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Abstract. Let X,Y be Banach spaces, and upper triangular operator matrices acting on X⊕Y are studied.
Given bounded operators A,B, we obtain several equivalent conditions for MX =

[
A X
0 B

]
to be a left Browder,

a right Browder and a Browder operator for some bounded unknown operator X. Finally, an example is
presented to illustrate the main conclusion.

1. Introduction

Throughout this paper, let X,Y,Z be Banach spaces. If T is a bounded linear operator from X toY, we
write T ∈ B(X,Y) and, if X = Y, write B(X) instead of B(X,X). For T ∈ B(X,Y), the range and the kernel
of T are, respectively, denoted by R(T) andN(T); write α(T) := dimN(T) and β(T) := dimY/R(T). Now let
T ∈ B(X). The sets of all left and right Fredholm operators are, respectively, defined by

Φl(X) := {T ∈ B(X) : α(T) < ∞,R(T) is closed and complemented inX},
Φr(X) := {T ∈ B(X) : β(T) < ∞,N(T) is complemented inX};

the set of all Fredholm operators is defined by

Φ(X) := Φl(X) ∩Φr(X).

The ascent and the descent of T are defined by

asc(T) := min{k ∈N : N(Tk) = N(Tk+1)},
des(T) := min{k ∈N : R(Tk) = R(Tk+1)},
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respectively. Note that such minimums may not exist, in which case the corresponding asc(T) or des(T)
will be designated as∞; if asc(T) and des(T) are both finite, then they are equal (see [1, 14]). The sets of all
left Browder, right Browder and Browder operators on X are, respectively, denoted by

Bl(X) := {T ∈ Φl(X) : asc(T) < ∞},
Br(X) := {T ∈ Φr(X) : des(T) < ∞},
B(X) := {T ∈ Φ(X) : asc(T) = des(T) < ∞}.

We say that T ∈ B(X) is relatively regular or simply regular if there exists S ∈ B(X) such that TST = T. Here
S is called an inner generalized inverse of T. Obviously, the classes of left or right invertible, invertible, left
or right Fredholm and Fredholm operators are all regular. If M is a closed subspace in Banach space X,
then M is said to be topologically complemented or simply complemented if there exists another closed
subspace N of X such thatM∩N = {0} and X = M +N ; in this case, we write X = M⊕N . As is well
known, T is relatively regular if and only if R(T) and N(T) are closed and complemented subspaces of X.
Denote by PT and QT the complementary subspaces withN(T) and R(T), respectively.

For given A ∈ B(X), B ∈ B(Y), C ∈ B(Y,X), define

MX :=
[
A X
0 B

]
∈ B(X ⊕Y), M :=

[
A C
0 B

]
∈ B(X ⊕Y), (1)

where X ∈ B(Y,X) is an unknown element. The spectrum and its various subdivisions of MX are considered
in many papers such as [2–9, 11–13, 15–18] and the references therein. Although most of these papers
worked in the context of Hilbert spaces, some results on the invertibility and Fredholm theory (such as left
(right) spectrum, left (right) essential spectrum, Weyl spectrum, Browder spectrum, Drazin spectrum and
generalized Drazin spectrum) of operator matrices were established in Banach spaces [6, 9, 12, 13, 16–18]. In
this note, we investigate upper triangular left and right Browder operator matrices on a Banach space. Our
main tools are the ghost of an index theorem, and the left and right Browder operator and their equivalent
forms which are closely related to space decomposition technique.

2. Preliminaries

This section is devoted to collecting some basic results. Although most of them are well known standard
results on Fredholm operators, we list it here for convenience of later proofs.

Lemma 2.1 (see [1]). Let T ∈ B(X).
(i) If asc(T) < ∞, then α(T) ≤ β(T);
(ii) If des(T) < ∞, then β(T) ≤ α(T);
(iii) If asc(T) = des(T) < ∞, then α(T) = β(T);
(iv) If α(T) = β(T) < ∞ and if either asc(T) or des(T) is finite, then asc(T) = des(T).

Lemma 2.2 (see [14]). Let M be defined as in (1). Then
(i) asc(A) ≤ asc(M) ≤ asc(A) + asc(B);
(ii) des(B) ≤ des(M) ≤ des(A) + des(B);
(iii) α(A) ≤ α(M) ≤ α(A) + α(B);
(iv) β(B) ≤ β(M) ≤ β(A) + β(B).

