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Abstract. We present new formulas of Drazin inverses for anti-triangular block-operator matrices. If
BπADB = 0,BπABD = 0 and BπABAπ = 0, the explicit representation of the Drazin inverse of a block-

operator anti- triangular matrix
(

A I
B 0

)
is given. Thus a generalization of [A note on the Drazin inverse

for an anti-triangular matrix, Linear Algebra Appl., 431(2009), 1910–1922] is obtained. Some applications
to full block-operator matrices are thereby considered.

1. Introduction

Lex X and Y be Banach spaces. Denote by B(X,Y) the set of all bounded linear operators from X to
Y. Let B(X) denote the set of all bounded linear operators from X to itself. A bounded linear operator
A ∈ B(X) has Drazin inverse X ∈ B(X) if it is the solution of the following equation system:

AX = XA,X = XAX and An = An+1X

for some n ∈ N. If such X exists, it is unique, and we denote it by AD. The smallest n in the preceding
equations is called the Drazin index of A and denote by i(A). Let B(X)D denote the set of all Drazin
invertible bounded linear operators in B(X). Let A,B ∈ B(X)D and I be the identity matrix over a Banach

space X. It is attractive to investigate the Drazin inverse of the block-operator matrix M =
(

A I
B 0

)
. The

relationship of computing the Drazin inverse of M to second order differential equations was observed
by Campbell (see [2]). The application of Drazin inverse to singular differential equations was also found
in [1]. Recently, the Drazin inverse of such anti-triangular block matrices is extensively studied by many
authors (see [5, 6, 11, 14, 15, 17, 18]).

The additive property of Drazin inverse is interesting. It was studied from many different views, e.g.,
[3, 4, 9, 12, 13]. Let T ∈ B(X)D. We use Tπ to stand for the spectral idempotent operator I − TTD. In [3,
Theorem 2.5], Castro-González obtained the representation of Drazin inverse of A+B under the conditions
ADB = 0,ABD = 0 and BπABAπ = 0 for square complex matrices A and B. The motivation of this paper is
to present formulae for the Drazin inverse of M under the same conditions.
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In this paper, we present exact representations of the Drazin inverse of M. If BπADB = 0,BπABD = 0

and BπABAπ = 0, the formula of the Drazin inverse of a block anti-triangular matrix
(

A I
B 0

)
is given.

Evidently, we solve a wider kind of singular differential equations posed by Campbell (see [2]).

As applications, we explore the Drazin invertibility of a block operator matrix N =
(

A B
C D

)
, where

A ∈ B(X)D,B ∈ B(X,Y),C ∈ B(Y,X) and D ∈ B(Y)D. Here, N is a bounded linear operator on X ⊕ Y. A new
additive property of the Drazin invertibility for bounded linear operators is provided and we then establish
new perturbed conditions under which the full block-operator matrix N has Drazin inverse.

Throughout the paper, all operators are bounded linear operators over a Banach space. Let C be the
field of all complex numbers. N stands for the set of all natural numbers. Cn×n denotes the Banach algebra
of all n × n complex matrices.

2. Key lemmas

To prove the main results, some lemmas are needed. The following result over complex fields was given
in [8]. Similarly, it can be extended to bounded linear operators over a Banach space.

Lemma 2.1. Let P,Q ∈ B(X)D. If PQ = 0, then

(P +Q)D =

t−1∑
i=0

QiQπ(PD)i+1 +

t−1∑
i=0

(QD)i+1PiPπ,

where t = max{i(P), i(Q)}.

Let A,B ∈ B(X)D. We are ready to prove:

Lemma 2.2. Suppose G =
(

ABπ Bπ

BBπ 0

)
has Drazin inverse. If BπABD = 0, then

(
A I
B 0

)D

= GD +

i(G)−1∑
i=0

(
0 BD

BBD
−ABD

)i+1

GiGπ.

Proof. We check that M = G +H, where

G =
(

ABπ Bπ

BBπ 0

)
,H =

(
ABBD BBD

B2BD 0

)
.

Since BπABD = 0, we see that GH = 0. One directly verifies that(
0 BD

BBD
−ABD

)
H =

(
BBD 0

0 BBD

)
= H

(
0 BD

BBD
−ABD

)
,

H[I −H
(

0 BD

BBD
−ABD

)
]

= [I −H
(

0 BD

BBD
−ABBD

)
]
(

0 BD

BBD
−ABD

)
= 0.

