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Abstract. Let H and K be separable Hilbert spaces. In this paper, for A ∈ BR(H), B ∈ BR(K) and
C ∈ BR(K,H), a necessary and sufficient condition is given for relation matrices MX =

( A C
X B

)
to be right (left)

invertible and invertible relation for some X ∈ B(H,K) (X ∈ BR(H,K)).Moreover, some relevant properties
and illustrating examples are also given.

1. introduction

A linear relation T : H → K is any mapping having domain dom T a nonempty subspace of H, and
taking values in the collection of nonempty subspaces of K, and T(αx1 + βx2) = αT(x1) + βT(x2) for all
x1, x2 ∈ dom T and nonzero scalars α, β ∈ C. We denote byLR(H,K) the class of linear relations everywhere
defined and we write LR(H) := LR(H,H) (see [15]).

The graph G(T) of T is
G(T) = {(u, v) ∈ H ⊕ K : u ∈ dom T, v ∈ T(u)}.

The inverse of T is the relation T−1 given by G(T−1) = {(v,u) ∈ K ⊕ H : (u, v) ∈ G(T)}. The closure
of T, denoted by T, is the linear relation defined by G(T) := G(T). T is called closed if its graph is a
closed subspace of H ⊕ K. The set of all closed linear relations is denoted by CR(H,K). The class of
linear bounded operators, closed operators and compact operators from H into K is denoted by B(H,K),
C(H,K) and K (H,K), respectively. We denote the range and the kernel of T by ran T := T(dom T) and
ker T := {x ∈ H : (x, 0) ∈ G(T)}, respectively. If ran T = K, then T is called surjective and if ker T = {0}, then T
is called injective. Clearly, dom T−1 = ran T and dom T = ran T−1. T is injective if and only if T−1T = Idom T.
We write n(T) = dim ker T, d(T) = dim ran T⊥. For T ∈ CR(H,K) with closed range ran T, T is said to be left
Fredholm, if n(T) < ∞; while if d(T) < ∞, we say T is right Fredholm. If T is both left and right Fredholm,
then it is Fredholm. In addition, we assume T is Fredholm, if i(T) = 0, i.e., n(T) − d(T) = 0, relation T is
called Weyl. The quotient map from K to K/T(0) is denoted by QT. It is easy to see that QTT is single valued
so that we can define ∥ Tx ∥:=∥ QTTx ∥ for all x ∈ dom T and ∥ T ∥:=∥ QTT ∥. A linear relation T is said to be
continuous if for any neighborhood V ∈ ran T, the inverse image T−1(V) is a neighborhood in H. It can be
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shown that T is continuous if and only if ∥ T ∥< +∞. If T is an everywhere defined linear relation such that
∥ T ∥< +∞ then T is said to be bounded. The class of such relation from H into K is denoted by BR(H,K),
and we denote by BCR(H,K) the class of bounded closed relation everywhere defined from H into K.

Let T ∈ LR(H,K), then the adjoint relation T∗ ∈ LR(H,K) is defined by

G(T∗) = {(v, v′) ∈ K ⊕H : ⟨u′, v⟩ = ⟨u, v′⟩ f or all (u,u′) ∈ G(T)}.

Clearly, if T is densely defined, then T∗ is closed single valued relation. Assume T ∈ CR(H,K), then ranT is
closed if and only if ranT∗ is closed (see [9], Theorem III.4.4).

For T ∈ LR(H,K), we have several equalities as follows:

ker T∗ = ran T⊥; T∗(0) = dom T⊥; ker T = ran (T∗)⊥; T(0) = dom (T∗)⊥.

Let T ∈ B(H,K), linear operator T+ : H → K is said to be the Moore-Penrose generalized inverse of T if
T+ satisfies dom T+ = ran T ⊕ ran T⊥ and the four Moore-Penrose equations:

TT+T = T, T+T = I − Pker T, T+TT+ = T+, TT+ = Pran T |dom T+ .

The Moore-Penrose generalized inverse T+ is uniquely determined and is a closed linear operator. In
particular, for any y ∈ ran T we have y = TT+y.

Definition 1.1. A relation T ∈ BCR(H,K) is called a left (ri1ht) invertible relation if there exists a bounded operator
S ∈ B(K,H) such that ST = IH (TS = IK + T(0)). If T is both left and right invertible relation, then T is invertible
relation.

The right spectrum, left spectrum, spectrum, left essential spectrum, right essential spectrum and Weyl
spectrum are defined, respectively, as follows:

σr(T) = {λ ∈ C : T − λI is not right invertible relation};
σl(T) = {λ ∈ C : T − λI is not left invertible relation};
σ(T) = {λ ∈ C : T − λI is not invertible relation};
σle(T) = {λ ∈ C : T − λI is not left Fredholm relation};
σre(T) = {λ ∈ C : T − λI is not right Fredholm relation};
σw(T) = {λ ∈ C : T − λI is not Weyl relation}.

Let M ⊆ H be a subspace, A ∈ BR(H), B ∈ BR(K,H). The notation AM denotes the relation given by
G(AM) = {(x, y) ∈ H ⊕ H : y ∈ Ax +M}.Write N(A | B) := {G ∈ B(K,H) : ran AG + B(0) ⊆ ran B + A(0)} and
A[⊥] := PA(0)⊥A.

A linear relation is a generalization of a linear operator in multivalued case. If linear relation T maps
the points of its domain to singletons, then T is said to be a single valued or simply an operator. The
concept of linear relation is mentioned first by J.von Neumann to study the adjoins of non-densely defined
linear differential equations[23]. Recently, the linear relations have been studied by numerous articles[1–
5, 7, 13, 15, 20, 21, 25, 27].

Operator matrices, as we all know, have always been a hot topic for many scholars and have been
studied by a lot of papers[6, 10, 12, 14, 16–19, 22, 26], of which articles [16, 22] discuss the invertibility of
operator matrices MX ∈ B(H ⊕ K). In this paper, we extent the results in [16, 22] and study the invertibility
of relation matrices

MX =

(
A C
X B

)
∈ BR(H ⊕ K)

for an unknown element X ∈ B(H,K) (X ∈ BR(H,K)), where A ∈ BR(H), B ∈ BR(K) and C ∈ BR(K,H). The
main difference between relation T ∈ BR(H,K) and operator T ∈ B(H,K) is the existence of multi-valued
part T(0). This paper makes full use of the relationship between T ∈ BR(H,K) and QTT ∈ B(H,K/T(0))
to deal with the multi-valued part of linear relations well. We obtain mainly the necessary and sufficient
condition for relation matrices MX to be right (left) invertible and invertible relation for some X ∈ B(H,K)
(X ∈ BR(H,K)) by means of space decompositions.
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2. Auxiliary results

In the section, we collect some fundamental results, which are useful in later proofs. We start with
several results of bounded operators.

Lemma 2.1 (see [11]). Let H1 and K1 be infinite dimensional Hilbert spaces and T ∈ B(H1,K1), then T is compact
if and only if ran T contains no closed infinite dimensional subspaces.

Lemma 2.2 (see [24]). Let X and Y be Banach spaces and T ∈ B(X,Y) with ran T closed. Then ran (T|M) is closed
for any closed subspace M ⊂ X if and only if ker T +M is closed.

Lemma 2.3 (see [16]). Let S ∈ B(H) and T ∈ C(H,K). If ran S ⊆ dom T, then TS ∈ B(H,K).

Lemma 2.4 (see [8]). Let T ∈ B(H,K) be a right (left) Fredholm operator and F ∈ B(H,K) be a compact operator.
Then T + F is a right (left) Fredholm operator and i(T + F) = i(T).