Lemma 2.3 (see [18]). Let M be defined as in (1).
(i) If any two of operators A,B and M are invertible (resp., Fredholm, Weyl, Browder, Drazin inverible), then so

is the third;
(ii) If A is Browder, then B is left Browder if and only if so is M;
(iii) If B is Browder, then A is right Browder if and only if so is M.
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Lemma 2.4 (see [16]). For T ∈ B(X), T is left Browder if and only if T can be decomposed into the form

T =
[
T1 T12
0 T2

]
with respect to space decomposition X = N(Tp) ⊕ PTp , where p = asc(T) < ∞, α(Tp) < ∞, T1 is nilpotent, and T2 is
left invertible.

Lemma 2.5 (see [16]). For T ∈ B(X), T is right Browder if and only if T can be decomposed into the form

T =
[
T1 T12
0 T2

]
with respect to space decomposition X = R(Tq) ⊕ QTq , where q = des(T) < ∞, β(Tq) < ∞, T1 is right invertible, and
T2 is nilpotent.

Lemma 2.6 (see [9]). Let MX be defined as in (1). Then the following conditions are equivalent:
(i) MX is invertible for some X ∈ B(Y,X);
(ii) A is left invertible, B is right invertible, and N(B) � X/R(A).

The following lemma is obvious.

Lemma 2.7. Let MX be defined as in (1). If A and B are, respectively, left and right invertible, then MX is left
invertible for some X ∈ B(Y,X) if and only if N(B) ⪯ X/R(A).

Lemma 2.8 (see [6]). Let MX be defined as in (1). Then the following conditions are equivalent:
(i) MX is Weyl for some X ∈ B(Y,X);
(ii) A is left Fredholm, B is right Fredholm, andN(A) ⊕N(B) � X/R(A) ⊕Y/R(B).

Lemma 2.9 (see [10]). If T ∈ B(X,Y), S ∈ B(Y,Z) and ST ∈ B(X,Z) are regular, then

N(T) ⊕N(S) ⊕Z/R(ST) � N(ST) ⊕ Y/R(T) ⊕Z/R(S)

.

3. Main results and proofs

First, we establish the left Browder, right Browder and Browder results of MX, defined as in (1).

Theorem 3.1. Let MX be defined as in (1). Then there exists X ∈ B(Y,X) such that MX is left Browder if and only if
(i) A is left Browder; and
(ii) There exists J ∈ B(Y,PAp ) such that asc(

[
A2 J
0 B

]
) < ∞, and the column operator

[
PQ J

B

]
is left Fredholm, where

p = asc(A), A2 = PPAp A|PAp , Q ⊆ PAp with PAp = R(A2) ⊕ Q, and PPAp (PQ) is the projection onto PAp (Q) along
N(Ap) (R(A2)).

Proof. Sufficiency. Since A is left Browder, according to Lemma 2.4, X has the following decomposition

X = N(Ap) ⊕ PAp . (2)

Then A can be correspondingly written as

A =
[
A1 A12
0 A2

]
: N(Ap) ⊕ PAp →N(Ap) ⊕ PAp , (3)
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where A1 = PN(Ap)A|N(Ap) is nilpotent, and A2 is left invertible. Further, A2 has the matrix form

A2 =

[
A21
0

]
: PAp → R(A2) ⊕ Q,

where A21 : PAp → R(A2) is invertible. From the assumption,
[

PQ J
B

]
is left Fredholm operator, it follows thatA21 0

0 PQ J
0 B

 : PAp ⊕Y → R(A2) ⊕ Q ⊕Y

is a left Fredholm operator. Consequently,[
A2 J
0 B

]
: PAp ⊕Y → PAp ⊕Y

is left Fredholm operator. This together with the assumption asc(
[

A2 J
0 B

]
) < ∞ implies that

[
A2 J
0 B

]
is left

Browder.
Define

X =
[
0
J

]
: Y → N(Ap) ⊕ PAp . (4)

With respect to the decomposition X ⊕ Y = N(Ap) ⊕ PAp ⊕ Y, MX can be decomposed into the following
form

MX =

A1 A12 0
0 A2 J
0 0 B

 . (5)

Note that A1 is a nilpotent operator on the finite dimensional spaceN(Ap) and hence is a Browder operator.
Using Lemma 2.3, we conclude from the left Browderness of

[
A2 J
0 B

]
that MX is a left Browder operator.

