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Abstract. In this paper, we develop a method for approximating multiple integrals. The domain of
integration Ω is assumed to be a non-rectangular compact of Rn. The main idea is the dimensionality
reduction procedure based on the use of parametric α-dense curves ℓα(t). First, the region whose measure
represents the value of the integral, is densified using new results, by a certain α-dense curve of finite
length. The multiple integral of a positive continuous function f overΩ is approximated by a unique single
integral corresponding to ℓα(t). Some numerical examples are given.

1. Introduction

Let us consider the following multiple integral:

In( f ) =
(
Ω

f (x1, . . . , xn)dxn . . . dx1 (1.1)

where the function f is of class C1(Ω) ( or Lipschitzean) andΩ is the n-dimensional region in the Euclidean
n-space Rn defined as follows:

Ω =
{
x ∈ Rn : 1i(x) ≤ 0, i ∈ I

}
,

where 1i(x) are given measurable functions and I = {i : 1 ≤ i ≤ m, m ≤ n} is a finite index set.

Several specific methods for numerical evaluation of integrals over higher dimensional regions have been
proposed (see [8, 11]). All of these, including the theory of integration itself, are based on the geometric
principles of area and volume. These intuitive concepts are difficult to formalize, but will be crucial for us.
The literature on integration formulas is really extensive but mostly deal with functions of a single variable
[12]. However, for the development of modern modelling techniques [10, 17, 23–25] it is necessary to
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consider systems that are described by functions with several variables. Therefore, finding the extrema,
calculating their integrals etc. turns out to be a fundamental task and this topic presents many challenges.
In order to classically integrate (1.1) explicitly, which is not always easy, we can proceed with a change of
variables or a succession of simple integrations (Fubini’s theorem [8, 12]) and this is only possible if the
region of integration Ω, can be formulated as follows:

Ω =


a ≤ x1 ≤ b

x ∈ Rn,
...

φi(x1, . . . , xi−1) ≤ xi ≤ ψi(x1, . . . , xi−1), 2 ≤ i ≤ n

 (1.2)

where φi and ψi (2 ≤ i ≤ n) are continuous and bounded functions.

Even the case of a rectangular area, is not more practical because it involves too much calculus. The situation
will be very complicated in the case of a non-rectangular compact area. Here, we develop an approximate
method of the multiple integral (1.1) when the regionΩ is non-rectangular of the form (1.2). The main idea
is based on the reduction of the domain Ω f = {(x, xn+1) ∈ Rn+1 : x = (x1, . . . , xn) ∈ Ω and 0 ≤ xn+1 ≤ f (x)}
by means of a transformation which allows us to express the (n + 1) variables xi, 1 ≤ i ≤ (n + 1) as a single
variable t ∈ R, given by xi = ℓi(t), 1 ≤ i ≤ (n + 1), (see below). Because calculating the integral (1.1) over
Ω numerically amounts to calculating the volume of Ω f . The function f is approximated by a univariate
function defined by fα(t) = f (ℓ1(t), . . . , ℓn(t)). The curve ℓα(t) = (ℓ1(t), . . . , ℓn+1(t)) is a computable parametric
α-dense curve in the non-rectangular domainΩ f . Then, the multiple integral (1.1) is reduced to the unique
simple integral Iα obtained as the limit, when α tends to 0, of the product of αn by Lα,ℓα the length of the
curve ℓα(t):

Iα = lim
α→0

αn
Lα,ℓα =

∫
I

1α(t) dt (1.3)

where I is an interval and 1α(t) is a function which depends on fα(t). More precisely I = [0,U] with U is the
upper bound of the function ℓα(t).

Till now, some authors looked at numerical approximation method of multiple integrals, based on α-dense
curves, only over rectangular areas [2, 3, 13, 14]. The goal of this paper is, still using α-dense curves, to give
a new formula to approximate the multiple integral (1.1) over some non-rectangular compactΩ of the type
(1.2).
It should be also mentioned that, the error analysis for numerical integration methods dealing with mul-
tivariate function are not abundant in the literature. And that, because of the approximate integration
formula which is generally complicated. For the procedure of reduction consisting of approaching the mul-
tiple integrals In( f ) using α-dense curves, by the simple integral Iα given by (1.3), we define the associated
error Eα( f ) as:

Eα( f ) = |In( f ) − Iα|.

In this contest, there is an attempt, but just for a very special type of the α-dense curves and for a very few
special cases of function f integrated over rectangular region [4, 12, 15]. Because, in general error analysis
in higher dimension is much more difficult than for the function of one variable.

2. Generating α-dense curves in a non-rectangular compact regions

Here, we present some ways for constructing α-dense curves in a compact region. The construction
of the curves filling a rectangular region of Rn, was studied and applied by numerous authors. The first
type of curves are known as space-filling curves [1, 19] which are the approximation of Peano type curves
(1980), then Hilbert curves (1981), see e.g. Butz [5]. The second type are the α-dense curves which have
been developed by several authors [7, 9, 20], were introduced mainly to solve multidimensional global
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optimization with and without constraints [10, 18]. Also, the approximation of multiple integrals on hyper-
rectangles of Rn (n > 1) [3, 6, 14, 16], as being areas and volumes. The introduction of these α-dense curves
has allowed analytical argumentation of certain dimensionality reduction procedure [3, 6, 13, 14, 16]. In
what follows they will be used as the support for a numerical integration approach. Below, some definitions
and properties of these curves are given.

