lim
n→+∞

ω(ϕn, ϕ, γ) = 1. (15)
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By the continuity of T and (15), we obtain

lim
n→+∞

ω(ϕn+1,Tϕ, γ) = lim
n→+∞

ω(Tϕn,Tϕ, γ) = 1.

Given that the limit is unique, it follows that Tϕ = ϕ, thus ϕ is a FP of T . Next, we prove the uniqueness
of the FP of T . Suppose that ϕ,ϕ∗ ∈ E are two distinct FPs of the mapping T . Then, Tϕ = ϕ and Tϕ∗ = ϕ∗

with ϕ , ϕ∗. By (3) we have

0 ≤ Ξ
(
ϑ f (ω(Tϕ,Tϕ∗, γ)), (ϑ f (ω(ϕ,ϕ∗, γ)))k

)
= Ξ

(
ϑ f (ω(ϕ,ϕ∗, γ)), (ϑ f (ω(ϕ,ϕ∗, γ)))k

)
≤

1
(ϑ f (ω(ϕ,ϕ∗, γ)))k

−
1

ϑ f (ω(ϕ,ϕ∗, γ))
. (16)

Consequently

(ϑ f (ω(ϕ,ϕ∗, γ)))k
≤ ϑ f (ω(ϕ,ϕ∗, γ)) for all γ > 0,

a contradiction. Thus, the FP is unique.

Remark 3.8. Note that if we take Ξ = ΞAB and ϑ f (β) = e1− 1
β for all β ∈ (0, 1) then Theorem 3.7 reduces to Theorem

2.10 due to Gregori and Sapena. Moreover, if we consider ζAB with ϑ f (β) = eβ−1 for all β ∈ (0, 1), Theorem 3.7
reduces to Theorem 2.11 due to Tirado.

Example 3.9. Let E = {33ℓ : ℓ ∈N} ∪ {3} be endowed with the fuzzy metric ω given by

ω(ϕ,φ, γ) =


ϕ
φ if ϕ ≤ φ,

φ
ϕ if φ ≤ ϕ.

Then, (E, ω, ∗p) is a complete GV-FMS. Now, consider the mapping T : E → E defined by

Tϕ =

{
33ℓ−1 if ϕ = 33ℓ , ℓ ∈N

3 if ϕ = 3.

Also define Ξ : (0, 1] × (0, 1]→ R by

Ξ(a, b) =
1
b
−

1
a

for all a, b ∈ (0, 1).

Take Ξ f (β) = β for all β ∈ (0, 1) and k = 1
3 . Then, for all ℓ, p ∈N with ℓ > p, and all γ > 0, we have

ϑ f (ω(T 33p
,T 33ℓ , γ)) = ω(T 33p

,T 33ℓ , γ)

=
33p−1

33ℓ−1

=
(
ϑ f (ω(33p

, 33ℓ , γ))
) 1

3
=

(
ϑ f (ω(33p

, 33ℓ , γ))
)k
.

It follows that

Ξ
(
ϑ f (ω(T (33p

),T (33ℓ ), γ)), (ϑ f (ω(33p
, 33ℓ , γ)))k

)
= Ξ

(
ω(T (33p

),T (33ℓ ), γ), (ω(33p
, 33ℓ , γ))k

)
=

1

(ω(33p , 33ℓ , γ))
1
3

−
1

ω(T (33p ),T (33ℓ ), γ)

≥ 0.
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Also, we have

ϑ f (ω(T 3,T 33ℓ , γ)) = ω(T 3,T 33ℓ , γ)

=
3

33ℓ−1

>
( 3
33ℓ

) 1
3
=

(
ϑ f (ω(3, 33ℓ , γ))

) 1
3
.

Hence

Ξ
(
ϑ f

(
ω(T 3,T 33ℓ , γ)

)
,
(
ϑ f (ω(3, 33ℓ , γ))

)k)
= Ξ

(
ω(T 3,T 33ℓ , γ), (ω(3, 33ℓ , γ))

1
3

)
=

1

(ω(3, 33ℓ , γ))
1
3

−
1

ω(T 3,T 33ℓ , γ)

=
1

( 3
33ℓ

)
1
3

−
1
3

33ℓ−1

≥ 0.

Thus, in all cases (3) is satisfied. Therefore, T is an FZ-ϑ f -contraction w.r.t Ξ andT possesses a unique FP, namely,
ϕ = 3.

Corollary 3.10. [29] Let (E, ω, ∗) be a complete GV-FMS, and T : E −→ E be a mapping satisfying:

ω(Tϕ,Tφ, γ) < 1 implies ϑ f (ω(Tϕ,Tφ, γ)) ≥
(
ϑ f (ω(ϕ,φ, γ))

)k
,

for all ϕ,φ ∈ E and γ > 0. Then T has a unique FP.

Proof. The proof follows from Theorem 3.7 by considering Ξ(a, b) = 1
b −

1
a for all a, b ∈ (0, 1].