Necessity. Let us say that MX is left Browder; namely, MX is left Fredholm and asc(MX) < ∞. Obviously,
A is left Fredholm, and it follows from Lemma 2.2 that p = asc(A) ≤ acs(MX) < ∞, which mean that A
is left Browder, (i) is proven. At this point, the decomposition (3) of A still holds. As an operator on
N(Ap) ⊕ PAp ⊕Y, MX further has the matrix form

MX =

A1 A12 X1
0 A2 X2
0 0 B

 . (6)

Note that A1 is Browder (shown in the sufficiency part). From Lemma 2.4, it follows that[
A2 X2
0 B

]
: PAp ⊕Y → PAp ⊕Y

is left Browder. It is clear that asc(
[

A2 X2
0 B

]
) < ∞. Furthermore,

[
A2 X2
0 B

]
can be decomposed into the formA21 X21

0 X22
0 B

 : PAp ⊕Y → R(A2) ⊕ Q ⊕Y,

which together with the invertibility of A21 : PAp → R(A2) implies that
[

X22
B

]
is left Fredholm. Setting

J = X2 ∈ B(Y,PAp ), we have PQ J = X22, and hence
[

A2 J
0 B

]
=
[

A2 X2
0 B

]
,
[

PQ J
B

]
=
[

X22
B

]
satisfy the desired

conditions in (ii). □
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Corollary 3.2. Let MX be defined as in (1). If A is left Browder, asc(B) < ∞, and there exists J ∈ B(Y,PAp ) such
that
[

PQ J
B

]
is left Fredholm, then there exists X ∈ B(Y,X) such that MX is left Browder, where p = asc(A) and PQ is

defined as in Theorem 3.1.

Proof. We follow the notations in Theorem 3.1 and its proof. Here, it suffices to note that asc(B) < ∞ implies
asc(
[

A2 J
0 B

]
) < ∞. In fact, since A2 is left invertible, we have asc(A2) < ∞; by Lemma 2.2, asc(

[
A2 J
0 B

]
) ≤

asc(A2) + asc(B) < ∞.

Theorem 3.3. Let MX be defined as in (1). Then there exists X ∈ B(Y,X) such that MX is right Browder if and only
if

(i) B is right Browder; and
(ii)There exists S ∈ B(R(Bq),X) such that des(

[
A S
0 B1

]
) < ∞, and the row operator [A S|N(B1)] is right Fredholm,

where q = des(B), B1 = PR(Bq)B|R(Bq), and PR(Bq) is the projection onto R(Bq) along QBq .

Proof. Sufficiency. Since B is right Browder, by Lemma 2.5,Y has the decomposition

Y = R(Bq) ⊕ QBq (7)

With respect to the decomposition (7), B can be written as

B =
[
B1 B12
0 B2

]
: R(Bq) ⊕ QBq → R(Bq) ⊕ QBq , (8)

where B1 = PR(Bq)B|R(Bq) is right invertible, and B2 = PQBq B|QBq is nilpotent. Obviously, B1 further has the
matrix form

B1 = [0 B11] : N(B1) ⊕ P → R(Bq), (9)

where P ⊆ R(Bq) with N(B1) ⊕ P = R(Bq), and B11 : P → R(Bq) is invertible. Since [A S|N(B1)] is right
Fredholm,[

A S|N(B1) 0
0 0 B11

]
: X ⊕N(B1) ⊕ P → X⊕ R(Bq)

is also right Fredholm. Consequently,[
A S
0 B1

]
: X ⊕ R(Bq)→ X⊕R(Bq)

is a right Fredholm operator, which together with the assumption des(
[

A S
0 B1

]
) < ∞ shows that

[
A S
0 B1

]
is right

Browder. Note that B2 is nilpotent and q = des(B) < ∞, and hence B2 is Browder. According to Lemma2.3,