Definition 2.1. Let Ω be a subset of finite diameter of the metric space Rn and α > 0. We say that a continuous
curve ℓα of Rn is α-dense in Ω, if ℓα ⊂ Ω and for all x ∈ Ω, d(x, ℓα) ≤ α, where: d(x, ℓα) = inf

y∈ℓα
d(x, y) ( d is the

Euclidean distance).

Remark 2.1. Recall that the curve ℓα is rectifiable if its lengthLα,ℓα (which is independent of the chosen parametriza-
tion) is finite.

Some interesting results concerning the existence of α-dense curves with minimal length were given by
Ziadi et al. [21]. In the case where the set Ω is a hyper-rectangle of Rn, different ways for constructing
the α-dense curves in Ω are presented in [7, 20, 22, 23]. We shall use the recent new results [10, 18]
concerning the generation of α-dense curves in non-rectangular compacts (which have been given to solve
some constrained global optimization problems). Before giving the new formula for the computation of
the single integral (1.3), we first begin with densification results for compacts of the following form:

Ω f = {(x, xn+1) ∈ Rn+1 : x ∈ Ω and 0 ≤ xn+1 ≤ f (x)}.

We determine the relationship existing between the components ℓi, (i = 1, . . . ,n) of the parametrization in
order to generate a new class of α-dense curves in a compact type (1.2) whose boundary is defined by a
continuous functions. Because the integral of a non-negative continuous function f onΩ is the measure of
the area or volume of the domain Ω f . If the domain Ω f is densified by a certain α-dense curve ℓα, we shall
prove that the integral (1.1) can be approximated, when α approaches 0, by the expression αn.Lα,ℓα . The
rest of this section is to present densification results of Ω f in which Ω is not rectangular of the form (1.2).

2.1. The α-densifiable hyper-rectangles and multiple integrals

We first give here some results concerning the densification of rectangular regions by α-dense curve ℓα
and the approximate calculation of a multiple integral. If the functions φ2, . . . , φn , ψ2, . . . , ψn in (1.2) are
all constants φi(x1, . . . , xi−1) = ai and ψi(x1, . . . , xi−1) = bi for all x j ( j = 1, . . . , (i − 1)), i = 2, . . . ,n and if we put

a = a1 and b = b1, then Ω becomes the hyper-rectangle
n∏

i=1
[ai, bi]. In this case we have the following result

(see [10]).

Theorem 2.1. Let ℓ = (ℓ1, . . . , ℓn) : I =
[
0, πα1

]
→ Ω be a function defined by:

ℓi(t) = (ai − bi) cos2(
αit
2

) + bi, i = 1, . . . ,n,

where the constants α1, . . . , αn, α satisfy the relations:

α1 ∈ R
∗

+, αi = α1

( 1
α

)i−1 i−1∏
k=1

(bk − ak), i = 2, . . . ,n,

then, the parameterized curve ℓ(t) = (ℓ1(t), . . . , ℓn(t)) for t ∈ I, is πα
√

n − 1-dense in Ω.

Example 2.1. For illustrating the concept of α-density, we propose two examples for densifying two hyper-rectangles
(for n = 2 and n = 3), by the supports of different α-dense curves ℓα (defined on [0, π] with α1 = 1) respectively in
the hyper-rectangles Ω2 = [−2, 2] × [1, 2] and Ω3 = [−2, 2] × [1, 2] × [0, 1], see Figure 1 and Figure 2 given below,
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Figure 1: 2D, α-dense curve ℓα (in blue) in Ω2
with α = 0.2.
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Figure 2: 3D, α-dense curve ℓα (in blue) in Ω3 with
α = 0.3.

Theorem 2.2. Let f (x) = C, where C is a positive number, be a constant function defined on the hyper-rectangle Ω.
Consider the parameterized curve ℓα = (ℓ1, . . . , ℓn+1) :

[
0, πα1

]
→ Ω f = Ω × [0,C] defined by:

ℓi(t) = (ai − bi) cos2(αit
2 ) + bi , for i = 1, . . . ,n,

ℓn+1(t) = −C cos2(αn+1t
2 ) + C,

with 
α1 ∈ R∗+, αi = α1

(
1
α

)i−1 i−1∏
k=1

(bk − ak), for i = 2, . . . ,n + 1.

and α = 1
m

(
n∏

k=1
(bk − ak)

)1/n

, m ∈N∗, α→ 0⇔ m→ +∞.

Then the curve ℓα is πα
√

n-dense in Ω f and we have:

In( f ) = lim
α→0

αn
Lα,ℓα .