Lemma 2.5 (see [22]). Let row operator (S T) : H ⊕ K→ K be right invertible.
(i) If S is Weyl, then there exists L ∈ B(H,K) such that S + TL is invertible;
(ii) If T is not compact, then there exists L ∈ B(H,K) such that S+TL is invertible if and only ifN(S | T) contains

a non compact operator.

Here are some properties of linear relations.

Lemma 2.6 (see [9]). Let M ⊆ H is a subspace and let JM denote the natural injection of M into H, i.e., dom JM =M
and JMx = x for all x ∈M. Then (QH

M)∗ = JH
M⊥ and (JH

M)∗ = QH
M⊥ .

Lemma 2.7 (see [9]). Let H1, H2 and H3 be Hilbert spaces, T ∈ LR(H1,H2) and S ∈ LR(H2,H3). Then G(T∗S∗) ⊆
G((ST)∗). Furthermore, (ST)∗ = T∗S∗ if at least one of the following statements is fulfilled:

(i) ran T∗ = H1 and dom S ⊆ ran T;
(ii) dom S∗ = H3 and ran T ⊆ dom S.

Lemma 2.8 (see [1]). Let T ∈ BCR(H). Then
(i) T ∈ Φ+(H) if and only if QTT ∈ Φ+(H,H/T(0)), and i(T) = i(QTT);
(ii) T ∈ Φ−(H) if and only if QTT ∈ Φ−(H,H/T(0)), and i(T) = i(QTT).

Next, we obtain some auxiliary theorems, which are all necessary in the proofs of the later main results
and of interest by themselves.

Theorem 2.9. Let T ∈ BCR(H), then
(i) T is a left invertible relation if and only if T is injective and ran T is closed;
(ii) T is a right invertible relation if and only if T is surjective.

Proof. (i) Assume that T is injective and ran T is closed. Take S := T−1. Evidently, S is a bounded operator
and ST = IH, so T is left invertible relation. Conversely, let T is left invertible relation, then there exists a
bounded operator S ∈ B(K,H) such that ST = IH, it is clear that T is injective. Moreover, it follows from
ST(0) = 0 that T(0) ⊆ ker S. Let yn ∈ ran T and yn → y0 as n → ∞, then, for any n ∈ N, there is xn ∈ H
such that yn ∈ Txn. This together with ST = IH, we have STxn = xn, i.e., S(yn + T(0)) = Syn = xn. Note that
yn → y0 as n → ∞, then the boundedness of S means that {xn}

∞

n=1 is a Cauchy sequence and hence there
exists x0 ∈ H such that xn → x0 as n → ∞. It follows from the boundedness of T that PT(0)⊥T is bounded.
From the equality Txn = PT(0)⊥Txn + T(0), we can see that

Txn → PT(0)⊥Tx0 + T(0),

which shows Txn → Tx0 as n→∞. It follows that y0 ∈ Tx0 and thus ran T is closed.
(ii) Suppose that T is surjective. Take S := Pker T⊥T−1, then it is clear that S is a bounded operator and

TS = IK + T(0), so T is a right invertible relation. Conversely, let T be a right invertible relation, then there
exists a bounded operator S ∈ B(K,H) such that TS = IK + T(0)). It is clear that T is surjective.
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Theorem 2.10. Let A ∈ LR(H), B ∈ LR(K), C ∈ LR(K,H) and X ∈ LR(H,K), then

QMX MX =

(
Q( A C )A Q( A C )C
Q( X B )X Q( X B )B

)
.

Proof. Assume that (
(

x
y
)
, ( u

v )) ∈ G(MX), then there exist u1 ∈ Ax, u2 ∈ Cy, v1 ∈ Xx and v2 ∈ By such that
u = u1 + u2 and v = v1 + v2. Clearly,

QMX MX

(
x
y

)
= QMX

(
u
v

)
.

Note that
(

u′
v′
)
∈ QMX ( u

v ) if and only if
(

u′
v′
)
− ( u

v ) ∈ MX(0), i.e., u′ − u ∈ A(0) + C(0) and v′ − v ∈ X(0) + B(0),
which are equivalent to u′ ∈ Q( A C )u = Q( A C )(u1 + u2) = Q( A C )u1 +Q( A C )u2 and v′ ∈ Q( X B )v = Q( X B )(v1 +
v2) = Q( X B )v1 +Q( X B )v2, respectively. Hence

QMX

(
u
v

)
=

(
Q( A C )u1 +Q( A C )u2
Q( X B )v1 +Q( X B )v2

)
.

Since u1 ∈ Ax, u2 ∈ Cy, v1 ∈ Xx and v2 ∈ By, we have Q( A C )u1 = Q( A C )Ax, Q( A C )u2 = Q( A C )Cy, Q( X B )v1 =
Q( X B )Xx and Q( X B )v2 = Q( X B )By. Therefore

QMX MX

(
x
y

)
=

(
Q( A C )Ax +Q( A C )Cy
Q( X B )Xx +Q( X B )By

)
=

(
Q( A C )A Q( A C )C
Q( X B )X Q( X B )B

) (
x
y

)
.

Theorem 2.11. Let A ∈ BR(H), B ∈ BR(K), C ∈ BR(K,H) and X ∈ BR(K,H), then the relation MX is closed if
and only if A(0) + C(0) and X(0) + B(0) are closed.

Proof. Assume that A(0)+C(0) and X(0)+B(0) are closed. Equivalently, MX(0) is closed. It suffices to prove
that QMX MX is closed. Note that QMX MX is a single valued relation, and QMX MX =

( Q( A C )A Q( A C )C
Q( X B )X Q( X B )B

)
by

Theorem 2.10. Since A is an everywhere defined bounded relation, we have

∥Q( A C )Ax∥ ≤ ∥QAAx∥ ≤ ∥A∥∥x∥, x ∈ H

and hence Q( A C )A ∈ B(H). Similarly, Q( A C )C ∈ B(K,H), Q( X B )X ∈ B(H,K) and Q( X B )B ∈ B(K) are also
clear. Then QMX MX is a bounded everywhere defined operator, which is obviously closed.

Conversely, the closedness of MC implies that MC(0) is closed, and hence A(0)+C(0) and X(0)+ B(0) are
closed.

Theorem 2.12. Let A ∈ BCR(H), B ∈ BCR(K), C ∈ BCR(K,H) and X ∈ BCR(K,H) with A(0) + C(0) and
X(0) + B(0) closed, then the adjoint of MX is the single valued relation, and

M∗

X =

(
A∗ X∗

C∗ B∗

)
: (A(0) + C(0))⊥ ⊕ (X(0) + B(0))⊥ → H ⊕ K.

Proof. Since A(0) + C(0) and X(0) + B(0) are closed, MX is closed according to Theorem 2.11, and hence
dom M∗

C =MC(0)⊥ = (A(0)+C(0))⊥⊕(X(0)+B(0))⊥ and dom
(

A∗ X∗
C∗ B∗

)
= (dom A∗∩dom C∗)⊕(dom X∗∩dom B∗) =

(A(0)⊥ ∩ C(0)⊥) ⊕ (X(0)⊥ ∩ B(0)⊥). This together with (A(0) + C(0))⊥ = A(0)⊥ ∩ C(0)⊥ and (X(0) + B(0))⊥ =
X(0)⊥ ∩ B(0)⊥, we have that

dom M∗

X = dom
(

A∗ X∗
C∗ B∗

)
.
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Let
(

x
y
)
∈ H ⊕ K and

(
x∗
y∗
)
∈ dom M∗

X = dom
(

A∗ X∗
C∗ B∗

)
. By the definition of the adjoint relation on Hilbert

spaces we have that

⟨M∗

X

(
x∗
y∗
)
,

(
x
y
)
⟩ = ⟨

(
x∗
y∗
)
,

(
Ax+Cy
Xx+By

)
⟩

= ⟨x∗, Ax + Cy⟩ + ⟨y∗, Xx + By⟩
= ⟨A∗x∗, x⟩ + ⟨C∗x∗, y⟩ + ⟨X∗y∗, x⟩ + ⟨B∗y∗, y⟩
= ⟨A∗x∗ + X∗y∗, x⟩ + ⟨C∗x∗ + B∗y∗, y⟩
= ⟨

(
A∗ X∗
C∗ B∗

) (
x∗
y∗
)
,

(
x
y
)
⟩.