MX =

A S 0
0 B1 B12
0 0 B2

 : X ⊕ R(Bq) ⊕ QBq → X⊕R(Bq) ⊕ QBq (10)

is right Browder, and

X =
[
S 0

]
: R(Bq) ⊕ QBq → X (11)

is the required operator in B(Y,X).
Necessity. Suppose that MX is right Browder for some X ∈ B(Y,X); namely, MX is right Fredholm

operator and des(MX) < ∞. Obviously, B is clearly right Fredholm, and q = des(B) ≤ des(MX) < ∞ by
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Lemma 2.2, which show that B is a right Browder operator, the condition (i). Then we still have the
decomposition (8) of B. It is clear that MX has the decomposition

MX =

A X1 X2
0 B1 B12
0 0 B2

 : X ⊕ R(Bq) ⊕ QBq → X⊕R(Bq) ⊕ QBq . (12)

Since B2 is Browder, it follows from Lemma 2.5 that[
A X1
0 B1

]
: X ⊕ R(Bp)→ X⊕R(Bp)

is right Browder, and hence des(
[

A X1
0 B1

]
) < ∞. We now further decompose

[
A X1
0 B1

]
into the form[

A X11 X12
0 0 B11

]
: X ⊕N(B1) ⊕ P → X⊕ R(Bq),

where P and B11 are defined as in (9). This together with the invertibility of B11 gives that [A X11] is right
Fredholm. Taking S = X1, we have S|N(B1) = X11, and hence

[
A S
0 B1

]
=
[

A X1
0 B1

]
, [A S|N(B1)] = [A X11] satisfy the

corresponding conditions in (ii). □

Corollary 3.4. Let MX be defined as in (1). If B is right Browder, des(A) < ∞, and there exists S ∈ B(R(Bq),X) such
that [A S|N(B1)] is right Fredholm, then there exists X ∈ B(Y,X) such that MX is right Browder, where q = des(B)
and B1 is defined as in Theorem 3.3.

Proof. We proceeds on the basis of Theorem 3.3 and its proof. So it suffices to note that des(A) < ∞ implies
des(
[

A X1
0 B1

]
) < ∞. In fact, since B1 is right invertible, we get des(B1) < ∞; by Lemma 2.2, des(

[
A X1
0 B1

]
) ≤

des(A) + des(B1) < ∞. □

Theorem 3.5. Let MX be defined as in (1). Then there exists X ∈ B(Y,X) such that MX is a Browder operator if and
only if

(i) A is left Browder, and B is right Browder; and
(ii) There exist J ∈ B(Y,PAp ) and S ∈ B(R(Bq),X) such that asc(

[
A2 J
0 B

]
) < ∞,

[
PQ J

B

]
is left Fredholm operator,

des(
[

A S
0 B1

]
) < ∞, [A S|N(B1)] is right Fredholm operator, and PPAp S = J|R(Bq), where p, q, A2, B1, Q, PPAp , PQ and

PR(Bq) are defined as in Theorem 3.1 and Theorem 3.3.

Proof. Sufficiency. Write ∆ = PPAp S = J|R(Bq). Since A is left Browder and B is right Browder, the decompo-
sitions (3) and (8) still hold. From the corresponding proofs of Theorem 3.1 and Theorem 3.3, we see that[

A2 J
0 B

]
: PAp ⊕Y → PAp ⊕Y is left Browder, and

[
A S
0 B1

]
: X⊕ R(Bp)→ X⊕R(Bp) is right Browder. Note that

S =
[

S1
∆

]
: R(Bp)→N(Ap) ⊕ PAp and J = [∆ J1] : R(Bq) ⊕ QBq → PAp . Taking

X =
[
S1 0
∆ J1

]
: R(Bq) ⊕ QBq →N(Ap) ⊕ PAp . (13)

we have

MX =


A1 A12 S1 0
0 A2 ∆ J1
0 0 B1 B12
0 0 0 B2

 , (14)

an operator onN(Ap) ⊕ PAp ⊕ R(Bq) ⊕ QBq .
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Obviously,
[ A2 ∆ J1

0 B1 B12
0 0 B2

]
is left Browder, and

[ A1 A12 S1
0 A2 ∆
0 0 B1

]
is right Browder. Note that A1 and B2 are Browder

operators. Using Lemma 2.3, we can easily know that MX is a Browder operator.
Necessity. Since MX is a Browder operator for some X ∈ B(Y,X), A and B are, respectively, left and

right Browder, i.e., (i) holds, and hence they have the decompositions (3) and (8). Then, as an operator on
N(Ap) ⊕ PAp ⊕ R(Bq) ⊕ QBq ,