Proof. Using the theorem 2.1 and by inspiring by [14], we can proof that the curve ℓα = (ℓ1, . . . , ℓn+1) defined

on
[
0, πα1

]
, in the last theorem, is πα

√
n-dense in Ω f . Next set Lα = αn

Lα,ℓα and β =
(

n∏
k=1

(bk − ak)
)1/n

, then

Lα = αn

π
α1∫

0

[(
ℓ′1 (t)

)2
+

(
ℓ′2 (t)

)2
+ · · · +

(
ℓ′n+1 (t)

)2
] 1

2

dt,

where ℓ′i (t), (1 ≤ i ≤ n + 1) are the derivatives of the components of ℓα(t) and the constants αi are given by
α1 ∈ R∗+, αi = α1

(
m
β

)i−1 i−1∏
k=1

(bk − ak) , for i = 2, . . . ,n,

and αn+1 = α1mn with α =
β
m .
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Then

Lα = αn

π
α1∫
0

[(
α1

b1−a1
2 sin (α1t)

)2
+ · · · +

(
αn

bn−an
2 sin (αnt)

)2
+

(
αn+1

C
2 sin (αn+1t)

)2
] 1

2

dt

= αn

π
α1∫
0

[(
α1

b1−a1
2 sin (α1t)

)2
+ · · · +

(
α1

(
m
β

)n−1 bn−an
2 (b1 − a1) . . . (bn−1 − an−1) sin (αnt)

)2

+
(
α1mn C

2 sin (α1mnt)
)2
] 1

2

dt.

Let us make the following change of variables: u = mnα1t,

Lα = αn
mnπ∫
0

1
mnα1

[(
α1

b1−a1
2 sin

(
u

mn

))2
+ · · · +

(
α1

(
m
β

)n−1 bn−an
2 (b1 − a1) . . . (bn−1 − an−1) sin

(
αnu

mnα1

))2
+(

α1mn C
2 sin (u)

)2
] 1

2

du

= αn
mn∑
i=1

πi∫
π(i−1)

[(
1

mn
b1−a1

2 sin
(

u
mn

))2
+ · · · +

(
C
2 sin (u)

)2
] 1

2

du

= αn
mn∑
i=1

L(i)
α ,

with L(i)
α =

πi∫
π(i−1)

[(
1

mn
b1−a1

2 sin
(

u
mn

))2
+ · · · +

(
C
2 sin (u)

)2
] 1

2

du , i = 1, . . . ,mn.

There exist p ≥ 1 and q ≤ mn such that:

L(p)
α = min

1≤i≤mn
L(i)
α and L(q)

α = max
1≤i≤mn

L(i)
α .

Then:

αn
mn∑
i=1

L(p)
α ≤ Lα ≤ αn

mn∑
i=1

L(q)
α ,

that is

βnL(p)
α ≤ Lα ≤ βnL(q)

α . (2.1)

On the other hand we have:

L(p)
α =

πp∫
π(p−1)

( 1
mn

b1 − a1

2
sin

( u
mn

))2

+ · · · +
(C

2
sin (u)

)2


1
2

du,

L(q)
α =

πq∫
π(q−1)

( 1
mn

b1 − a1

2
sin

( u
mn

))2

+ · · · +
(C

2
sin (u)

)2


1
2

du.

Again, the next change of variables:

v = u −
(
p − 1

)
π, w = u −

(
q − 1

)
π,

gives:

L(p)
α =

π∫
0

[(
1

mn
b1−a1

2 sin
(

v+(p−1)π
mn

))2
+ · · · +

(
C
2 sin (v)

)2
] 1

2

dv
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L(q)
α =

π∫
0

[(
1

mn
b1−a1

2 sin
(

w+(q−1)π
mn

))2
+ · · · +

(
C
2 sin (w)

)2
] 1

2

dw.

According to (2.1), by setting m tends to +∞, and by virtue of uniform convergence, we deduce:

βn

π∫
0

C
2

sin (v) dv ≤ Lα ≤ βn

π∫
0

C
2

sin (w) dw,

which means that:

lim
α→0

Lα = Cβn = C
n∏

k=1

(bk − ak).

So we have:

In( f ) = lim
α→0

αn
Lα,ℓα = C

n∏
k=1

(bk − ak).

Proposition 2.1. Let f (x) =
p∑

j=1
C jχ j be a non-negative step function defined on the hyper-rectangle Ω with C j ≥ 0

and χ j (1 ≤ j ≤ p), are the indicator functions of the sets P j of a partition P of Ω. Then there exists a parameterized
curve ℓα with density απ

√
n and length Lα,ℓ in the domain:

KP, f =
p
∪
j=1

{(
x( j), x( j)

n+1

)
/ x( j) ∈ P j , 0 ≤ x( j)

n+1 ≤ C j

}
,

such that the following equality is satisfied:

In( f ) = lim
α→0

αn
Lα,ℓα .

Proof. The partition P =
{
P j : j = 1, . . . , p

}
is obtained by dividing the hyper-rectangleΩ into sub-rectangles

P j, without common interior points, we then have:

In( f ) =
p∑

j=1

(
P j

C jdxn . . . dx1.

