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On new trapezoid and midpoint type inequalities for generalized
quantum integrals
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Abstract. In this article, by utilizing the functions with bounded second derivatives, we first prove some
trapezoid and midpoint type inequalities for generalized quantum integrals which are introduced in the
recent papers. Then we establish some new quantum integral inequalities for mappings whose second
quantum derivatives are bounded. Moreover, we obtain some new weighted trapezoid and midpoint type
inequalities for generalized quantum integrals by using the functions with bounded second derivatives.
Finally, we investigate the connections between our results and those in earlier works.

1. Introduction

Quantum calculus, occasionally known as calculus without limits, is equivalent to the traditional in-
finitesimal calculus without the notion of limits. Many researchers have recently been studied extensively in
the field of g-calculus. Euler started out on this subject because of the very excessive demand of mathematics
that fashions quantum computing g-calculus seemed like a connection between physics and mathematics.
It has programs in several areas of arithmetic, along with combinatorics, quantity principle, basic hyper-
geometric functions, and orthogonal polynomials, and in fields of other sciences, which include mechanics,
the idea of relativity, and quantum idea [10-15, 18]. Seemingly, Euler became the founder of this branch of
mathematics, through the usage of the parameter g in Newtons work on the infinite collection. Later, the g-
calculus turned into first given through Jackson [16]. In 1908-1909, Jackson described the general g-integral
and g-difference operator [15]. In 1969, Agarwal described the g-fractional derivative for the primary time
[1]. In 1966-1967, Al-Salam delivered a g-analog of the Riemann—Liouville fractional integral operator and
g-fractional vital operator [5]. In 2004, Rajkovic gave a definition of the Riemann-type g-fundamental which
generalized to Jackson g-essential. In 2013, Tariboon delivered ,D,-difference operator [2].

Many integral inequalities have been presented, utilizing quantum integrals for numerous type of
functions. The interested readers are suggested to see [2, 4, 6, 8, 17, 21, 24, 27-29, 31, 33, 34]. The
authors used quantum integrals to prove Hermite-Hadamard type integral inequalities and their left-right
estimates for convex, coordinate convex and various other classes of functions. Noor et al. estimated a
generalized version of quantum integral inequalities in [24]. Nwaeze et al. proved certain parametrized
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quantum integral inequalities for generalized quasi-convex functions in [26]. Khan et al. exhibited quantum
Hermite-Hadamard inequality using green function in [20], Vivas-Cortez et al. [9] and Ali et al. [32] proved
new quantum Simpson’s and quantum Newton’s type inequalities for convex and coordinated convex
functions.

In this article, motivated by these continuing proceedings, we exhibit a generalized form of quantum
Midpoint and quantum Trapezoid type inequalities using the functions with bounded twice differentiable
derivatives, these newly established inequalities are the generalizations of previously proved results.

2. Preliminaries of g-Calculus and Some Inequalities

In this section, we discuss some required definitions of quantum calculus and important quantum
integral inequalities for Hermite-Hadamard on left and right sides bounds:

n

qq =l+g+¢+...+q9"", g€(0,1).

1-
[nly = 7=

Jackson derived the g-Jackson integral in [15] from O to p for 0 < g < 1 as follows:

n=0

p o
f F ()dgc=(1-g)p ) q"F (pg")
0

provided the sum converge absolutely.
The g-Jackson integral in a generic interval [o, p] was given by in [15] and defined as follows:

P p I
JfT(K)quz‘!‘T(K)qu—bf?‘(K)qu.

Definition 2.1. Let us suppose that a function ¥ : [o,p] — R is continuous, then q,-derivative [29] and qP-
derivative [7] of F at x € [0, p] are defined as follows

_F W) -F (g +(1-9g)o)

qu¢(K)— (1—!])(1{—6) , KF+O
and
1— —
PDF (x) = ﬂ"’ca d . (q; ‘?K) TW sp

Definition 2.2. We assume that a function ¥ : [0, p] — R is continuous, then the q,-definite integral [30] and
q°-definite integral [7] on [0, p] are defined as follows

p

[ 70 itk =-0(0-0 Y i o+ -0 =(p-0) [ 7@ =D+ 1p)dy
n=0 0

o

and
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o n=0 0

respectively.
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In [2] and [7], Alp et al. and Bermudo et al. established the g,-Hermite-Hadamard and g,-Hermite-
Hadamard inequalities for convexity, which are defined as follows, respectively.