Hence

M∗

X =

(
A∗ X∗

C∗ B∗

)
.

Moreover, obviously, A∗(0) = dom A⊥ = {0}. Similarly, we can obtain that B∗(0) = C∗(0) = X∗(0) = {0}, it
means that M∗

X(0) = {0}, i.e., M∗

X is single valued relation.

3. Main results

In this section, we mainly investigate the invertible completions for relation matrices, i.e., Theorems
3.1, 3.4, 3.7, 3.10, 3.13, 3.16. As their corollaries, some related properties are also mentioned. And some
examples are given to illustrate the results. We first establish the following perturbation result.

Theorem 3.1. Let A ∈ BR(H), B ∈ BCR(K) and C ∈ BR(K,H) with A(0)+C(0) closed, then there is X ∈ B(H,K)
such that MX is a right invertible relation if and only if (A C) is right invertible and at least one of the following
statements is fulfilled:

(i)N(A | C) contains non compact operators;

(ii) M0 =
(

A C
0 B

)
is a right Fredholm relation and d(M0) ≤ n(AC(0)) + dim (ran P(A(0)+C(0))⊥A ∩ ran C |ker B).

Proof. Suppose that the assertion (i) holds true. Clearly, Hilbert spaces H and K are infinite dimensional. By
hypothesis, there is a non compact operator G ∈ B(K,H) such that ran AG + C(0) ⊆ ran C + A(0). It follows
from Lemma 2.1 that there exists closed infinite dimensional subspace M ⊆ H for which

ran A |M +C(0) ⊆ ran C + A(0),

and hence ran P(A(0)+C(0))⊥APM ⊆ ran P(A(0)+C(0))⊥C ⊆ dom (P(A(0)+C(0))⊥C)+. Note that P(A(0)+C(0))⊥APM ∈ B(H),
by virtue of Lemma 2.3, we can obtain that

(P(A(0)+C(0))⊥C)+P(A(0)+C(0))⊥APM ∈ B(H,K).

Since dim M = ∞, then there exists a surjective operator T ∈ B(H,K) so that ker T = M⊥. Write operator
X0 := T + B[⊥](P(A(0)+C(0))⊥C)+PA(0)+C(0))⊥APM, then MX0 is a right invertible relation. In fact, since (A C)
is right invertible, ran A + ran C = H from Theorem 2.9. Let ( u

v ) ∈ H ⊕ K, since ran A + ran C = H and
ran A |M +C(0) ⊆ ran C + A(0), there are x1 ∈ M⊥ and y1 ∈ K such that u ∈ Ax1 + Cy1. Moreover, the
right invertibility of T implies that there exists x2 ∈ M such that v ∈ Tx2 + By1. Take x0 = x1 + x2 and
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y0 = y1 − (P(A(0)+C(0))⊥C)+P(A(0)+C(0))⊥Ax2, then(
A C
X0 B

) (
x0

y0

)
=


Ax1 + Cy1 + Ax2−

(P(A(0)+C(0))⊥C + PA(0)+C(0)C)(P(A(0)+C(0))⊥C)+P(A(0)+C(0))⊥Ax2

Tx2 + By1 + B[⊥](P(A(0)+C(0))⊥C)+P(A(0)+C(0))⊥APMx2−

(B[⊥] + B − B)(P(A(0)+C(0))⊥C)+P(A(0)+C(0))⊥Ax2


=

(
Ax1 + Cy1 + Ax2 − P(A(0)+C(0))⊥Ax2

Tx2 + By1

)
=

(
Ax1 + Cy1 + Ax2 − P(A(0)+C(0))⊥Ax2 − P(A(0)+C(0))Ax2

Tx2 + By1

)
=

(
Ax1 + Cy1
Tx2 + By1

)
.

Evidently, (
u
v

)
∈

(
A C
X0 B

) (
x0
y0

)
.

Now assume that assertion (ii) is valid. Since relation B is closed, B(0) is closed. As a relation from H ⊕ K
to (A(0) + C(0))⊥ ⊕ (A(0) + C(0)) ⊕ B(0)⊥ ⊕ B(0), MX has the matrix form

MX =


A1 C1
A2 C2
X1 B[⊥]
X2 B − B

 .
To prove that MX is right invertible relation for some X ∈ B(H,K), it is enough to show that M̂X is right
invertible relation for some X1 ∈ B(H,K), where

M̂X =

(
A1 C1
X1 B[⊥]

)
: H ⊕ K→ (A(0) + C(0))⊥ ⊕ B(0)⊥,

since ran MX = ran M̂X⊕ (A(0)+C(0))⊕B(0).Note that d(M0) ≤ n(AC(0))+dim (ran P(A(0)+C(0))⊥A∩ ran C |ker B),
and clearly, for single valued relation M̂0 : H ⊕ K→ (A(0) + C(0))⊥ ⊕ B(0)⊥,

d(M̂0) ≤ n(AC(0)) + dim (ran P(A(0)+C(0))⊥A ∩ ran C |ker B),

then there exists subspace N ⊆ H such that dim N = d(M̂0) and ran A1 |N⊆ ran C1 |kerB . Since M0 is right
Fredholm relation, B[⊥] : K → B(0)⊥ is a right Fredholm relation and hence ran B[⊥] is closed. Note that
ker B[⊥] = ker B. As a relation from H⊕ ker B⊕ ker B⊥ to (A(0)+C(0))⊥ ⊕ ran B[⊥] ⊕ (B(0)⊥ ⊖ ran B[⊥]), M̂0 has
the following matrix form

M̂0 =


A1 C′1 C′′1
0 0 B′[⊥]
0 0 0

 . (1)

It is clear that B′[⊥] is invertible. Put F = ran A1 + ran C′1, i.e., F = ran A1 + ran C1 |ker B. The invertibility of
B′[⊥] implies that F is closed and dim ((A(0) + C(0))⊥ ⊖ F) = d(M̂0) − dim (B(0)⊥ ⊖ ran B[⊥]) < ∞ according
to the expression (1). As a relation from H ⊕ ker B ⊕ ker B⊥ to F ⊕ ((A(0) + C(0))⊥ ⊖ F), (A1 C1) admits the
following matrix form

(A1 C1) =
(

A11 C11 C12
0 0 C13

)
.
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Note that (ker C13)⊥ ⊆ ker B⊥, then (ker C13)⊥+ker B is closed, which together with the closedness of ran B[⊥]
implies that ran B[⊥] |(ker C13)⊥ is closed according to Lemma 2.2. Take M := (B(0)⊥⊖ran B[⊥])⊕ran B[⊥] |(ker C13)⊥ ,
it is clear that M is closed. The right invertibility of (A C) means that so is (A1 C1) and hence ran C13 = (A(0)+
C(0))⊥ ⊖ F, which together with (ker C13)⊥ ⊆ ker B⊥ ensures that dim ((A(0) + C(0))⊥ ⊖ F) = dim (ker C13)⊥ =
dim ran B[⊥] |(ker C13)⊥ . Then, from equality dim ((A(0)+C(0))⊥ ⊖ F) = d(M̂0)− dim (B(0)⊥ ⊖ ran B[⊥]) < ∞, we
see

dim M = d(M̂0) = dim N.

Define a surjective operator J : H→M and ker J = N⊥. Take X1 =
(

J
0

)
: H→M ⊕ (B(0)⊥ ⊖M).