But, we have:(
P j

C jdxn . . . dx1 = lim
α→0

αn
L
α,ℓ

( j)
α
,

for curves ℓ( j)
α with density απ

√
n and length L

α,ℓ
( j)
α

in P j × [0,C j]. So we can write:

In( f ) = lim
α→0

p∑
j=1

αn
L
α,ℓ

( j)
α
.

Now, consider the curves ℓ( j)
α for j = 1, . . . , p and define a curve ℓα in KP, f such that:

ℓα (t) = ℓ( j)
α (t) if t ∈ int

(
P j

)
( interior of P j).
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The curve ℓα can be defined in different ways on the boundary planes of the sub-rectangles P j. Suppose
that ℓα was constructed with the density απ

√
n. Then its length is given by:

Lα,ℓ =

p∑
j=1

L
α,ℓ

( j)
α
±O,

where O denotes the total quantity corresponding to the elements added or removed from the curve linking
the ℓ( j)

α . By substitution, we get:

In( f ) = lim
α→0

αn
p∑

j=1

L
α,ℓ

( j)
α

= lim
α→0

αn [
Lα,ℓα ±O

]
= lim
α→0

αn
Lα,ℓα .

Theorem 2.3. Let f be a non-negative continuous function defined on the hyper-rectangle Ω of Rn. Then, for any
ε > 0, there exists a parameterized curve ℓα with density

(
απ
√

n + ε
)

in the domain

Ω f =
{
(x, xn+1) ∈ Rn+1 : x ∈ Ω and 0 ≤ xn+1 ≤ f (x)

}
,

for which the following inequality is satisfied∣∣∣In( f ) − αn
Lα,ℓα

∣∣∣ < ε.
Proof. According to Riemann’s integral theory, there exists a partition P =

{
P j : j = 1, . . . , p

}
of Ω and a step

function:

fP =
p∑

j=1

m jχ j ,

where χ j are the indicator functions of the sets P j and m j = min
{

f (x) : x ∈ P j

}
, such that:

|In( f ) − In
fP
| <

ε
2
.

Moreover, because of the continuity of f , the function fP can be chosen so that:

max
j

{
M j −m j : j = 1, . . . , p

}
< ε,

with M j = max
{

f (x) : x ∈ P j

}
. On the other hand, we can find a curve ℓα densifying the region:

K fP =
p
∪
j=1

{
(x, xn+1) : x ∈ P j , 0 ≤ xn+1 ≤ m j

}
,

with the density απ
√

n and such that we have the inequality:

|In( fP) − αn
Lα,ℓα | <

ε
2
.

The two previous inequalities allow us to write:

|In( f ) − αn
Lα,ℓα | < ε.

Since K fP ⊂ Ω f , the curve ℓα densifies Ω f with density
(
απ
√

n + ε
)

and the proof of the theorem is fin-
ished.
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3. The main result

In what follows, based on recent results [10, 18], we will extend the results given in the previous section.

3.1. The α-densifiable non-rectangular compacts and multiple integrals

As the functions φi and ψi (2 ≤ i ≤ n) are supposed to be continuous and bounded then there exist

xl
i, x

u
i such that Ω is contained in the hyper-rectangle H =

n∏
i=1

[xl
i, x

u
i ]. In the sequel, the functions φi and

ψi (2 ≤ i ≤ n) in (1.2) are supposed to be lipschitzian [10] ( or hölderian see [18]) with constants respectively

li > 0, Li > 0 (2 ≤ i ≤ n) over the hyper-rectangles Hi =
i−1∏
k=1

[xl
k, x

u
k ] (2 ≤ i ≤ n). Denote by m the Lebesgue

measure, the arbitrary number α is supposed to be positive. Next, keeping the same notations introduced
above, we give a general main result for generating α-dense curves in Ω f .

Theorem 3.1. Let f be a real non-negative lipschitzian function of constant L > 0 overH. Then, for all ε > 0, there
exists a curve ℓα densifying the domain:

Ω f =
{
(x, xn+1) ∈ Rn+1 : x ∈ Ω and 0 ≤ xn+1 ≤ f (x)

}
,

with density
(
πα
√

n + ε
)
, such that:∣∣∣In( f ) − αn

Lα,ℓα

∣∣∣ < ε.
Proof. Let P =

{
P j : j = 1, . . . , p

}
be a set of hyper-rectangles defined by

P j =

n∏
i=1

[
a( j)

i , b( j)
i

]
⊂ Ω,

such that:

a( j)
1 = a( j), a(1)

1 = a

a( j)
2 = max[

a( j)
1 ,b( j)

1

]φ2 (x1)

...

a( j)
n = max

n−1∏
i=1

[
a( j)

i ,b( j)
i

]φn (x1, . . . , xn−1)

,



b( j)
1 = b( j), b(1)

1 = b

b( j)
2 = min[

a( j)
1 ,b( j)

1

]ψ2 (x1)

...

b( j)
n = min

n−1∏
i=1

[
a( j)

i ,b( j)
i

]ψn (x1, . . . , xn−1)

and

P =
p⋃

j=1

P j ≃ Ω and
p⋂

j=1

Int(P j) = ∅.