Corollary 3.11. [29] Let (E, ω, ∗) be a complete GV-FMS and T : E −→ E be a mapping satisfying:

ω(Tϕ,Tφ, γ) < 1 =⇒
[
1 + sin

(π
2

(ω(ϕ,φ, γ) − 1)
)]k
≤ 1 + sin

(π
2

(ω(Tϕ,Tφ, γ) − 1)
)
,

for all ϕ,φ ∈ E and γ > 0. Then T has a unique FP.

Proof. The proof follows from Theorem 3.7 by taking Ξ(a, b) = 1
b −

1
a for all a, b ∈ (0, 1] with ϑ f (β) =

1 + sin
(
π
2 (β − 1)

)
for all β ∈ (0, 1).

Now, utilizing modified FZ-ϑ f -contraction, we prove the following more general result.

Theorem 3.12. Let (E, ω, ∗) be a complete GV-FMS and T : E −→ E be a modified FZ-ϑ f -contraction w.r.t Ξ.
Then T has a unique FP.

Proof. Define {ϕn} in ϑ by
Tϕn = ϕn+1

for all n ≥ 0. If there exists l0 ∈ N such that ϕl0 = ϕl0+1, then it follows that ϕl0 is a FP of T . Assume that
ϕn , ϕn+1 for all n ∈N. Then ω(ϕn, ϕn+1, γ) < 1 for all n ∈N and γ > 0. From (4), we obtain

0 ≤ Ξ
(
ϑ f (ω(Tϕn−1,Tϕn, γ)), (ϑ f (Γ(ϕn−1, ϕn, γ)))k

)
. (17)
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Hence

0 ≤
1

(ϑ f (Γ(ϕn−1, ϕn, γ)))k
−

1
ϑ f (ω(ϕn, ϕn+1, γ))

.

Consequently,

(ϑ f (Γ(ϕn−1, ϕn, γ)))k
≤ ϑ f (ω(ϕn, ϕn+1, γ)), (18)

where

Γ(ϕn−1, ϕn, γ) = min{ω(ϕn−1, ϕn, γ), ω(ϕn−1,Tϕn−1, γ), ω(ϕn,Tϕn, γ)}
= min{ω(ϕn−1, ϕn, γ), ω(ϕn−1, ϕn, γ), ω(ϕn, ϕn+1, γ)}
= min{ω(ϕn−1, ϕn, γ), ω(ϕn, ϕn+1, γ)}. (19)

Now, if min{ω(ϕn−1, ϕn, γ), ω(ϕn, ϕn+1, γ)} = ω(ϕn, ϕn+1, γ), it follows from (18) that

ω(ϕn, ϕn+1, γ) < (ϑ f (ω(ϕn, ϕn+1, γ)))k
≤ ϑ f (ω(ϕn, ϕn+1, γ)),

which is a contradiction. Hence, min{ω(ϕn−1, ϕn, γ), ω(ϕn, ϕn+1, γ)} = ω(ϕn−1, ϕn, γ), by (18) we have

ω(ϕn−1, ϕn, γ) < (ϑ f (ω(ϕn−1, ϕn, γ)))k
≤ ϑ f (ω(ϕn, ϕn+1, γ)).

This means that {ω(ϕn, ϕn−1, γ)} is a nondecreasing sequence. Thus there exists s(γ) ≥ 1 such that
limn→+∞ ω(ϕn−1, ϕn, γ) = s(γ) for all γ > 0. We shall prove that s(γ) = 1. Reasoning by contradiction,
suppose that s(γ0) < 1 for some γ0 > 0. Now, if we take the sequences {ω(ϕn, ϕn+1, γ0) and {ω(ϕn−1, ϕn, γ0)}
and considering (Ξ3), we obtain

0 ≤ lim
n→+∞

supΞ
(
ϑ f (ω(ϕn, ϕn+1, γ0)), (ϑ f (ω(ϕn−1, ϕn, γ0)))k

)
< 0,

a contradiction. Which yields

lim
n→+∞

ω(ϕn−1, ϕn, γ) = 1 for all γ > 0. (20)

The proof of Cauchyness of the sequence {ϕn} is omitted since it occurs on the same line as in the proof of
Theorem 3.7. Next, since (E, ω, ∗) is a complete GV-FMS, there exists ϕ ∈ E such that ϕn → ϕ as n → +∞.
Hence

lim
n→+∞

ω(ϕn, ϕ, γ) = 1, γ > 0. (21)

Now, we prove the existence of the FP. Let S = {n ∈ N : ϕn+1 = Tϕ}. If S is infinite, then there exists
{ϕnk+1} ⊆ {ϕn+1} such that limk→+∞ ϕnk+1 = Tϕ, thus Tϕ = ϕ. If S is finite, it follows that ϕn+1 , Tϕ for
infinitely n ∈N, then there exists {ϕnk+1} ⊆ {ϕn+1}with ω(ϕnk+1,Tϕ, γ) < 1. From (4), we have