Based on the space decomposition

H ⊕ K = H ⊕ ker B ⊕ (ker C13)⊥ ⊕ (ker B⊥ ⊖ (ker C13)⊥),
H ⊕ K = F ⊕ ((A(0) + C(0))⊥ ⊖ F) ⊕M ⊕ (B(0)⊥ ⊖M),

M̂X can be written as

M̂X =


A11 C11 C121 C122
0 0 C131 0
J 0 B1

[⊥] 0
0 0 0 B2

[⊥]

 .
From the equality ran C13 = (A(0) + C(0))⊥ ⊖ F, we see that C131 is invertible. It follows from the closedness
ran B[⊥] that B2

[⊥] is invertible. Then there exists invertible operator U ∈ B(F ⊕ ((A(0) + C(0))⊥ ⊖ F) ⊕M ⊕
(B(0)⊥ ⊖M)) such that

UM̂X =


A11 C11 0 0
0 0 C131 0
J 0 0 0
0 0 0 B2

[⊥]

 .
So the right invertibility of M̂X is equivalent to that of

(
A11 C11

J 0

)
: H ⊕ ker B → F ⊕ M. It will be shown

that
(

A11 C11
J 0

)
is right invertible. For any u ∈ F and v ∈ M, since J is right invertible, there is x1 ∈ N such

that Jx1 = v. Note that ran A1 |N⊆ ran C1 |ker B, then there exist x2 ∈ N⊥ and y1, y2 ∈ ker B such that
A11x2 + C11y1 = u and A11x1 + C11y2 = 0. Then(

A11 C11
J 0

) (
x1 + x2
y1 + y2

)
=

(
u
v

)
.

Conversely, assume that there is X ∈ B(H,K) such that MX is a right invertible relation. It is clear that
ran MX ⊆ ran(A C)⊕K, which together with ran MX = H⊕K, we have that ran(A C) = H, i.e., ran A+ran C =
H, and hence (A C) is right invertible from Theorem 2.9. Let K1 = (ker P(A(0)+C(0))⊥C∩ker B)⊥. Since B is closed,
B(0) and ker B are closed. Then as a relation from H⊕K⊥1 ⊕K1 to (A(0)+C(0))⊥ ⊕ (A(0)+C(0))⊕B(0)⊥ ⊕B(0),
MX can be written as

MX =


A1 0 C1
A2 C3 C2
X1 0 B1

[⊥]
X2 B − B B − B

 .
Evidently, M′

X :=
(

A1 C1
X1 B1

[⊥]

)
: H ⊕ K1 → (A(0) + C(0))⊥ ⊕ B(0)⊥ is a right invertible operator. It follows that

ker C1 ∩ ker B1
[⊥] = {0}, similar to the mean of space decompositions in (1) for M′

0, we can obtain that

n(M′

0) = n(A1) + dim (ran A1 ∩ ran C1 |ker B1
[⊥]

)
= n(A1) + dim (ran A1 ∩ ran C1 |ker B)
= n(AC(0)) + dim (ran P(A(0)+C(0))⊥A ∩ ran C |ker B).



Y. Du, J. Huang / Filomat 38:7 (2024), 2227–2242 2234

There are two possible cases depending on the dimension of B(0)⊥.

Case 1: Assume that dim B(0)⊥ < ∞. Then X1 is a compact operator and hence M′

0 =
(

A1 C1
0 B1

[⊥]

)
: H ⊕K1 →

(A(0) + C(0))⊥ ⊕ B(0)⊥ is right Fredholm operator according to Lemma 2.4. Note that ran MX = ran M′

X ⊕

(A(0) + C(0)) ⊕ B(0) and then M0 =
(

A C
0 B

)
is a right Fredholm relation, utilizing Lemma 2.4, we have

d(M0) = d(M′

0) ≤ n(M′

0).

Therefore,
d(M0) ≤ n(AC(0)) + dim (ran P(A(0)+C(0))⊥A ∩ ran C |ker B).

Case 2: Assume that dim B(0)⊥ = ∞. Note that M′

X =
(

A1 C1
X1 B1

[⊥]

)
: H ⊕ K1 → (A(0) + C(0))⊥ ⊕ B(0)⊥ is right

invertible operator, then there exists a bounded linear operator
(

Q S
R T

)
: (A(0)+C(0))⊥ ⊕B(0)⊥ → H⊕K1 such

that (
A1 C1
X1 B1

[⊥]

) (
Q S
R T

)
=

(
I(A(0)+C(0))⊥ 0

0 IB(0)⊥

)
.

Then X1S + B1
[⊥]T = IB(0)⊥ and A1S + C1T = 0, which means that

(
S
T

)
: B(0)⊥ → H ⊕ K1 is left invertible

operator and ran
(

S
T

)
⊆ ker(A1 C1). It is easy to see that n(A1 C1) = ∞. Put

(
G
F

)
is an invertible operator

from B(0)⊥ onto ker (A1 C1). It is easy to see that A1G = −C1F.
We first assume that G is not compact. The equality A1G = −C1F implies that ran A1G ⊆ ran C1 and then

ran AG + C(0) ⊆ ran C + A(0).

HenceN(A | C) contains a non compact operator.
Now suppose that G is compact. Define

(
Y
Z

)
:= ((A1 C1) |ker( A1 C1 )⊥ )−1 : (A(0) + C(0))⊥ → ker(A1 C1)⊥.

Then ran
(

Y
Z

)
= ker(A1 C1)⊥ and A1Y + C1Z = I(A(0)+C(0))⊥ . Take

L =
(

Y G
Z F

)
: (A(0) + C(0))⊥ ⊕ B(0)⊥ → H ⊕ K1.

Then L is an invertible operator. Indeed, since
(

G
F

)
is invertible operator, there is an operator (D E) :

H ⊕ K1 → B(0)⊥ such that DG + EF = IB(0)⊥ . Since A1Y + C1Z = I(A(0)+C(0))⊥ , we have(
A1 C1
D E

)
L =

(
A1 C1
D E

) (
Y G
Z F

)
=

(
I(A(0)+C(0))⊥ 0
DY + EZ IB(0)⊥

)
is an invertible operator, hence L is a left invertible operator.

In addition, note that ran
(

Y
Z

)
= ker (A1 C1)⊥ and ran

(
G
F

)
= ker (A1 C1),we have

ran L = ran
(

Y
Z

)
+ ran

(
G
F

)
= H ⊕ K1,

so that L is right invertible operator. This means that L is invertible operator. Note that A1G = −C1F, we
have

M′

XL =
(

A1 C1
X1 B1

[⊥]

) (
Y G
Z F

)
=

(
I(A(0)+C(0))⊥ 0

X1Y + B1
[⊥]Z X1G + B1

[⊥]F

)
.

It follows from the right invertibility of M′

X that X1G+B1
[⊥]F is right invertible. The compactness of G implies

that B1
[⊥]F is right Fredholm operator and d(B1

[⊥]F) ≤ n(B1
[⊥]F) by Lemma 2.4. This together with(

I(A(0)+C(0))⊥ 0
−B1

[⊥]Z IB(0)⊥

)
M′

0L =
(

I(A(0)+C(0))⊥ 0
0 B1

[⊥]F

)
,
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we have M′

0 =
(

A1 C1
0 B1

[⊥]

)
: H ⊕ K1 → (A(0) + C(0))⊥ ⊕ B(0)⊥ is right Fredholm operator and d(M0) = d(M′

0) =

d(B1
[⊥]F) ≤ n(B1

[⊥]F) = n(M′

0), which means that M0 is a right Fredholm operator and

d(M0) ≤ n(AC(0)) + dim (ran P(A(0)+C(0))⊥A ∩ ran C |ker B).