Theorem 2.3. Let ¥ : [0,p] — R be a convex differentiable function on [o, p] and 0 < q < 1. Then q-Hermite-
Hadamard inequalities are as follows:

qo+p qT(o)+ F (p)
¢(1+q) p- afﬂk) Ay 1+gq @
and
a+qp I ) F @+ ()
7:(1+q) p- GIT(K)F 1+g @)

The authors of [23] and [2] have set certain boundaries for the left and right sides of the inequality (1).
On the other hand, Budak has set certain boundaries for the left and right sides of the inequality (2).
From inequality (1) and inequality (2), one can the following inequalities:

Corollary 2.4. [7] For any convex function ¥ : [0, p] = Rand 0 < q < 1, we have

T(qlo:qp)+7-(o-11q:) py O_{ff(?{) dK+f7:(K Pd K}<7:(O')+7:(p)

and

p p
o+p 1 F (0)+ F (p)
?( 2 )SZ(P—O) {fT(K) quKJrf?:(K) quK}Sf'

By using the area of trapezoids, Alp and Sarikaya introduced the following generalized quantum integral
which we will called ,T,-integral.

Definition 2.5. [3] Let ¥ : [0, p] — R is continuous function. For « € [o, p]

‘7

A+ Y q"F @"p+(1—q"0) —?’(p)l, ®)
n=0

where 0 <q < 1.

Theorem 2.6 (,T,-Hermite-Hadamard). [3] Suppose that ¥ : [0,p] — R is a convex continuous function on
[0, p] and 0 < q < 1. Then we have

P
F (o) +F (p)
p—O'fT(K) od;KS f

)

In [19], Kara et al. introduced the following generalized quantum integral which is called ?T;-integral
by using the area of trapezoids.
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Definition 2.7. [19] Assume that F : [0, p] = R is continuous function. For x € [0, p],

fg;(t) pth_ —q)(p—0)
2q

(1+9)) " F@o+1-gp)~ F ()|, (4)
n=0

where 0 < q < 1. This integral is called P Ty-integral.

Theorem 2.8. [19][3] Let F : [0, p] = R be a function and 0 < q < 1. Then we have

1 p
1
f?(tp-i'(l— t)O‘) od;t: pTO'f?(t) gd;t
0 4

and
1 1 P
f?—’(tp+ (1- to) ldgt = pTGfT(t) Pdgt.
0 o

Theorem 2.9 ("T,-Hermite-Hadamard). [19] If ¥ : [0,p] — R is a convex continuous function on [o, p] and
0 < g < 1, then we have

p
T(GJFP)S ﬁfT(K) Pd;KS w_

Lemma 2.10. [22] Let us note that F : [0, p] — R is a twice differentiable mapping so that there exist real constants
m and M such that m < " < M. Then for y € [0,1], we have

7(1 ) < 7/(12—7/) 0

(p-0Y <(A=-9F©@+yF(p)-F (p+(1-y) (5)

Lemma 2.11. [22] Let us consider that F : [o,p] — R is a twice differentiable mapping so that there exist real
constants m and M such that m < " < M. Then, the following inequalities

“) L, Fho+(1-p)p)+F(1-))o 0 “2) oy
a 82y) (p—op < 07 y)p);r -y +VP)_7.~( ;P)SM“ 82” (p-0)

are valid for all y € [0,1] .

(6)

3. Quantum Midpoint and Trapezoid-type Inequalities

In this section, we prove some quantum trapezoid and midpoint type inequalities for functions whose
second derivatives are bounded.

