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Abstract. We extend the Banach contraction principle and define a condition that applies to contraction
mappings as well as nonexpansive mappings. The fixed point sets and domains of the mappings satis-
fying our theorems display interesting algebraic, geometric and dynamical features. Various examples
substantiate our results.

1. Introduction

Banach [1] proved that if a selfmapping T of a complete metric space (X, ρ) satisfies:

ρ(Tx,Ty) ≤ λρ(x, y), 0 ≤ λ < 1, (1)

then T has a unique fixed point. Various useful applications and generalizations of this theorem have been
obtained e. g. Boyd and Wong [4], Chatterjea [6], Ciric [7, 8], Kannan [12, 13], Meir-Keeler [14], Suzuki [24],
Wardowski [25, 26]. In 2017, Pant and Pant [18] proved that the contractive type (ϵ, δ) condition:

given ϵ > 0 there exists a δ(ϵ) > 0 such that
ϵ < max{d(x, f x), d(y, f y)} < ϵ + δ =⇒ d( f x, f y) ≤ ϵ (2)

applies to nonexpansive type mappings as well (see Theorem 2.9 [18]) and named such mappings as (ϵ− δ)
nonexpansive mappings. Condition (2) or its variants have been employed by researchers to find new
solutions of Rhoades’ problem [21] on continuity of contractive mappings at the fixed point, e. g., Bisht and
Pant [2], Bisht and Rakocevic [3], Celik and Ozgur [5], Pant [16, 17], Pant et al [19, 20], Tas and Ozgur [23],
Zheng and Wang [27].

In this paper we modify the Banach contraction condition (1) to make it applicable to contraction
mappings as well as nonexpansive mappings. First, we give some relevant definitions.

Definition 1.1 ([9, 10]). If T is a self-mapping of a set X then a point x in X is called an eventually fixed point of T
if there exists a natural number N such that Tn+1(x) = Tn(x) for n ≥ N. If Tx = x then x is called a fixed point of T.
A point x in X is called a periodic point of period n if Tnx = x. The least positive integer n for which Tnx = x is called
the prime period of x.

Definition 1.2. The set {x ∈ X : Tx = x} is called the fixed point set of the mapping T : X→ X.

Definition 1.3. The function T : (−∞,∞)→ (−∞,∞) such that T(x) is the least integer not less than x is called the
least integer function or the ceiling function and is denoted by T(x) = ⌈x⌉.
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Email address: pant_rp@rediffmail.com (R. P. Pant)



R. P. Pant / Filomat 38:6 (2024), 1987–1990 1988

2. Main Results

Theorem 2.1. Let (X, ρ) be a complete metric space and T : X → X be such that for each x, y in X with x , Tx or
y , Ty we have

(i) ρ(Tx,Ty) ≤ λρ(x, y), 0 ≤ λ < 1.

Then T has a fixed point. T has a unique fixed point ⇐⇒ (i) is satisfied for each x , y in X.

Proof. From (i) we infer that T is continuous since ρ(Tx,Ty) = ρ(x, y) when x = Tx and y = Ty. Let y0 be
any point in X and {yn} be the sequence defined by yn = Tyn−1, that is, yn = Tny0. If yn = yn+1 for some n,
then yn is a fixed point of T and the theorem holds. Therefore, assume that yn , yn+1 for each n ≥ 0. Then
using (i), for each n ≥ 1 and p ≥ 1 we have

ρ(yn, yn+p) = ρ(Tyn−1,Tyn+p−1)

≤ λρ(yn−1, yn+p−1) ≤ λ2ρ(yn−2, yn+p−2) ≤ . . . ≤ λnρ(y0, yp).

This implies that limn→∞ ρ(yn, yn+p) = 0, that is, {yn} is a Cauchy sequence. Since X is complete, there exists
z in X such that limn→∞ yn = z and limn→∞ Tyn = z. Continuity of T implies limn→∞ Tyn = Tz, that is, z = Tz
and z is a fixed point of T. Further, let u be any point in X. Then, since Tny0 = yn is not a fixed point, using
(i) we get

ρ(Tnu,Tny0) ≤ λρ(Tn−1u,Tn−1y0) ≤ λ2ρ(Tn−2u,Tn−2y0) ≤ . . . ≤ λnρ(u, y0).

This implies limn→∞ ρ(Tnu,Tny0) = 0, that is, limn→∞ Tnu = z. Thus, if there exists a point y0 such that
Tn+1y0 , Tny0 for each n, then for each u in X the sequence of iterates {Tnu} converges to z and z is the
unique fixed point. Therefore,Tn+1y0 , Tny0,n ≥ 0, for some y0 implies uniqueness of the fixed point.

Now, assume that condition (i) is satisfied for all x, y in X. Then T can have only one fixed point.
Conversely, suppose that T has a unique fixed point. Then for distinct x, y we have x , Tx or y , Ty which
implies that condition (i) holds for each x , y. This proves the theorem.

Example 2.2. Let X = [1,∞) and ρ be the Euclidean metric. Let T : X → X be the signum function Tx = s1n x
defined as

Tx = −1 if x < 0, T0 = 0, Tx = 1 if x > 0.

Then Tx = 1 for each x and T is a contraction mapping that has a unique fixed point x = 1. If x , 1 then Tx = T2x
and x is an eventually fixed point.