Corollary 3.2. Let A ∈ BR(H), B ∈ BCR(K) and C ∈ BR(K,H) with A(0) + C(0) closed, then⋂
X∈B(H,K)

σr(MX) = {λ ∈ C : ran (A − λI) + ran C , H}

∪{λ ∈ C : λ ∈ σre(M0), N(A − λI | C) ⊆ K (K,H)}
∪{λ ∈ C : N(A − λI | C) ⊆ K (K,H),

d(M0) > n((A − λI)C(0)) + dim (ran P(A(0)+C(0))⊥ (A − λI) ∩ ran C |ker (B−λI))}.

Corollary 3.3. Let A ∈ BR(H), B ∈ BCR(K) and C ∈ BCR(K,H) with A(0) ⊆ C(0), then there is X ∈ B(H,K)
such that MX is a right invertible relation if and only if (A C) is right invertible and at least one of the following
statements is fulfilled:

(i)N(A | C) contains non compact operators;
(ii) M0 =

(
A C
0 B

)
is a right Fredholm relation and d(M0) ≤ n(AC(0)) + dim (ran PC(0)⊥A ∩ ran C |ker B).

Theorem 3.4. Let A ∈ BR(H), B ∈ BR(K) and C ∈ BR(K,H), then there is X ∈ BR(H,K) such that MX is a right
invertible relation if and only if (A C) is right invertible.

Proof. Assume that (A C) is right invertible. We write Xx = K for all x ∈ H, then it is easy to see that MX is
a right invertible relation. Conversely, assume that there is X ∈ BR(H,K) such that MX is a right invertible
relation. From the proof of Theorem 3.1, the conclusion is valid.

Corollary 3.5. Let A ∈ BR(H), B ∈ BR(K) and C ∈ BR(K,H), then⋂
X∈BR(H,K)

σr(MX) = {λ ∈ C : ran (A − λI) + ran C , H}.

Corollary 3.6. ([16, Theorem 2.1]) Let A ∈ B(H), B ∈ B(K) and C ∈ B(K,H), then there is X ∈ B(H,K) such that
MX is a right invertible operator if and only if (A C) is right invertible and at least one of the following statements is
fulfilled:

(i)N(A | C) contains non compact operators;
(ii) M0 =

(
A C
0 B

)
is a right Fredholm operator and d(M0) ≤ n(A) + dim (ran A ∩ ran C |ker B).

Theorem 3.7. Let A ∈ BCR(H), B ∈ BCR(K) and C ∈ BCR(K,H) with A(0) + C(0) closed, then there is
X ∈ B(H,K) such that MX is a left invertible relation if and only if (B∗ C∗ |(A(0)+C(0)⊥)) is right invertible and at least
one of the following statements is fulfilled:

(i)N(B∗ | C∗ |(A(0)+C(0)⊥)) contains non compact operators;
(ii) M0 =

(
A C
0 B

)
is a left Fredholm relation and n(M0) ≤ d(B) + dim (ker B⊥ ∩ ran C∗ |ran A⊥∩(A(0)+C(0))⊥ ).

Proof. Note that relation B is closed and thus B(0) is closed, which together with A(0) + C(0) is closed, we
have that MX is closed by Theorem 2.11. It is not hard to notice that MX =

(
A C
X B

)
is a left invertible relation

equivalent to M∗

X =
(

B∗ C∗
X∗ A∗

)
: B(0)⊥ ⊕ (C(0) + A(0))⊥ → K ⊕ H is a right invertible operator according to

Theorem 2.12. From Theorem 3.1, the conclusion is valid.

Corollary 3.8. Let A ∈ BCR(H), B ∈ BCR(K) and C ∈ BCR(K,H) with A(0) + C(0) closed, then⋂
X∈B(H,K)

σl(MX) = {λ ∈ C : ran (B∗ − λI) + ran C∗ |(A(0)+C(0))⊥, K}

∪{λ ∈ C : λ ∈ σle(M0), N(B∗ − λI | C∗ |(A(0)+C(0))⊥ ) ⊆ K (H,K)}
∪{λ ∈ C : N(B∗ − λI | C∗ |(A(0)+C(0))⊥ ) ⊆ K (H,K),

n(M0 − λI) > d(B − λI) + dim (ker (B − λI)⊥ ∩ ran C∗ |ran (A−λI)⊥∩(A(0)+C(0))⊥ )}.
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Corollary 3.9. Let A ∈ BCR(H), B ∈ BCR(K) and C ∈ BCR(K,H) with A(0) ⊆ C(0), then there is X ∈ B(H,K)
such that MX is a left invertible relation if and only if (B∗ C∗) is right invertible and at least one of the following
statements is fulfilled:

(i)N(B∗ | C∗) contains non compact operators;
(ii) M0 =

(
A C
0 B

)
is a left Fredholm relation and n(M0) ≤ d(B) + dim (ker B⊥ ∩ ran C∗ |ran A⊥∩C(0)⊥ ).

Theorem 3.10. Let A ∈ BCR(H), B ∈ BCR(K) and C ∈ BCR(K,H) with A(0) + C(0) closed, then there is
X ∈ BR(H,K) with X(0) + B(0) closed such that MX is a left invertible relation if and only if there exists a constant
relation T ∈ BR(K) such that T(0)+ B(0) is closed and (B∗ |(B(0)+T(0))⊥ C∗ |(A(0)+C(0))⊥ ) is right invertible, and at least
one of the following statements is fulfilled:

(i)N(B∗ |(B(0)+T(0))⊥ | C∗ |(A(0)+C(0))⊥ ) contains non compact operators;
(ii) MT

0 =
(

A C
0 B+T

)
is a left Fredholm relation and

n(MT
0 ) ≤ n(B∗ |(B(0)+T(0))⊥ ) + dim (ran B∗ |(B(0)+T(0))⊥ ∩ ran C∗ |ran A⊥∩(A(0)+C(0))⊥ ).

Proof. We first prove the sufficiency. Denote MT
X :=

(
A C
X B+T

)
∈ BR(H ⊕ K). Note that (MT

0 )∗ =
(

B∗ C∗
0 A∗

)
:

(B(0) + T(0))⊥ ⊕ (A(0) + C(0))⊥ → K ⊕H, then we can see that there exists X1 ∈ B(H,K) such that

MT
X1
=

(
A C
X1 B + T

)
∈ BR(H ⊕ K)

is left invertible by replacing B by B+ T in Theorem 3.7. Take X := X1 +X−X, where (X−X)x = T(0) for all
x ∈ H. It is clear that MX is left invertible and hence the sufficiency is valid.

We next assume that there is X ∈ BR(H,K) with X(0)+B(0) closed such that MX is left invertible relation.
Put Tx := X(0) for all x ∈ K, it is clear that T(0) + B(0) is closed. It follows from the left invertibility of MX

that MT
X =

(
A C
X B+T

)
is a left invertible relation, which means that there is X ∈ BR(H,K) such that

(MT
X)∗ =

(
B∗ C∗

X∗ A∗

)
: (B(0) + T(0))⊥ ⊕ (C(0) + A(0))⊥ → K ⊕H

is a right invertible operator. From Theorem 3.1, we can obtain the conclusion.

Corollary 3.11. Let A ∈ BCR(H), B ∈ BCR(K) and C ∈ BCR(K,H) with A(0) + C(0) closed, then⋂
X∈BR(H,K),X(0)+B(0)=X(0)+B(0) σl(MX)

= {λ ∈ C : for any constant relation T ∈ BR(K) with T(0) + B(0) closed,
ran (B∗ − λI) |(A(0)+T(0))⊥ +ran C∗ |(A(0)+C(0))⊥, K, or
λ ∈ σle(MT

0 ) andN((B∗ − λI) |(A(0)+T(0))⊥ | C∗ |(A(0)+C(0)⊥)) ⊆ K (H,K)
∪{λ ∈ C : for any constant relation T ∈ BR(K) with T(0) + B(0) closed,

ran (B∗ − λI) |(A(0)+T(0))⊥ +ran C∗ |(A(0)+C(0))⊥, K, or n(MT
0 − λI) > n((B∗ − λI) |(B(0)+T(0))⊥ )+

dim (ran (B∗ − λI) |(B(0)+T(0))⊥ ∩ ran C∗ |ran A⊥∩(A(0)+C(0))⊥ ) and
N((B∗ − λI) |(A(0)+T(0))⊥ | C∗ |(A(0)+C(0)⊥)) ⊆ K (H,K)}.