According to Riemann’s integral theory, there exists a step function:

fP =
p∑

j=1

m jχ j,
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where χ j is indicator function of the set P j and m j = min
{

f (x) : x ∈ P j

}
, such that:∣∣∣∣∣∣∣∣In( f ) −

(
P

fP (x1, . . . , xn) dxn . . . dx1

∣∣∣∣∣∣∣∣ < ε
2
. (3.1)

The function fP and the set P can be chosen so that:

max
j

{
M j −m j : j = 1, . . . , p

}
< ε,

with

M j = max
{

f (x) : x ∈ P j

}
.

And

max
1≤ j≤p

 max
i−1∏
k=1

[
a( j)

k ,b( j)
k

]φi (x) − min
i−1∏
k=1

[
a( j)

k ,b( j)
k

]φi (x) / i = 2, . . . ,n

 < ε,

max
1≤ j≤p

 max
i−1∏
k=1

[
a( j)

k ,b( j)
k

]ψi (x) − min
i−1∏
k=1

[
a( j)

k ,b( j)
k

]ψi (x) / i = 2, . . . ,n

 < ε.
(That is to say: m

 p⋃
j=1

P j −Ω

 < ε).

By applying the proposition 2.1, to fP on P =
p⋃

j=1
P j, there exists a curve ℓα densifying the domain:

K fP =

p⋃
j=1

{
(x, xn+1) ∈ Rn+1 : x ∈ P j, 0 ≤ xn+1 ≤ m j

}
,

with the density
(
πα
√

n
)

and such that we have the inequality:∣∣∣∣∣∣∣∣
(

P

fP (x1, . . . , xn) dxn . . . dx1 − α
n
Lα,ℓα

∣∣∣∣∣∣∣∣ < ε
2
. (3.2)

By the two previous inequalities (3.1) and (3.2), we deduce:∣∣∣In( f ) − αn
Lα,ℓα

∣∣∣ < ε.
Since K fP ⊂ Ω f , the curve ℓα densifies Ω f with the density

(
πα
√

n + ε
)
.

Theorem 3.2. Let f be a real non-negative lipschitzian function with constant L > 0 overH and

Ω f =
{
(x, xn+1) ∈ Rn+1 : x ∈ Ω and 0 ≤ xn+1 ≤ f (x)

}
.

Let ℓα = (ℓ1, . . . , ℓn+1) :
[
0, πα1

]
→ Ω f be the curve defined by:
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ℓ1 (t) = (a − b) cos2
(
α1t
2

)
+ b

...

ℓn (t) =
[
φn (ℓ1 (t) , . . . , ℓn−1 (t)) − ψn (ℓ1 (t) , . . . , ℓn−1 (t))

]
cos2

(
αnt
2

)
+ ψn (ℓ1 (t) , . . . , ℓn−1 (t))

ℓn+1 (t) = − f (ℓ1 (t) , . . . , ℓn (t)) cos2
(
αn+1t

2

)
+ f (ℓ1 (t) , . . . , ℓn (t)) ,

where α1, . . . , αn+1, α are strictly positive real numbers satisfying:
α, α1 ∈ R∗+, α2 =

1
α (M1 −m1)α1

αi =
1
α [(Mi−1 −mi−1) + (li−1 + Li−1)α]αi−1, i = 3, . . . , (n + 1)

with Mi = max
Hi
ψi, mi = min

Hi
φi, and M1 = b, m1 = a.

Then, the parameterized curve ℓα (t) = (ℓ1 (t) , . . . , ℓn+1 (t)) is πnα-dense in Ω f .

Proof. This result is a consequence of the theorem 2.1. proved in [10] for the Lipschitz case, for the Hölder
case see [18].

Example 3.1. Let Ω be the non-rectangular region of R2 defined by

Ω =

{
(x1, x2) ∈ R2/

−π ≤ x1 ≤ π
φ2(x1) ≤ x2 ≤ ψ2(x1)

}
,

where φ2(x1) = − sin x1 + cos x1 + 2 and ψ2(x1) = sin x1 + cos x1 + 6.
The parameterized curve ℓα(t) = (ℓ1 (t) , ℓ2 (t)) defined by{

ℓ1 (t) = −π cosα1t for t ∈ [0, π/α1]
ℓ2 (t) = −(sin(ℓ1 (t) + 2) cos(α2t) + cos(ℓ1 (t)) + 4,

with α2 =
πα1
α is πα-dense in Ω, see Figure 3.

-4 -3 -2 -1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

2
(x

1
)

2
(x

1
)

Figure 3: The 2D, α-dense curve ℓα (in blue) in the non-rectangular region Ωwith α=0.02.
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Example 3.2. Let Ω be the non-rectangular region of R3 defined by

Ω =

(x1, x2, x3) ∈ R3/
−1 ≤ x1 ≤ 1

φ2(x1) ≤ x2 ≤ ψ2(x1)
φ3(x1, x2) ≤ x3 ≤ ψ3(x1, x2)


where φ2(x1) = −1

4 x2
1 +

x1
2 − 1, ψ2(x1) = 1

4 x2
1 +

x1
2 + 1 and φ3(x1, x2) = 0 , ψ3(x1, x2) = x1 + 1.