Theorem 3.1. If ¥ : [0, p] — Ris a twice differentiable mapping, then there exist real constants m and M such that
m < F"" < M. Then, the following double inequality

P
(p-0)q _F@+F(p) 1 ot 2 (P 0)
13, < 5 (p—a)\[gr(K) dyx <M i3I, (7)

is valid for 0 < g < 1.
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Proof. By PT, integrating of (5) with respect to the y from 0 to 1, we have

1
(o= o)’
2
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1
y(1-y) 1d§7£¢(0)f(1—y) 1quV+T(p)fylquV
0

1
—f?’(yp+(1—y)6) 1dT7/<Mp_ )fy(l ) ldgy.
0

With the help of the equality (4), we obtain the following equalities
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f 7 p+-0)0) dfy =027 [(1 L) YT (1= p+4'0) - T ©
n=0

p
— L pqT
(p_g)f?'(x) dgx.

If we substitute the equalities (9)-(13) in the double inequality (8), then we obtain the desired result.

2327
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(12)

(13)

O
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Theorem 3.2. If ¥ : [0, p] — R is a twice differentiable mapping, then there exist real constants m and M so that
m < F" < M. Then, the following double inequality holds:

(p=0)q _F@+F(p) T (p-0)q
m i3], < > fT(K) dyk S M——=— i3I, (14)

for0<g<1.

Proof. Integrating double inequality (5) with respect to the y over [0, 1], we get

1
o= o)’
2

0

y(=y) odgy < F ( o)f(l—y) odTy+T(p)fVoqu ff(yw(l—y)a) odyy (15)

1
(p- 0)2 T
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0

By using the equality (3), we have the following equalities

1
(1- 7l 1 1] 1
[‘)/Od; |:1_q_1_q2:|_zr (16)
~ (1-9q o |1
<1 Y odyy == |19 ) g (1= (A=) -1 =7, 17)
n=0
1 -0, 3
f V2 odyy = Tq (1+q)) q"(1-q") (18)
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p
1
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By substituting the inequalities (16)-(20) in the double inequality (15), we establish required result. [
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Theorem 3.3. Assume that F : [0, p] = R is a twice differentiable mapping. Then there exist real constants m and
M such that m < " < M. Then, the following double inequality
(p-0)(1-q+) (

T T
8031, _Z(p fT(K) d1<+f7:(1<) Pdgx

(p-o) (1—q+q)
- 8[3],

) (21)

is valid for 0 < g < 1.

Proof. Let us ,T, integrate double inequality (6) with respect to the y over from 0 to 1, we obtain

1

(p_o_)2 2 T 1

m—g f(l—z)/) od,ﬂ/ﬁi
0

1
fT(VfH(l—V)p) odyy
0
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1
(P‘U)z 2 T
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With the help of the equality (3), we get the following equalities

1

f (1-2y)° odgy = (127) [(Hq)Zq" (1—2q”)2—1l (22)
0 n=0
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n=0

p
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ff«l o odfy =2 +q>2q”¢(<1 1o+ ') - ?<p>l o4)

P
_ 1 T
= (p—a)[T(K) nqu.

If we substitute the inequalities (22)-(24) in (21), then we establish desired result. [
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4. Quantum Integral Inequalities for Functions with Bounded Quantum Derivatives

In this section, we present some quantum trapezoid type inequalities for function whose second quantum
derivatives are bounded. Now, we first prove the following Lemma.

Lemma 4.1. Let ¥ : [0, p] = R be twice g-differentiable. If PD%T is integrable on [o, p), then we have

P
7 2 T
21, (0~ 0) f (=)o =) "Dy Ty

p
:(1—’1)77(0)+q77(P2)+77(6]0+(1—Q)P)_ igf?(K) Pl

for0<g<1
Proof. By using Definition 2.1, PD;F () is obtained as

qF (k) — (1+q)9f(q1<+(1 q)p+7’(q1<+<1 q)p))

PD27—'(1<)
! g1 —q) (p-«)

(25)

By equality (25), we get
P

f(K—O) (p—x) PDZT(K) Pd;K

q(l o F (k) Pdgrc — (1-+q)vf‘————7f(qK-+(l 7 p) Pdyx

Jmf(q“@_q)p) nd;K‘.

o

Using Definition 2.7, we obtain
f
f(K -0)(p—x) ”DST (x) pd;K

Z<1 9)F @0+ (1-q")p)

n=0

_(p-0)(1+9)
2*(1—q)

~(1+9) ) (1-g")F ("o +(1-q")p)
n=0

+Z (1 _ qn)?*(qn-#ZO_ + (1 _ qn+2) p)l .