Corollary 3.12. ([16, Theorem 2.7]) Let A ∈ B(H), B ∈ B(K) and C ∈ B(K,H), then there is X ∈ B(H,K) such that
MX is a left invertible operator if and only if (B∗ C∗) is right invertible and at least one of the following statements is
fulfilled:

(i)N(B∗ | C∗) contains non compact operators;
(ii) M0 =

(
A C
0 B

)
is a left Fredholm operator and n(M0) ≤ d(B) + dim (ker B⊥ ∩ ran C∗ |ran A⊥ ).

Next, we turn our attention to the invertibility of relation matrices.
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Theorem 3.13. Let A ∈ BCR(H), B ∈ BCR(K) and C ∈ BCR(K,H) with A(0) + C(0) closed, then there is
X ∈ B(H,K) such that MX is an invertible relation if and only if (A C) and (B∗ C∗ |(A(0)+C(0))⊥ ) are right invertible,
and at least one of the following statements is fulfilled:

(i) BothN(A | C) andN(B∗ | C∗ |(A(0)+C(0))⊥ ) contain non compact operators;
(ii) M0 =

(
A C
0 B

)
is a Weyl relation.

Proof. Let assertion (i) hold true. Then we see that dim ker (A C) = dim K = ∞, and thus we can write
a left invertible operator

(
E
F

)
: K → H ⊕ K for which ran

(
E
F

)
= ker (A C). It is clear that Q( A C )(A C) =

(Q( A C )A Q( A C )C), which together with A(0) + C(0) is closed, we know

ker (A C) = ker Q( A C )(A C) = ker(Q( A C )A Q( A C )C).

Then we have that (Q( A C )A)E + (Q( A C )C)F = 0. Note that (A C) is right invertible and thus Q( A C )(A C)
is right invertible, that is (Q( A C )A Q( A C )C) is right invertible. Hence there exists an operator

(
Y
Z

)
:

H/(A(0) + C(0))→ H ⊕ K such that Q( A C )AY +Q( A C )CZ = IH/(A(0)+C(0)). Write

W =
(

Y E
Z F

)
: H/(A(0) + C(0)) ⊕ K→ H ⊕ K.

Since
(

E
F

)
: K → H ⊕ K is a left invertible operator, and hence there is an operator (Q R) : H ⊕ K → K such

that QE + RF = IK. Evidently,(
Q( A C )A Q( A C )C

Q R

) (
Y E
Z F

)
=

(
IH/(A(0)+C(0)) 0
QY + RZ IK

)
,

and thus W is left invertible. In addition, observing that Q( A C )AY +Q( A C )CZ = IH/(A(0)+C(0)), then

ran
(

Y
Z

)
+ ker

(
Q( A C )A Q( A C )C

)
= H ⊕ K.

In fact, if ran
(

Y
Z

)
+ ker (Q( A C )A Q( A C )C) , H ⊕ K, then there exists

(
x1
y1

)
∈ H ⊕ K such that

(
x1
y1

)
<

ran
(

Y
Z

)
+ ker (Q( A C )A Q( A C )C). Evidently,

ran
(
Q( A C )A Q( A C )C

)
|ran

( Y
Z

)= H/(A(0) + C(0)),

and hence there is
(

x2
y2

)
∈ ran

(
Y
Z

)
such that

(
Q( A C )A Q( A C )C

) (x1
y1

)
=

(
Q( A C )A Q( A C )C

) (x2
y2

)
,

this means that
(

x1
y1

)
−

(
x2
y2

)
∈ ker (Q( A C )A Q( A C )A), which contradicts the assumption

(
x1
y1

)
< ran

(
Y
Z

)
+

ker (Q( A C )A Q( A C )C). Note that ran
(

E
F

)
= ker (Q( A C )A Q( A C )C), we see that ran W = ran

(
Y
Z

)
+ ran

(
E
F

)
=

H ⊕ K, and therefore W is right invertible. Hence W is invertible. According to Theorem 2.10, we know

QMX MXW =
(

IH/(A(0)+C(0)) 0
(QBX)Y + (QBB)Z (QBX)E + (QBB)F

)
. (2)

Since N(A | C) contains a non compact operator, there exists closed infinite dimensional subspace M ⊆ H
such that ran A |M +C(0) ⊆ ran C+A(0), which means that M ⊆ ran E, and thus E is a non compact operator
by Lemma 2.1. Note that (B∗ C∗ |(A(0)+C(0))⊥ ) are right invertible, then ran B∗ + ran C∗ |(A(0)+C(0))⊥= K, we have
that ran B∗+ran C∗ J(A(0)+C(0))⊥ = K is valid. It follows from Lemmas 2.7 and 2.6 that (Q( A C )C)∗ = C∗ J(A(0)+C(0))⊥ ,
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which together with ran B∗ = ran (QBB)∗ , we have ran (QBB)∗ + ran (Q( A C )C)∗ = K. Therefore,
( Q( A C )C

QBB

)
is

left invertible. This together with
(

E
F

)
is left invertible, we have that there exist (G1 L1) : H/(A(0) + C(0)) ⊕

K/B(0) → K and (G2 L2) : H ⊕ K → K such that G1Q( A C )C + L1QBB = IK and G2E + L2F = IK. Clearly,
G1(Q( A C )C)F + L1(QBB)F = F, from (Q( A C )A)E = −(Q( A C )C)F, we can know that

G2E − L2G1(Q( A C )A)E + L2L1(QBB)F = G2E + L2F = IK,

that is (G2 − L2G1(Q( A C )A))E + L2L1(QBB)F = IK, which means that
(

E
(QBB)F

)
is left invertible. Therefore,

(((QBB)F)∗ E∗) is right invertible. For a non compact operator G ∈ N(B∗ | C∗ |(A(0)+C(0))⊥ ), we know that
B∗G = C∗ |(A(0)+C(0))⊥ L for some L ∈ B(H). Note that dom B∗ = B(0)⊥, and hence B∗ JB(0)⊥G = C∗ J(A(0)+C(0))⊥L,
that is (QBB)∗G = (Q( A C )C)∗L. Therefore,

((QBB)F)∗G = F∗(QBB)∗G = F∗(Q( A C )C)∗L = −E∗(Q( A C )A)∗L,

which implies thatN(((QBB)F)∗ | E∗) contains the non compact operator G. Hence, there exists an operator
X1 : H → K/B(0) such that (QBB)F + X1E is invertible according to Lemma 2.5 (ii). Let x ∈ H and [y] = X1x,
then we denote X : H→ K by

Xx = PB(0)⊥ y, x ∈ H,

it is clear that X1 = QBX. From (2), we have that there exists X ∈ B(H,K) such that QMX MX is invertible, and
hence MX is invertible.