The parameterized curve ℓα(t) = (ℓ1 (t) , ℓ2 (t) , ℓ3 (t)) defined by
ℓ1 (t) = − cosα1t for t ∈ [0, πα1]
ℓ2 (t) = −( 1

4 cos2(α1t) + 1) cos(α2t) − 1
2 cos(α1t)

ℓ3 (t) =
((

1
8 cos2(α1t) + 1

2

)
cos(α2t) + 3

4 cos(α1t) − 11
8

)
(cos (α3t) − 1) ,

with
(
α2 =

α1
α , α3 =

(7+4α)α1
2α2

)
is π
√

2α-dense in Ω, see Figure 4.

1
0

2 0.5

1
0

0

-0.5

2

-1

-1-2

4

6

Figure 4: The 3D, α-dense curve ℓα (in blue) in the non-rectangular region Ωwith α=0.07.

Theorem 3.3. Let f be a non-negative function of class C1(Ω). Then there exists a parameterized curve ℓα(t) =
(ℓ1 (t) , . . . , ℓn+1 (t)) densifying Ω f such that the multiple integral (1.1) can be approached by the single integral:

Iα =
α1

2

n
Π
i=1

(Mi −mi)

π
α1∫

0

fα (t) |sin (αn+1t)| dt,

where fα (t) = f (ℓ(t)) = f (ℓ1 (t) , . . . , ℓn (t)) .

Proof. By applying the theorem 3.1, if ε→ 0, then we have:

In( f ) = lim
α→0

αn
Lα,ℓα ,

where the curve ℓα(t) is given in theorem 3.2, which densify the domainΩ f with density πnα.According to
the previous theorem, the multiple integral (1.1) can be approached by αn

Lα,ℓ.
For Lα = αn

Lα,ℓ we have:
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Lα = αn

π
α1∫
0

[(
ℓ′1 (t)

)2
+ · · · +

(
ℓ′n+1 (t)

)2
] 1

2

dt

= αn

2

π
α1∫
0

[
((b1 − a1)α1 sin (α1t))2 + . . . +

(
f (ℓ (t))αn+1 sin (αn+1t) −

[
f (ℓ (t))

]′
cos (αn+1t) +

[
f (ℓ (t))

]′)2
] 1

2

dt.

But we have:

α2 =
1
α (M1 −m1)α1, α, α1 ∈ R∗+

αi =
1
α [(Mi−1 −mi−1) + (li−1 + Li−1)α]αi−1 , i = 3, . . . ,n + 1,

so

αn+1 =
αn

α
[(Mn −mn) + (ln + Ln)α]

=
α1

αn [(Mn −mn) + (ln + Ln)α] . . . [(M2 −m2) + (l2 + L2)α] .

As f (ℓ (t)) is non-negative, by making α→ 0 we find:

lim
α→0

Lα =
1
2

π
α1∫

0

f (ℓ (t)) (Mn −mn) . . . (M1 −m1)α1 |sin (αn+1t)| dt.

We conclude that

In( f ) = lim
α→0

αn
Lα,ℓα =

α1

2

n∏
i=0

(Mi −mi)

π
α1∫

0

fα(t) |sin(αn+1t)| dt,

which is what we wanted.

4. Numerical examples

Numerical results of four examples of double and triple integrals in the tables 1, 2, 3, 4, to illustrate
the usefulness of the above procedure are reported. To compute Iα, we use the Simpson’s integration
method to approximate Iα by Ĩα and the numerical tests have been implemented in Matlab R2017a runtine
environment and the experiments have been executed at a PC with Intel(R) Core(TM) i5-7200U CPU 2.50
GHz and 8.00 RAM. We tested these examples just because the exact value is known and to compare
the approximate values obtained by using the α-dense curves. We have chosen different values of the
densification parameter α in a decreasing way and different values of the number k of the subintervals used
in the Simpson’s algorithm to calculate Iα. The absolute and relative errors εA

α , εR
α are evaluated and we

show how these errors decrease with respect to α and k.

Some notations are necessary in tables 1–4.

Notations.
α : the density parameter.
k: the number of subintervals used in the Simpson’s algorithm.
Iexact : The exact value of the integral In( f ).
Ĩα : The approximate value of the integral Iα.
εA
α = |Iexact − Ĩα| : The absolute error.
εR
α =

εA
α

Iexact
.100% : The relative error.



D. Guettal, M. Rahal / Filomat 38:7 (2024), 2503–2520 2515

Example 4.1. Consider

Ω =

{
(x1, x2) ∈ R2/

−1 ≤ x1 ≤ 1
φ2(x1) ≤ x2 ≤ ψ2(x1)

}
with φ2(x1) = 1

2 x1 −
1
2 , ψ2(x1) = 1

2 x1 +
1
2 and f (x) = C a constant positive function. The region

Ω f =
{
(x1, x2, x3) ∈ R3/ (x1, x2) ∈ Ω and 0 ≤ x3 ≤ C

}
.