Example 2.3. Let F = {reiθ : 0 ≤ θ ≤ 2π, r = 1, 3, 32, . . .} be the self-similar family of concentric circles, each lying
within larger circles having radii in a geometric progression, in the xy-plane. Let X be the set of points of intersection
of F with the N rays beginning at the origin and respectively making angles 0, 2π

N , 2( 2π
N ), 3( 2π

N ), . . . , (N − 1)( 2π
N )

measured counter clockwise with the positive x-axis and let d be the usual metric on X. Define T : X→ X by

T(reiθ) = ⌈
r
3
⌉eiθ

where ⌈x⌉ denotes the least integer not less than x. Then T satisfies condition (i) with λ = 1
2 and has N fixed points

ei0, ei( 2π
N ), ei2( 2π

N ), ei3( 2π
N ), . . . , ei(N−1)( 2π

N ). If N = 1 then T is a Banach contraction mapping and has a unique fixed point
ei0 = 1.

Example 2.4. Let X = {z = reiθ : 0 ≤ θ ≤ 2π, r = 1, 3, 32, . . .} be the self-similar family of concentric circles, each
lying within larger circles having radii in a geometric progression, in the xy-plane and let d be the usual metric on X.
Define T : X→ X by T(z) = z

|z| =
z
r .

Then T satisfies (i) with λ = 1
2 and each point on the unit circle z = eiθ is a fixed point while every other point is an

eventually fixed point. In this example, the unit circle is a fixed circle. Fixed circles are presently an active area of
study (see [11, 15, 22]).
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Example 2.5. Let (X, ρ) be a metric space and T be the identity mapping on X. Then each point is a fixed point and
conditions (i) holds since there is no pair of points (x, y) in X that violates it.

Remark 2.6. The N fixed points ei0, ei( 2π
N ), ei2( 2π

N ), ei3( 2π
N ), . . . , ei(N−1)( 2π

N ) in Example 2.3 are:
A. the Nth roots of unity and these lie on the unit circle and form a cyclic group under multiplication,
B. vertices of a regular polygon of N sides.

If N = 2n
− 1 then the fixed point set is identical with the set of periodic points of period n for the doubling map which

is important in dynamics of complex functions (see [9, 10]).
Also, the domain of the mapping in Example 2.4 is a self-similar family of circles. We thus see that the domain and
the fixed point set of the mappings satisfying Theorem 2.1 may posses interesting algebraic, geometric and dynamical
features. In place of the self-similar family of circles if we consider a self-similar family of spheres then the domain will
be more intricate and visually attractive.

3. Applications

We now give an application of condition (i) in determining the cardinality of the fixed point set of
mappings for which Theorem 2.1 holds.

Suppose (X, ρ) is a complete metric space and Theorem 2.1 holds for T : X → X. Then T has one or
more fixed points. If condition (i) is satisfied for each x , y in X then T has a unique fixed point. If u, v are
distinct fixed points of T then ρ(Tu,Tv) = ρ(u, v).

Suppose each set of n + 1 points y1, y2, . . . , yn+1 in X satisfies

ρ(Ty1,Ty2) + ρ(Ty2,Ty3) + . . . + ρ(Tyn,Tyn+1) + ρ(Tyn+1,Ty1)
< ρ(y1, y2) + ρ(y2, y3) + . . . + ρ(yn, yn+1) + ρ(yn+1, y1).

Then, the number of fixed points of T cannot exceed n. For, if T has n + 1 fixed points, say z1, z2, . . . , zn+1,
then we get

ρ(Tz1,Tz2) + ρ(Tz2,Tz3) + . . . + ρ(Tzn,Tzn+1) + ρ(Tzn+1,Tz1)
= ρ(z1, z2) + ρ(z2, z3) + . . . + ρ(zn, zn+1) + ρ(zn+1, z1),

which contradicts our assumption.
Next, suppose there exists a set of n points x1, x2, . . . , xn in X such that T does not satisfy

ρ(Tx1,Tx2) + ρ(Tx2,Tx3) + . . . + ρ(Txn−1,Txn) + ρ(Txn,Tx1)
< ρ(x1, x2) + ρ(x2, x3) + . . . + ρ(xn−1, xn) + ρ(xn, x1). (3)

By virtue of (i) this implies that each of x1, x2, . . . , xn is a fixed point of T, otherwise T will satisfy (3). This
can be summarised as:

Theorem 3.1. The cardinality of the set of fixed point of a selfmapping T satisfying the conditions of Theorem 2.1
equals n if and only if for each set of n + 1 points y1, y2, . . . , yn+1 we have

ρ(Ty1,Ty2) + ρ(Ty2,Ty3) + . . . + ρ(Tyn,Tyn+1) + ρ(Tyn+1,Ty1)
< ρ(y1, y2) + ρ(y2, y3) + . . . + ρ(yn, yn+1) + ρ(yn+1, y1), (4)

while there exists a set of n points x1, x2, . . . , xn in X that does not satisfy

ρ(Tx1,Tx2) + ρ(Tx2,Tx3) + . . . + ρ(Txn−1,Txn) + ρ(Txn,Tx1)
< ρ(x1, x2) + ρ(x2, x3) + . . . + ρ(xn−1, xn) + ρ(xn, x1). (5)

Remark 3.2. The proof of Theorem 2.1 shows that if for some x in X we have Tnx , Tn+1x for each n ≥ 0 then T has
a unique fixed point. This implies that if T has more than one fixed point then the orbit {Tnx : n = 0, 1, . . .} of each
x in X is a finite set, that is, starting the iteration with any initial point we reach a fixed point in a finite number of
steps. This simplifies the search for fixed points. If T has a finite number of fixed points, then the cardinality of the
fixed point set can be determined by using inequalities (4) and (5).
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