MX =


A1 A12 X1 X2
0 A2 X3 X4
0 0 B1 B12
0 0 0 B2

 , (15)

where A1 and B2 are Browder operators. From Lemma 2.2 and the Browderness of MX, it follows that

M̃X34 :=

A2 X3 X4
0 B1 B12
0 0 B2


is left Browder, and

M̃X13 :=

A1 A12 X1
0 A2 X3
0 0 B1


is right Browder. Because A2 is left invertible and B1 is right invertible, we have the space decompositions

PAp = R(A2) ⊕ Q, R(Bq) = N(B1) ⊕ P.

Thus, as an operator from PAp ⊕Y to R(A2) ⊕ Q ⊕Y,

M̃X34 =

A21 X34,1
0 X34,2
0 B


with A21 invertible, and

[
X34,2

B

]
is clearly left Fredholm; as an operator from X ⊕N(B1) ⊕ P to X ⊕ R(Bq),

M̃X13 =

[
A X13,1 X13,2
0 0 B11

]
with B11 invertible, and hence [A X13,1] is right Fredholm.

Define S =
[

X1
X3

]
and J = [X3 X4]. Then

[
A2 J
0 B

]
= M̃X34 ,

[
A S
0 B1

]
= M̃X13 , PPAp S = X3 = J|R(Bq), and, obviously,

the condition (ii) is valid. □

In [16, Theorem 2.9], the Browderness of upper triangular operator matrices is characterized as follows.
We will use our descriptions (Theorem (3.5)) to show this theorem.

Corollary 3.6. Let MX be defined as in (1). Then there exists X ∈ B(Y,X) such that MX is a Browder operator if
and only if

(i) A and B are left and right Browder, respectively; and
(ii)N(A) ⊕N(B) � X/R(A) ⊕Y/R(B).

Proof. We adopt here the notations of Theorem 3.1, Theorem 3.3 and their proofs. Let MX be a Browder
operator for some X ∈ B(Y,X). Then MX is a Fredholm operator, and asc(MX) = des(MX) < ∞, which
implies that α(MX) = β(MX) by Lemma 2.1. It is clear that MX is a Weyl operator. From Lemma 2.8, it
follows that A and B are, respectively, left and right Fredholm, and N(A) ⊕ N(B) � X/R(A) ⊕ Y/R(B).
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Furthermore, Because of asc(A) ≤ asc(MX) < ∞ and des(B) ≤ des(MX) < ∞, A and B are left and right
Browder, respectively. This proves the necessity.

We now establish the sufficiency. Since A is left Browder, A can be expressed as the form (3). Due to

A =
[
I 0
0 A2

] [
A1 A12
0 I

]
,

applying Lemma 2.9 yields

N(
[

A1 A12
0 I

]
) ⊕N(

[
I 0
0 A2

]
) ⊕ X/R(A) � N(A) ⊕ X/R(

[
A1 A12
0 I

]
) ⊕ X/R(

[
I 0
0 A2

]
).

From the left invertibility of A2, it follows that

N(
[

A1 A12
0 I

]
) ⊕ X/R(A) � N(A) ⊕ X/R(

[
I 0
0 A2

]
) ⊕ X/R(

[
A1 A12
0 I

]
).

Since A1 is Browder, we know from Lemma 2.3 that
[

A1 A12
0 I

]
is Browder and hence

α(
[

A1 A12
0 I

]
) = β(

[
A1 A12
0 I

]
) < ∞,

which implies

X/R(A) � N(A) ⊕ X/R(
[

I 0
0 A2

]
),

i.e.,

X/R(A) � N(A) ⊕ Q (16)

At the same time, B is right Browder, and can be expressed as the form (8). From

B =
[
I B12
0 B2

] [
B1 0
0 I

]
and Lemma 2.9, we infer

N(
[

I B12
0 B2

]
) ⊕N(

[
B1 0
0 I

]
) ⊕Y/R(B) � N(B) ⊕Y/R(

[
I B12
0 B2

]
) ⊕Y/R(

[
B1 0
0 I

]
).