We now assume assertion (ii) is valid. Let
(

E
F

)
: K1 → H ⊕ K be a left invertible operator and

ran
(

E
F

)
= ker

(
Q( A C )A Q( A C )C

)
,

where K1 is a new Hilbert space with dim K1 = dim ker (A C). From the proof of assertion (i), we know
that there exists an operator

(
Y
Z

)
: H/(A(0) + C(0))→ H ⊕ K such that

W =
(

Y E
Z F

)
: H/(A(0) + C(0)) ⊕ K1 → H ⊕ K

is an invertible operator. Applying Lemma 2.8, the Weylness of M0 implies that QM0 M0 is a Weyl operator
and hence QBBF is Weyl operator from equality (2), which means dim K1 = dim K/B(0).We may suppose
K1 := K/B(0). From the proof above, row operator (((QBB)F)∗ E∗) is right invertible. Note that (QBB)F is
Weyl operator, utilizing Lemma 2.5 (i), there exists X1 ∈ B(H,K/B(0)) for which (QBB)F + X1E is invertible.
Similar to the proof of assertion (i), we have that there exists X ∈ B(H,K) such that MX is invertible.

Conversely, assume that there exists X ∈ B(H,K) such that MX is invertible. From the proof of Theorem
3.1, we know (A C) is right invertible. Note that MX is closed, the invertibility of M∗

X is equivalent to that of
MX and hence M∗

X =
(

B∗ C∗
X∗ A∗

)
is invertible. It follows that ran B∗+ran C∗ |(A(0)+C(0))⊥= K and so (B∗ C∗ |(A(0)+C(0))⊥ )

is right invertible.
Next we claim that N(A | C) consists of compact operators only. we use here the operator

(
E
F

)
: K1 →

H ⊕ K defined in the proof above. From (2), the invertibility of MX implies dim K1 = dim K/B(0). If
dim K/B(0) = ∞, then we see dim K1 = dim K = ∞. Note that

ran
(

E
F

)
= ker

(
Q( A C )A Q( A C )C

)
= ker

(
A C

)
,

it is easy to see that there exists an unitary operator V : K → K1 such that EV ∈ N(A | C), and then E
is compact since N(A | C) consists of compact operators only. If, however, dim K/B(0) < ∞ and then
dim K1 < ∞, which means that E : K1 → H remains compact. From the identity (2), the invertibility of MX
shows that (QBX)E+ (QBB)F is invertible. Since E is compact, utilizing Lemma 2.4, (QBB)F is Fredholm and
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i((QBB)F) = 0. Take X = 0, then, from (2), it is clear that QM0 M0 is a Weyl relation and hence M0 is a Weyl
relation according to Lemma 2.8. For the case when N(B∗ | C∗ |(A(0+C(0)))⊥ ) consists of compact operators
only, we only need to replace the MX by M∗

X : B(0)⊥ ⊕ (A(0) + C(0)⊥)→ K ⊕H in the proof above. Similarly,
we can obtain that M0 is a Weyl relation.

Corollary 3.14. Let A ∈ BCR(H), B ∈ BCR(K) and C ∈ BCR(K,H) with A(0) + C(0) be closed, then⋂
X∈B(H,K)

σ(MX) = {λ ∈ C : ran (A − λI) + ran C , H}

∪{λ ∈ C : ran (B∗ − λI) + ran C∗ |(A(0)+C(0))⊥ ) , K}
∪{λ ∈ C : λ ∈ σw(M0), N(A − λI | C) ⊆ K (K,H)}
∪{λ ∈ C : λ ∈ σw(M0), N(B∗ − λI | C∗ |(A(0)+C(0))⊥ ) ⊆ K (H,K)}.

Corollary 3.15. Let A ∈ BCR(H), B ∈ BCR(K) and C ∈ BCR(K,H) with A(0) ⊆ C(0), then there is X ∈ B(H,K)
such that MX is an invertible relation if and only if (A C) and (B∗ C∗) are right invertible, and at least one of the
following statements is fulfilled:

(i) BothN(A | C) andN(B∗ | C∗) contain non compact operators;
(ii) M0 =

(
A C
0 B

)
is a Weyl relation.

Theorem 3.16. Let A ∈ BCR(H), B ∈ BCR(K) and C ∈ BCR(K,H) with A(0) + C(0) closed, then there is
X ∈ BR(H,K) with X(0) + B(0) closed such that MX is an invertible relation if and only if there exists a constant
relation T ∈ BR(K) such that T(0)+B(0) is closed and (B∗ |(T(0)+B(0))⊥ C∗ |(A(0)+C(0))⊥ ) and (A C) are right invertible,
and at least one of the following statements is fulfilled:

(i) BothN(A | C) andN(B∗ |(T(0)+B(0))⊥ | C∗ |(A(0)+C(0))⊥ ) contain non compact operators;
(ii) MT

0 =
(

A C
0 B+T

)
is a Weyl relation.

Proof. The proof of the sufficiency is similar to that of Theorem 3.10. For the necessity, assume that
there is X ∈ BR(H,K) with X(0) + B(0) closed such that MX is an invertible relation. Take Tx = X(0)
for all x ∈ K, it follows from the closedness of X(0) + B(0) that T(0) + B(0) is closed. The invertibility of
MX implies that MT

X :=
(

A C
X B+T

)
is invertible. Similar to the proof of Theorem 3.13, we can obtain that

(B∗ |(T(0)+B(0))⊥ C∗ |(A(0)+C(0))⊥ ) and (A C) are right invertible. Again, similar to the proof of Theorem 3.13, if
assume thatN(A | C) contains compact operators only, then we can obtain that

MX−X =

(
A C

X − X B

)
is a Weyl relation. Note that T is a constant relation and T(0) = X(0), then it follows from the Weylness
of MX−X that MT

0 =
(

A C
0 B+T

)
is a Weyl relation. Similarly, we can obtain that MT

0 is a Weyl relation if
N(B∗ |(T(0)+B(0))⊥ | C∗ |(A(0+C(0)))⊥ ) consists of compact operators only.

Corollary 3.17. Let A ∈ BCR(H), B ∈ BCR(K) and C ∈ BCR(K,H) with A(0) + C(0) closed, then⋂
X∈BR(H,K),X(0)+B(0)=X(0)+B(0) σ(MX)

= {λ ∈ C : for any constant relation T ∈ BR(K) with T(0) + B(0) closed,
ran (B∗ − λI) |(A(0)+T(0))⊥ +ran C∗ |(A(0)+C(0))⊥, K or ran (A − λI) + ran C , H}, or
λ ∈ σw(MT

0 ) andN(A − λI | C) ⊆ K (K,H)
∪{λ ∈ C : for any constant relation T ∈ BR(K) with T(0) + B(0) closed,

ran (B∗ − λI) |(A(0)+T(0))⊥ +ran C∗ |(A(0)+C(0))⊥, K or ran (A − λI) + ran C , H}, or
λ ∈ σw(MT

0 ) andN((B∗ − λI) |(T(0)+B(0))⊥ | C∗ |(A(0)+C(0))⊥ ) ⊆ K (H,K)}.

Corollary 3.18. ([22, Theorem 1]) Let A ∈ B(H), B ∈ B(K) and C ∈ B(K,H), then there is X ∈ B(H,K) such that
MX is invertible relation if and only if (A C) and (B∗ C∗) are right invertible, and at least one of the following
statements is fulfilled:

(i) BothN(A | C) andN(B∗ | C∗) contain non compact operators;
(ii) M0 =

(
A C
0 B

)
is a Weyl operator.
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4. Applications and examples

We begin with some propositions obtained by applying the above conclusions.

Proposition 4.1. Let A ∈ BR(H) and C ∈ BR(K,H) with A(0) + C(0) closed.
(i) If P(A(0)+C(0))⊥C is compact, then there is X ∈ B(H,K) such that A+CX is a right invertible relation if and only

if (A C) is right invertible;
(ii) If P(A(0)+C(0))⊥C is non compact, then there is X ∈ B(H,K) such that A + CX is a right invertible relation if

and only if (A C) is right invertible andN(A | C) contains non compact operators.