By using properties of series, we can write

p

f(K —-0)(p—x) pD;T (x) pd;K

o
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_(p-9)(1+9)
24> (1-q)
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n=0 n=0
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n
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n=0

n=0
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n=0
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q
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p
— 1+ 1
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This ends the proof of Lemma 4.1. [

Theorem 4.2. Let F : [0, p] — R be twice g-differentiable. If PD%T is integrable on [0, p] and m < PD%T (k) <M,
then we have

mg* (p = o)’

2[2]4[3]4 (26)
P
LA-0F @ +qF () +F o+ -a)p) 1 IT(K) o Ty
2 p—o 1
- Mg (p-0)’
T 2[2]03],

for0<g<1.
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Proof. Since m < PDF (k) < M, we get
m(x —0)(p—x«) <(k—0)(p—x) PD%T(K) <M(x—-o0)(p—x) (27)

for Y« € [0, p]. Integrating (27) on [0, p] in the sense of PT,-integral, we have

@(ﬂfm D) (p- ) "l

P2 pT
_[Z]q(p f(x 0)(p —x) PD;F () *d,

M—l/]?) _ _ paT
ﬁ%@—@!w‘mpK)%K

and
P 3 0
1- - 1
f(K _ G) (P _ K) de;K _ ( q) (P 2;7) ( + 07) Z q2n (1 _ qn) (28)
o n=0
_(p-9’q
203,

By using the equality (28) and using the Lemma 4.1, the inequality (26) is obtained. The proof is com-
pleted. O

Lemma 4.3. Let F : [0, p] — R be twice g-differentiable and let GD§7-' be integrable on [0, p], then we have

—7;75fw 0)(p = ) JD2F (1) ol

p
A-9F (p)+qF 0)+F (qo+(1-q)p) 1
= > - _GIT(K) Jd;K

for0<g<1

Proof. By using Definition 2.1, ;D;¥ () is obtained as

F(k)—(1+q)Fge+(1—g)o)+F (¢*c+(1-4g%)o
gmfwzq 7 - 2< ( )). (29)
q(1-9)" (x—0)

By equality (29), we get
P

[ =001 D37 0 e

p
Q(llq) l f gk~ (“’1)[—7(@1”(1 1) 0) odpx od)
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p

+fi_ T(qk+<1 q) ) d;K‘.

o

Using Definition 2.5, we obtain

P
fw—w@—@omfwuﬁK

Z(l 7VF (@'p+(1-q")0)

n=0

_(p-0)(+9g)
2¢* (1 -9)

~(1+9)) =g F (g"p+(1-q"0)
n=0

+ Z (1 _ qn)f qn+2p + ( qn+2) G)l ]
n=0

By using properties of series, we can write
P
[e=0160-10 D7 ()
_(p-0)(1+9)
242 (1-9)

><[q;¢(qnp+(1_q”)o)_(1+q)nz_'67_- qn+1p+(1 qn+1) )

Y F (g +(1-9")0)-q Z 9"F @"p+ (1-q")0)

n=0

+(1+q)2q"¢ q””p+ 1- q"“ Zq“? q”+2p+ 1- q”+2) )}

_(p-0)(1+9) ®a+m
242 (1 -

+ ; q”“p + (1 _qn+2) ) 7-(qn+1p + (1 qn+1) )]

—q) I"F@'p+(1-q"0)+ % [Z q'F(q'p+(1-q"0) - T(p)]
n=0 n=0

—% [Z 9'F (q'p+ 1 —q")0)—F (p) —qF (gp+ (1 -9) G)Jl

_(p=0)1+gq)
= m[q[T(P)—?‘(o)]+T(o)—5“(qp+(1—q)g)

+(—1qﬂ + ql) (0) + %T(qw(l —q)o)]

I:qz T(q"p+(1—q”)0)—7(q”“p+( n+l>o_)]
n=0

2333
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_(p-o)(1+q)(1-9q) (p—0)(1+9q)
= 27 7:(P)+TT(U)

L (p-0)d+9)
2q°

F (o +(1- q)a)——fﬂo k.