Since B1 is right invertible, it is reduced to

N(
[

I B12
0 B2

]
) ⊕N(

[
B1 0
0 I

]
) ⊕Y/R(B) � N(B) ⊕Y/R(

[
I B12
0 B2

]
).

By virtue of Lemma 2.3, the fact that B2 is Browder means
[

I B12
0 B2

]
is Browder and thus

α(
[

I B12
0 B2

]
) = β(

[
I B12
0 B2

]
) < ∞,

which implies

N(B) � N(B1) ⊕Y/R(B). (17)

Combining (16) and (17) with the assumptionN(A) ⊕N(B) � X/R(A) ⊕Y/R(B), we have

N(B1) � Q

since α(A) and β(B) are finite.
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Note that A2 is left invertible, and B1 is right invertible. From Lemma 2.6, it follows that there exists
some ∆ ∈ B(R(Bq),PAp ) such that

[
A2 ∆
0 B1

]
is invertible. Define

X =
[
0 0
∆ 0

]
: R(Bq) ⊕ QBq →N(Ap) ⊕ PAp . (18)

Then, as an operator onN(Ap) ⊕ PAp ⊕ R(Bq) ⊕ QBq , MX can be written as

MX =


A1 A12 0 0
0 A2 ∆ 0
0 0 B1 B12
0 0 0 B2

 . (19)

Since A1 and B2 are Browder, and
[

A2 ∆
0 B1

]
is invertible, it follows from Lemma 2.3 that M̃X34 =

[ A2 ∆ 0
0 B1 B12
0 0 B2

]
is

left Browder, and M̃X13 =
[ A1 A12 0

0 A2 ∆
0 0 B1

]
is right Browder. Also, we further have that

M̃X34 =


A21 PR(A2)∆ 0
0 PQ∆ 0
0 B1 B12
0 0 B2

: PAp ⊕ R(Bq) ⊕ QBq → R(A2) ⊕ Q ⊕ R(Bq) ⊕ QBq ,

M̃X13 =

A1 A12 0 0
0 A2 ∆|N(B1) ∆|P
0 0 0 B11

: N(Ap) ⊕ PAp ⊕N(B1) ⊕ P → PAp ⊕ R(Bq) ⊕ QBq .

Note that A21 and B11 are invertible operators. It is clear thatPQ∆ 0
B1 B12
0 B2

 ,
[
A1 A12 0
0 A2 ∆|N(B1)

]
are left and right Fredholm operators, respectively. Set

J = [∆ 0] : R(Bq) ⊕ QBq → PAp , S =
[ 0
∆

]
: R(Bq)→N(Ap) ⊕ PAp .

Clearly, PPAp S = ∆ = J|R(Bq);
[

PQ J
B

]
and [A S|N(B1)] are, respectively, left and right Fredholm operators;[

A2 J
0 B

]
and
[

A S
0 B1

]
are, respectively, left and right Browder operators, which imply that asc(

[
A2 J
0 B

]
) < ∞ and

des(
[

A S
0 B1

]
) < ∞. By applying Theorem 3.5, the sufficiency is get proved. □

From the proof of Corollary 3.6, it is actually shown that

Corollary 3.7. Let MX be defined as in (1). Then there exists X ∈ B(Y,X) such that MX is a Browder operator if
and only if

(i) A and B are left and right Browder operators, respectively; and
(ii)N(B1) � Q, where B1 and Q are defined as in Theorem 3.3 and Theorem 3.1, respectively.

Based on the embedded relationship of certain spaces, the sufficient conditions under which the operator
MX of the form (1) is left or right Browder are given.

Definition 3.8 ([6, Definition 4.2]). For two Banach spaces X and Y, we say that X can be embedded in Y and
write X ⪯ Y if there exists a left invertible operator J : X → Y. Note that X ⪯ Y if and only if there exists a right
invertible operator S : Y → X. In particular, X � Y if and only if X ⪯ Y andY ⪯ X.



A. Liu et al. / Filomat 38:7 (2024), 2277–2287 2286

Corollary 3.9. Let MX be defined as in (1), and let B be right Browder. Then there exists X ∈ B(Y,X) such that MX
is left Browder, if

(i) A is left Browder; and
(ii)N(A) ⊕N(B) ⪯ X/R(A) ⊕Y/R(B).