0 ≤ Ξ
(
ϑ f (ω(ϕnk+1,Tϕ, γ)), (ϑ f (Γ(ϕnk , ϕ, γ)))k

)
≤

1
(ϑ f (Γ(ϕnk , ϕ, γ)))k

−
1

ϑ f (ω(ϕnk+1,Tϕ, γ)))
,

which means

(ϑ f (Γ(ϕnk , ϕ, γ)))k
≤ ϑ f (ω(ϕnk+1,Tϕ, γ)), (22)

where

Γ(xnk , ϕ, γ) = min{ω(ϕnk , ϕ, γ), ω(ϕnk , ϕnk+1, γ), ω(ϕ,Tϕ, γ)}.
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If we suppose that ω(ϕ,Tϕ, γ) < 1, we get

lim
k→+∞

Γ(ϕnk , ϕ, γ) =min{1, 1, ω(ϕ,Tϕ, γ)}

=ω(ϕ,Tϕ, γ) (23)

Taking the limit as k→ +∞ in (22) and using (23), we derive that

(ϑ f (Γ(ϕ,Tϕ, γ)))k
≤ ϑ f (ω(ϕ,Tϕ, γ)).

Which is a contradiction, since k ∈ (0, 1). Therefore, ω(ϕ,Tϕ, γ) = 1, thus Tϕ = ϕ.
Finally, we prove the uniqueness of the FP of T . We argue by contradiction, assume that ϕ, ϕ̃ ∈ E are

two distinct FPs of T . Applying (4), we have

0 ≤ Ξ
(
ϑ f (ω(Tϕ,T ϕ̃, γ)), (ϑ f (Γ(ϕ, ϕ̃, γ)))k

)
= Ξ

(
ϑ f (ω(ϕ, ϕ̃, γ)), (ϑ f (Γ(ϕ, ϕ̃, γ)))k

)
≤

1
(ϑ f (Γ(ϕ, ϕ̃, γ)))k

−
1

ϑ f (ω(ϕ, ϕ̃, γ))
.

Hence

(ϑ f (Γ(ϕ, ϕ̃, γ)))k
≤ ϑ f (ω(ϕ, ϕ̃, γ)) for all γ > 0, (24)

where

Γ(ϕ, ϕ̃, γ) = min{ω(ϕ, ϕ̃, γ), ω(ϕ,Tϕ, γ), ω(ϕ̃,T ϕ̃, γ)}

= min{ω(ϕ, ϕ̃, γ), 1, 1}

= ω(ϕ, ϕ̃, γ). (25)

Using (24) and (25), we deduce

(ϑ f (ω(ϕ, ϕ̃, γ)))k
≤ ϑ f (ω(ϕ, ϕ̃, γ)) for all γ > 0,

a contradiction. Hence, the FP is unique.

Corollary 3.13. [29] Let (E, ω, ∗) be a complete GV-FMS and T : E → E be a mapping such that for all ϕ,φ ∈ E,
γ > 0 and for some k ∈ (0, 1)

1 − ω(Tϕ,Tφ, γ) ≤ k
(
1 − Γ(ϕ,φ, γ)

)
,

where Γ(ϕ,φ, γ)) = min{ω(ϕ,φ, γ), ω(ϕ,Tφ, γ), ω(φ,Tφ, γ)}. Then T has a unique FP.

Proof. The proof follows from Theorem 3.12 by considering Ξ = ΞAB and ϑ f (β) = eβ−1 for all β ∈ (0, 1).

Corollary 3.14. [29] Let (E, ω, ∗) be a complete GV-FMS and T : E −→ E be a mapping such that for all ϕ,φ ∈ E,
γ > 0 and for some k ∈ (0, 1)

ω(Tϕ,Tφ, γ) < 1 implies
(
ϑ f (Γ(ϕ,φ, γ))

)k
≤ ϑ f (ω(Tϕ,Tφ, γ)),

where Γ(ϕ,φ, γ)) = min{ω(ϕ,φ, γ), ω(ϕ,Tϕ, γ), ω(φ,Tφ, γ)}. Then T has a unique FP.

Proof. The proof follows from Theorem 3.12 by considering Ξ(a, b) = 1
b −

1
a for all a, b ∈ (0, 1].
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Corollary 3.15. [29] Let (E, ω, ∗) be a complete GV-FMS and T : E −→ ϑ be a mapping satisfying, for all ϕ,φ ∈ E,
γ > 0 and for some k ∈ (0, 1)

ω(Tϕ,Tφ, γ) < 1 =⇒
[
1 − cos

(π
2
Γ(ϕ,φ, γ)

)]k
≤ 1 − cos

(π
2
ω(Tϕ,Tφ, γ)

)
,

where Γ(ϕ,φ, γ)) = min{ω(ϕ,φ, γ), ω(ϕ,Tϕ, γ), ω(φ,Tφ, γ)}. Then T has a unique FP.

Proof. The proof follows from Theorem 3.12 by considering Ξ(a, b) = 1
b −

1
a for all a, b ∈ (0, 1] with ϑ f (β) =

1 − cos
(
π
2 (β)

)
for all β ∈ (0, 1).
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