O

Theorem 4.4. Let ¥ : [0, p] — R be twice g-differentiable. If PD%T is integrable on [0, p] and m < HD%?’ (x) <M,
then

mg* (p = o)’
202,13}, 0
p

< (1—q)T(p)+qT(02)+T(qp+(1—q)a) _ ing(K) e

. Mg (p-o)’

T o228l
Proof. Since m < ,DiF (k) < M, we get

(k=0)(p—1)m < (k= 0) (p = x) D;F (k) < (k= 0) (p = )M (31)
for Y« € [0, p]. Integrating (31) on [0, p] in the sense of ,;T,-integral, we have

mq® p

N S - — %) odf

20, (p=0) f(K 0)(p—x) odyx

< W f(K 0)(p—x) DZT(K) dT

< M—cff(x—a)(p—K) RS

h [2]17 (P - U) v 1
and

£ 3 =

1- - 1
f(K—O)(P—K) gd;K: ( Q)(qua) ( +‘7)Zq2n(1_qn) (32)
J n=0
_(p-9’q

2[3],
By using the equality (32) and using the Lemma 4.3, the inequality (30) is obtained. This is the end of proof
of Theorem4.4. O
5. Quantum Fejer-type Inequalities

In this section, we establish some weighted trapezoid and midpoint type inequalities for generalized
quantum integrals by using the functions whose second derivatives are bounded.
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Theorem 5.1. Let F : [0,p] — R be a twice differentiable function such that there exist real constants m and M

so that m < F"" < M and also G : [0, p] — R is nonnegative, PT,-integrable function. Then we have the following
inequality:

p
% [ -6 - 0609 7

Y

< ¥ (0)
@—@U

P p
(0~ 0G() Pl + (:fp - [e= 01609 rafe- [ 70600 7ax

p
< % f(x —0o)(p — x)G(x) Pd;K

for0<g<1.

Proof. Multiplying both sides of the inequality (5) by G(yp + (1 — y)o) and then integrating the inequality
with respect to y over [0, 1] as P T;-integral. We obtain

N2
MeZD [ ya-n6ap+a-po dy (3

0
1
< F(0) f (1= 9Grp+(1-1)0) dly
+¢«m~fyg@w+«1 y)o) ldyy

f Flrp+1-)0)G0p+(1-y)0) 'dly

1
Mi(o — 2
< 2 [ya-n6op+ -0 'dpy

0

Calculating the integrals in the inequality (33), we have
1 p
1
[ra=peoe+a-yo iy = = [&-axp- 060 dx, (34)
0 o
1

f (A= Gp+ (1 -)o) dly =

0

e — f (p - 0G) "dTx, (35)
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1 P
1
[ 160+ a-paly = == [ -0 i (36)
0 g
and

1 , p
[7op+a-posoe+ a-yordy - = [ 79600 rdp 37)
0 o

Substituting from (34) to (37) into the inequality (33) and then multiplying both sides of the resulting
inequality by (p — 0), we obtain desired inequality. [

Theorem 5.2. Let ¥ : [0, p] — R be a twice differentiable function such that there exist real constants m and M so
that m < F"" < Mand also G : [0, p] — R is non-negative, ;T,-integrable function. Then we have the following
inequalities:

p
2[00 - 060

_ 7O |
(p=0)J

P P
7 (p)
(p — x)G(x) gd;K + H f(K - 0)G(x) Ud;K - fT(K)Q(K) quTK

0
<5 [c=0p =060

for0<g<1

Proof. Multiplying both sides of the inequality (5) by G(yp + (1 — y)o) and then integrating the inequality
we obtain with respect to y over [0, 1] as ,T;-integral, we have

1
_ \2
Z&%iil[ﬂl—wQWp+U—V””#7 -

0
1
s?@{fﬂ—wQWp+ﬂ—ybhﬁy
' 1
+?Kman§0¢+%1—yMMﬂ%”
0

1
- f Fyp+ (1~ 70)G(rp + (1)) odly
0
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M(p-0) (
-0
< pT f YA =G(rp+ 1 =y)0)odyy.