Proof. Since A and B are, respectively, left and right Browder, it follows from the proof of Corollary 3.6 that
the relations (16) and (17) are valid. FromN(A) ⊕N(B) ⪯ X/R(A) ⊕Y/R(B), we then have

N(B1) ⪯ Q.

Note that A2 is left invertible, and B1 is right invertible. Using Lemma 2.7, one can find ∆ ∈ B(R(Bq),PAp )
such that

[
A2 ∆
0 B1

]
is left invertible. Taking the operator X of the form (18), we have the representation

(19) of MX. From the Browderness of A1, the left invertibility of
[

A2 ∆
0 B1

]
and Lemma 2.3, we see that

M̃X34 =
[ A2 ∆ 0

0 B1 B12
0 0 B2

]
∈ B(PAp ⊕ R(Bq) ⊕ QBq ) is left Browder. Further,

M̃X34 =


A21 PR(A2)∆ 0
0 PQ∆ 0
0 B1 B12
0 0 B2

: PAp ⊕ R(Bq) ⊕ QBq → R(A2) ⊕ Q ⊕ R(Bq) ⊕ QBq .

Since A21 is invertible,
[ PQ∆ 0

B1 B12
0 B2

]
is left Fredholm. Define

J = [∆ 0] : R(Bq) ⊕ QBq → PAp .

By comparing with the above arguments,
[

PQ J
B

]
is left Fredholm,

[
A2 J
0 B

]
is left Browder and hence asc(

[
A2 J
0 B

]
) <

∞. Applying Theorem 3.1 gives the desired result. □

Corollary 3.10. Let MX be defined as in (1), and let B be right Browder. Then there exists X ∈ B(Y,X) such that
MX is left Browder, if

(i) A is left Browder; and
(ii)N(B1) ⪯ Q, where B1 and Q are defined as in Theorem 3.3 and Theorem 3.1, respectively.

Finally, we have the following dual results.

Corollary 3.11. Let MX be defined as in (1), and let A be left Browder. Then there exists X ∈ B(Y,X) such that MX
is right Browder, if

(i) B is right Browder; and
(ii) X/R(A) ⊕Y/R(B) ⪯ N(A) ⊕N(B).

Corollary 3.12. Let MX be defined as in (1), and let A be left Browder. Then there exists X ∈ B(Y,X) such that MX
is right Browder, if

(i) B is right Browder; and
(ii) Q ⪯ N(B1), where B1 and Q are defined as in Theorem 3.3 and Theorem 3.1, respectively.

We end this section with the following illustrating example.

Example 3.13. Let X = l2 = Y, and define the operators A,B ∈ B(l2) by

A(x1, x2, x3, x4, x5, x6, x7, ...) = (0, x1, 0, x4, 0, x5, 0, x6, 0, x7, ...),
B(y1, y2, y3, y4, y5, y6, y7, y8, ...) = (0, y2, 0, y4, y6, y8, ...)

for (x1, x2, x3, ...) ∈ l2. Then there exists X ∈ B(l2) such that MX =
[

A X
0 B

]
is left Browder.
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In the following, we still use the notations of Theorem 3.1 and Theorem 3.3. Direct computations reveal
that A is a left Browder operator with p = asc(A) = 2, and B is a right Browder operator with q = des(B) = 1.
Also, A2 = PPA2 A|PA2 and B1 = PR(B)B|R(B) are explicitly given by

A2 : (0, 0, 0, x4, x5, x6, ...) 7→ (0, 0, 0, x4, 0, x5, 0, x6, ...),
B1 : (0, y2, 0, y4, y6, y8, y10, ...) 7→ (0, y2, 0, y4, y8, y12, ...),

and hence we can choose

N(B1) = {(0, 0, 0, 0, c5, 0, c7, 0, c9, 0, ...) ∈ l2} = Q

satisfying N(B1) ⪯ Q naturally. According to Corollary 3.10, there exists X ∈ B(l2) such that MX =
[

A X
0 B

]
is

left Browder.

Remark 3.14. The example 3.13, in fact, can be used to illustrate Corollary 3.7 and Corollary 3.12.
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[5] D.S. Cvetkovic-Ilić, V. Pavlvić. Drazin invertibility of upper triangular operator matrices, Linear Multilinear A. 66 (2018), 260–267.
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