We show that the exact value of

I2( f ) =
"
Ω

f (x1, x2) dx2dx1 = Vol
(
Ω f

)
= 2C

is the same as that given by using the integration formula of Theorem 3.1. By Theorem 3.2, The curve ℓα = (ℓ1, ℓ2, ℓ3) :[
0, πα1

]
→ Ω f defined by:

ℓ1 (t) = − cos (α1t)
ℓ2 (t) = − 1

2 (cos (α2t) + cos (α1t))
ℓ3 (t) = −C

2 cos (α3t) + C
2 ,

with M2 = 1, m2 = −1, l2 = L2 =
1
2 , α = 1

m , α1 ∈ R∗+, α2 = mα1 and α3 = m (2m + 1)α1, m ∈ N∗ (α→ 0⇔ m→
+∞), is 2πα-dense in Ω f . From theorem 3.1 we have:

I2( f ) =
"
Ω

f (x1, x2) dx2dx1 = lim
α→0

α2
Lα,ℓα .

Then we have:

lim
α→0

α2
Lα,ℓα = lim

α→0
Lα = lim

α→0
α2

π
α1∫

0

[(
ℓ′1 (t)

)2
+

(
ℓ′2 (t)

)2
+

(
ℓ′3 (t)

)2
] 1

2

dt.

ℓ′1 (t) = α1 sin (α1t)
ℓ′2 (t) = α1

2α sin
(
α1
α t

)
+ α1

2 sin (α1t)
ℓ′3 (t) = (2+α)α1C

2α2 sin
(

(2+α)α1
α2 t

)
,

then

lim
α→0

Lα = lim
α→0

α2

π
α1∫
0

[
(α1 sin (α1t))2 +

(
α1
2α sin

(
α1
α t

)
+ α1

2 sin (α1t)
)2
+

(
(2+α)α1C

2α2 sin
(

(2+α)α1
α2 t

))2
] 1

2

dt

= lim
α→0

π
α1∫
0

[(
(2+α)α1C

2 sin
(

(2+α)α1
α2 t

))2
] 1

2

dt.

Let us make the following change of variables: u = (2+α)α1
α2 t, hence

lim
m→∞

L1/m = lim
α→0

m(2m+1)π∫
0

1
m(2m+1)α1π

[(
(2m+1)α1C

2m sin (u)
)2
] 1

2

du

= lim
m→∞

m(2m+1)π∫
0

C
2m2 |sin (u)| du = lim

m→∞
C

2m2

m(2m+1)∑
i=1

L(i)
1/m,
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where L(i)
1/m =

πi∫
π(i−1)

|sin (u)| du.

If we denote by

L(p)
α = min

{
L(i)

1/m : i = 1, . . . ,m(2m + 1)
}

and L(q)
α = max

{
L(i)

1/m : i = 1, . . . ,m(2m + 1)
}
,

hence

C
2m2

m(2m+1)∑
i=1

L(p)
1/m ≤ L1/m ≤

C
2m2

m(2m+1)∑
i=1

L(q)
1/m,

with L(p)
1/m =

πp∫
π(p−1)

|sin (u)| du and L(q)
1/m =

πq∫
π(q−1)

|sin (u)| du, then we have:

C (2m + 1)
2m

L(p)
1/m ≤ L1/m ≤

C (2m + 1)
2m

L(q)
1/m.

By another change of variables: u −
(
p − 1

)
π = v and u −

(
q − 1

)
π = w, it comes:

L(p)
1/m =

π∫
0

|sin (v)| dw = 2 and L(q)
1/m =

π∫
0
|sin (w)| dw = 2.

Let m tender to +∞, we obtain and by virtue of the uniform convergence:

lim
m→∞

C (2m + 1)
2m

L(p)
1/m ≤ lim

m→∞
L1/m ≤ lim

m→∞

C (2m + 1)
2m

L(q)
1/m,

hence lim
m→∞

L1/m = 2C. So we deduce:

I2( f ) = lim
α→0

Lα = lim
α→0

α2
Lα,ℓα = 2C = Vol

(
Ω f

)
.

For C = 2, and Iexact = 4, the integral I2( f ) is approximated by the simple integral: Iα = 2α1

π
α1∫
0
|sin (α3t)| dt.

Table 1: Numerical results of example 4.1.

α k Ĩα εA
α εR

α

0.3
16
32
64

3.87652
3.92822
3.95902

0.123476
0.071777
0.040976

3.1%
1.8%
1.0%

0.01
16
32
64

4.00912
4.00054
4.00003

0.009119
0.000538
0.000033

0.2%
0.01%

0.0008%

0.004
16
32
64

4.00054
4.00003
4.00000

0.000538
0.000033
0.000002

0.01%
0.0008%

0.00005%
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Example 4.2. Consider the following double integral:

I2( f ) =

1∫
−1

ψ2(x1)∫
φ2(x1)

f (x1, x2) dx2dx1,

with φ2(x1) = −1
4 x2

1 +
x1
2 − 1, ψ2(x1) = 1

4 x2
1 +

x1
2 + 1 and f (x1, x2) = x1 + x2 +

11
4 .