0
By the definition of ,T,-integral, there are following equalities:

1 e
1
[ra-180p+a-poly = = [=axp-160 i,
0 o

1

p
Ja-n6op+a-nouly = = [o-60

(=} (=)
—

P
YG(yp + (1 =)o) odgy = (p_%)z f (k = 0)G(K) oddy

and
1

f Frp+1-1)0)G0p +(1-1)0) odly =

0

1
(p—o)

p
f F(1)G(K) oy k.

2337

(39)

(40)

(41)

(42)

When we put the statements (39)-(42) into the inequality (38), then the hypothesis of the theorem is

obtained. O

Theorem 5.3. Let ¥ : [0,p] — R be a twice differentiable function such that there exist real constants m and M
so that m < F" < M and also G : [0,p] — R is nonnegative, PT-integrable and symmetric about x = L (i.e.

G(x) = G(o + p — x) ). Then, we have the following inequalities:

p
n 2 T
800 —o) !(o+p—21<) G(x)Pd,x
P 4 p
< (pia) IT(K)Q(K) odgk+f7-'(1<)g(1<) Pd;x —?‘(Ozp)fg(@ PdT
v
2 T
< gos | 0+ p-276 0
for0<g<1l

Proof. Multiplying both sides of the inequality (6) by G(yp + (1 — y)o) and then integrating the inequality

with respect to y over [0, 1] as PT;-integral. We obtain

1
Y
w2 (=202 60+ 1= )0) dly

0

(43)
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= f Flo+ (1 -6l + (1 -7)0) 'dly

f Flp+(1-10)G(yp+(1-y)0) 'dly

-2 f Gp+ (=)o) Ty
0

Gyp+1-y)0) ldy.

When we calculate the integrals in the inequality (43) using the definition of PT,-integral, we see the
following equalities:

1

[a-27 600+ a-yotdy RG(0) Pdlx, (44)
0

1 , p

f F o+ (1= Y)Gp+ (1 -)a) iy = f FG() o' (45)
0 o

and
1
f Fp+(1-10)Gyp+(1-y)o) dly = —— f FG(0) Pdlx. (46)

0

Writing (44)-(46) into the inequality (43), we obtain desired inequality. [

Theorem 5.4. Let ¥ : [0,p] — R be a twice differentiable function such that there exist real constants m and M
so that m < F"” < Mand also G : [0, p] — R is non-negative, ;T,-integrable and symmetric about x = # (ie.
G(x) = G(o + p — ) ). Then we have the following inequality:

p
m
m f(a +p- 21<)2Q(1<) gquK

T T
(p f?K)Q(K) dK+fT1<)Q1<)Pd1<

-7 (52) fp G) ol

for0<g<1.
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Proof. We multiply the inequality (6) by G(yp + (1 — y)o) and then integrate the inequality with respect to y
over [0, 1] we obtain ,T,-integral. We have

1

_ )2
w2 f (1-2y7 Gyp + (1= 7)0) odfy v
0
1 1
<3 f Fyo+ (1 =y)p)Gp + (1 =)o) odgy
0

1
+ [Fop+a=1080p+1-0)odly
0

1
-0 [ Gp+ A=) odfy
0

1
_ <\
< M% f (1=2y Glyp + (1= 7)0) odyy-

0

By calculating the integrals in the inequality (47) using the definition of ,T;-integral, we have

1 P
1

[a-27 600+ a-y0)udy = = [+ p-207609 i, )
0 P o

1 i p
[ 700 sa-ppeoe+ a-youy - e [ 79600 7 (49)
0 o

and

1 1 p
[ 700+ a-nagp+a-poy - e [ 709609 (50)
0 o]

Putting the statements (48)-(50) into the inequality (47), the proof is completed. [J
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