Proof. First we prove assertion (i). The necessity is clear, we next assume (A C) is right invertible. Note that

(A C) =
(

A1 C1
A2 C2

)
:
(

H
K

)
→

(
(A(0) + C(0))⊥

A(0) + C(0)

)
. (3)

It is clear that the right invertibility of (A C) is equivalent to that of (A1 C1), so (A1 C1) is right Fredholm.
Since C1 is compact, A1 is right Fredholm and hence

(
A1 C1
0 I

)
is right Fredholm. The right Fredholmness of

A1 means that d(
(

A1 C1
0 I

)
) = d(

(
A1 0
0 I

)
) = d(A1) ≤ n(A1) + dim ranA1, by Theorem 3.1, there is X ∈ B(H,K) such

that
(

A1 C1
−X I

)
is right invertible. Note that

(
I −C1
0 I

) (
A1 C1
−X I

) (
I 0
X I

)
=

(
A1 + C1X 0

0 I

)
, (4)

which means that A1 + C1X is right invertible and hence A + CX is right invertible.
For assertion (ii), we first assume that (A C) is right invertible and N(A | C) contains non compact

operators, which means that N(A1 | C1) contains non compact operators, where A1 and C1 are defined in
equality (3). In virtue of Theorem 3.1, there exists X such that

(
A1 C1
−X I

)
is right invertible and hence A1 +C1X

is right invertible by (4). It follows that A+CX is right invertible. We next prove the necessity. Assume that
there is X ∈ B(H,K) such that A + CX is a right invertible relation. The right invertibility of (A C) is clear.
It is easy to see that P(A(0)+C(0))⊥ (A + CX) is a right invertible relation and hence A1 + C1X is right invertible
by (3). Equality (4) implies that (

A1 C1
−X I

)
is right invertible. It follows that A1 is right invertible, then

(A1 C1) =
(

A11 0 C1

)
:

 kerA⊥1
kerA1

K

→ (A(0) + C(0))⊥.

Since C1 is non compact, ran C1 contains infinite dimensional closed subspaces M. Obviously, A11 is
invertible, so ran (A−1

11 |M) is closed. Define an operator J ∈ B(K,H) such that ran J = ran (A−1
11 |M), then

it is clear that ran A1 J ⊆ ran C1, which means that ran A1 J + ran P(A(0)+C(0))AJ + A(0) + C(0) ⊆ ran C1 +
ran P(A(0)+C(0))C + A(0) + C(0), i.e., ran AJ + C(0) ⊆ ran C + A(0). Hence J ∈ N(A | C), it follows thatN(A | C)
contains non compact operators.

Similar to the proof of Proposition 4.1, the propositions below can be obtained from Corollary 3.12 and
Theorem 3.13, respectively.

Proposition 4.2. Let A ∈ B(H) and C ∈ B(K,H).
(i) If C is compact, then there is X ∈ B(H,K) such that A + CX is left invertible if and only if A is left Fredholm

and n(A) ≤ dim (ran C∗ |ran A⊥ );
(ii) If C is non compact, then there is X ∈ B(H,K) such that A + CX is left invertible.
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Proposition 4.3. Let A ∈ BCR(H) and C ∈ BCR(K,H) with A(0) + C(0) closed.
(i) If P(A(0)+C(0))⊥C is compact, then there is X ∈ B(H,K) such that A + CX is an invertible relation if and only if

(A C) is right invertible and P(A(0)+C(0))⊥A is Weyl ;
(ii) If P(A(0)+C(0))⊥C is non compact, then there is X ∈ B(H,K) such that A + CX is an invertible relation if and

only if (A C) is right invertible andN(A | C) contains non compact operators.

Next, we end this section with three examples to illustrate the previous results. Assume here that the
underlying spaces H = ℓ2 = K.

Example 4.4. Let A ∈ BR(ℓ2), B ∈ BCR(ℓ2) and C ∈ BCR(ℓ2) with A(0) ⊆ C(0). If (A C) is right invertible and
N(A | C) contains non compact operators, then we claim that there is X ∈ B(ℓ2) such that MX is right invertible.

Indeed, as a relation from ℓ2 ⊕ ℓ2 to C(0)⊥ ⊕ C(0) ⊕ ℓ2, MX has the following matrix form MX =
( A1 C[⊥]

A2 C−C
X B

)
.

It is clear that the right invertibility of MX is equivalent to that of
(

A1 C[⊥]
X B

)
. Define bounded linear operator

X := T + B[⊥](C[⊥])+A1PM,

where T and M are defined in the proof of Theorem 3.1. Note that(
I 0

−B[⊥]C+[⊥] I

) (
A1 C[⊥]
X B

) (
I 0

−C+[⊥]A1PM I

)
=

(
A1PM⊥ C[⊥]

T + B[⊥]C+[⊥]A1PM⊥ + B − B B[⊥]PkerC + B − B

)
:= L,

and relation L can be written as

L =
( 0 E C[⊥]

F G B[⊥]PkerC+B−B

)
: M ⊕M⊥

⊕ ℓ2 → C(0)⊥ ⊕ ℓ2,

where E = (A1PM⊥ )|M⊥ , F = (T+B[⊥]C+[⊥]A1PM⊥ +B−B)|M = (T+B−B)|M, G = (T+B[⊥]C+[⊥]A1PM⊥ +B−B)|M⊥ .
Since T is surjective and ker T⊥ = M, F : M → ℓ2 is surjective. Note that (A C) is right invertible and
ran A |M +C(0) ⊆ ran C, then (E C[⊥]) : M⊥

⊕ ℓ2 → C(0)⊥ is surjective. Hence MX is right invertible. This
shows the correctness of Corollary 3.3.

Example 4.5. Let A,B,C ∈ BR(ℓ2) are given by

Ax = (x1, 0, x2, 0, x3, 0, · · · ), Bx = (x1, x2, 0, 0, 0, 0 · · · ),
Cx = (0, x2, 0, x4, 0, x6 · · · )

for all x = (x1, x2, x3, · · · ) ∈ ℓ2, respectively. Then we claim that there exists X ∈ BR(ℓ2) such that MX is right
invertible.

Indeed, it is clear that (A C) is right invertible, then Theorem 3.4 ensures that there exists X ∈ BR(ℓ2)
such that MX is right invertible. Alternatively, define Xx = ℓ2 for all x ∈ ℓ2. It is clear that ran MX = ℓ2 ⊕ ℓ2,
which means that MX is right invertible. This shows the correctness of Theorem 3.4.

Example 4.6. Let A,B,C ∈ BCR(ℓ2) be given by

Ax = (0, x2, 0, x3, 0, x4, 0, x5, · · · ), Bx = (0, x1, 0, x3, 0, x5, 0, x7 · · · ) + B(0),
Cx = (x2, 0, 0, 0, x4, 0, 0, 0, x6, 0, 0, 0, x8 · · · ) + C(0),

for all x = (x1, x2, x3, · · · ) ∈ ℓ2, respectively, where

B(0) = {(0, 0, x1, 0, x2, 0, x3, · · · ) : (x1, x2, x3, · · · ) ∈ ℓ2},
C(0) = {(0, 0, x1, 0, 0, 0, x2, 0, 0, 0, x3, · · · ) : (x1, x2, x3, · · · ) ∈ ℓ2}.

Then there exists X ∈ B(K,H) such that MX is invertible.
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Evidently, ran A+ ran C = ℓ2 and ran B∗+ ran C∗ = ℓ2. And M0 is Fredholm and n(M0) = d(M0) = 1. From
Theorem 3.13, then there exists X ∈ B(H,K) such that MX is invertible. Indeed, For all x = (x1, x2, x3, · · · ) ∈ ℓ2,
we define Xx = (x1, 0, 0, 0, 0, · · · ). Then we have

MX =


0 0 C1 C − C

A1 0 0 0
0 0 B − B B1
0 X1 0 0

 :


ker A⊥

ker A
ker C⊥

ker C

→


ran C
ran C⊥

ran B
ran B⊥

 .
It is clear that MX is invertible.
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