I2( f ) is approximated by the simple integral:

Iα =
α1

2

2
Π
i=1

(Mi −mi)

π
α1∫

0

fα (t) |sin (α3t)| dt,

with fα (t) = f (ℓ1(t), ℓ2(t)) and Iexact = 11.917.

Table 2: Numerical results of example 4.2.

α k Ĩα εA
α εR

α

0.3
32
64

128

13.37120
13.13939
12.83984

1.454195
1.222392
0.922837

12.2%
10.3%
7.7%

0.03
32
64

128

12.91740
11.59811
11.95262

1.000404
0.318891
0.035620

8.4%
2.7%
0.3%

0.001
32
64
128

12.37103
11.95120
11.92798

0.454027
0.034198
0.010979

3.8%
0.3%
0.1%

Example 4.3. Let

Ω =

{
(x1, x2) ∈ R2/

−π ≤ x1 ≤ π
− sin x1 + cos x1 + 2 ≤ x2 ≤ sin x1 + cos x1 + 6

}
,

and consider the following double integral:

I2( f ) =
"
Ω

f (x1, x2) dx2dx1,

with f (x1, x2) = x2 exp(x1), the intgral I2( f ) is approximated by the integral Iα given by

Iα = 4πα1

π
α1∫

0

ℓ2(t) exp(ℓ1(t)) |sin (α3t)| dt,

where (ℓ1(t), ℓ2(t)) is the πα-dense curve in Ω and the parameters α, α1, α2, α3 verify the relation given in Theorem
3.2 with Iexact = 406.5156.



D. Guettal, M. Rahal / Filomat 38:7 (2024), 2503–2520 2518

Table 3: Numerical results of example 4.3.

α k Ĩα εA
α εR

α

0.1 128
256

478.78700
459.00116

72.271400
52.485562

17.8%
12.9%

0.04 128
256

447.27258
442.21437

40.756979
35.698770

10.0%
8.9%

0.001 128
256

403.91521
407.65131

2.600394
1.135707

0.6%
0.3%

Example 4.4. In the following example, we show that we can suppose the functions φi, ψi (2 ≤ i ≤ 3) to be hölderian
instead of lipschitzian thanks to a result given in [18]. Consider the following triple integral:

I3( f ) =
$
Ω

f (x1, x2, x3)dx3dx2dx1,

with

Ω =

(x1, x2, x3) ∈ R3/

0 ≤ x1 ≤ 1

0 ≤ x2 ≤

√
1 − x2

1

0 ≤ x3 ≤

√
1 − x2

1 − x2
2

 ,
and f (x1, x2, x3) = x1x2x3. The integral I3( f ) is approximated by

Iα =
α1

32

π
α1∫

0

ℓ1(t)ℓ2(t)ℓ3(t) |sin (α4t)| dt,

where (ℓ1(t), ℓ2(t), ℓ3(t)) is the 2πα-dense curve in Ω and the parameters α, α1, α2, α3, α4 verify the relation given in
theorem 3.2 with Iexact = 0.0208.

Table 4: Numerical results of example 4.4.

α k Ĩα εA
α εR

α

0.6
128
256
512

0.05162
0.04930
0.04922

0.030818
0.028497
0.028420

148.2%
137.0%
136.6%

0.2
128
256
512

0.02265
0.02150
0.02135

0.001848
0.000703
0.000551

8.9%
3.4%
2.6%

0.01
128
256
512

0.02048
0.02093
0.02083

0.000321
0.000133
0.000028

1.5%
0.6%
0.1%
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5. Concluding remarks

Despite the variety of results and their particular interests, the theory of numerical integration in higher
dimensions is in a very crude state of development compared with the numerical integration of functions
of a single variable. In this paper, we have developed a new process where by a multiple integral over a
non-rectangular region of Rn is reduced to a unique single integral over an interval of R, by using α-dense
curves in the region Ω f whose measure represents the value of the multiple integral. The integral In( f )
is equal to the limit, when the coefficient of densification α tends to 0, of the length of the curve which
densifies the region Ω f . But the approximated formula Iα generally takes large values and not necessarily
easy. This will involve numerical calculations, created significant errors. It is therefore sometimes necessary
to approach this integral by classical integration methods such as Newton-Cotes, Simpson, etc., so we still
lose precision. In order to make the calculations less expensive and more accurate, the use of an α-dense
curve of minimal length, since it exists theoretically, is recommended.
The numerical results given in Tables 1–4 are satisfactory when comparing with the exact value Iexact; we also
show that in the reducing process, if one takes numbers k of subintervals used in the algorithm of Simpson
and successively larger and if one chooses values of the density α in a decreasing way, the precision of the
calculation increases.
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