Therefore

HD =

(
0 BD

BBD
−ABD

)
,Hπ =

(
Bπ 0
0 Bπ

)
.
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Let t = i(G). Using Lemma 2.1,

MD = GD +

t−1∑
i=0

(HD)i+1GiGπ,

as asserted.

The following lemma is known as the Cline’s formula in matrix and operator theory (see [10, Corollary
3.3]).

Lemma 2.3. Let P ∈ B(X,Y),Q ∈ B(Y,X). If PQ ∈ B(X)D, then QP ∈ B(Y)D. In this case,

(QP)D = Q[(PQ)D]2P.

Lemma 2.4. (see [11, Lemma 3.2] and [14, Lemma 2.3]) Let A,B ∈ B(X). If A and B are nilpotent and AB = 0,

then
(

A B
I 0

)
is nilpotent.

Lemma 2.5. If ADB = 0,ABAπ = 0 and B is nilpotent, then

(
A I
B 0

)D

=

t−1∑
i=0

(
AAπ Aπ

BAπ 0

)i (
(AD)i+1 (AD)i+2

B(AD)i+2 B(AD)i+3

)
,

t = i
(

AAπ Aπ

BAπ 0

)
.

Proof. Clearly, we have M = P +Q, where

P =
(

A2AD AAD

BAAD 0

)
,Q =

(
AAπ Aπ

BAπ 0

)
.

We easily see that (
A2AD 0

I 0

)D

=

(
AD 0

(AD)2 0

)
.

We observe that (
A2AD AAD

BAAD 0

)
=

(
I 0
0 BAAD

) (
A2AD AAD

I 0

)
,(

A2AD 0
I 0

)
=

(
A2AD AAD

I 0

) (
I 0
0 BAAD

)
.

By using Lemma 2.3, we get

PD =

(
I 0
0 BAAD

) [ ( A2AD 0
I 0

)D ]2
(

A2AD AAD

I 0

)
=

(
I 0
0 BAAD

) (
(AD)2 0
(AD)3 0

) (
A2AD AAD

I 0

)
=

(
AD (AD)2

B(AD)2 B(AD)3

)
.
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By induction, we have

(PD)i =

(
I 0
0 BAAD

) [ ( A2AD 0
I 0

)D ]i+1
(

A2AD AAD

I 0

)
=

(
I 0
0 BAAD

) (
AD 0

(AD)2 0

)i+1 (
A2AD AAD

I 0

)
=

(
I 0
0 BAAD

) (
(AD)i+1 0
(AD)i+2 0

) (
A2AD AAD

I 0

)
=

(
(AD)i (AD)i+1

B(AD)i+1 B(AD)i+2

)
.

Clearly, we have (
AAπ BAπ

I 0

)
=

(
AAπ 0

0 0

)
+

(
0 BAπ

I 0

)
,(

AAπ 0
0 0

) (
0 BAπ

I 0

)
= 0,

(
0 BAπ

I 0

)2

=

(
BAπ 0

0 BAπ

)
.

Since AπB = B is nilpotent then BAπ is nilpotent. By virtue of Lemma 2.4,
(

AAπ BAπ

I 0

)
is nilpotent.

Observing that (
AAπ Aπ

BAπ 0

)
=

(
I 0
0 BAπ

) (
AAπ Aπ

I 0

)
,(

AAπ BAπ

I 0

)
=

(
AAπ Aπ

I 0

) (
I 0
0 BAπ

)
.

According to [10, Corollary 3.3], Q is nilpotent.
Since ADB = 0, we have PQ = 0. In view of Lemma 2.1, we get(

A I
B 0

)D

=
t−1∑
i=0

QiQπ(PD)i+1 +
t−1∑
i=0

(QD)i+1PiPπ

=
t−1∑
i=0

Qi(PD)i+1,

where t = i(Q). This completes the proof.

3. Main results

We now come to our main result.

Theorem 3.1. If BπADB = 0,BπABD = 0 and BπABAπ = 0, then

(
A I
B 0

)D

= GD +

t−1∑
i=0

(
0 BD

BBD
−ABD

)i+1

GiGπ,

where

G =
(

ABπ Bπ

BBπ 0

)
,GD =

(
A I
B 0

) (
Λ Σ
Γ ∆

)2 (
Bπ 0
0 Bπ

)
,
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Λ = BπAD +
s−1∑
i=1
εiBπ(AD)i+1 +

s−1∑
i=1
ζiBBπ(AD)i+2

Σ = Bπ(AD)2 +
s−1∑
i=1
εiBπ(AD)i+2 +

s−1∑
i=1
ζiBBπ(AD)i+3

Γ = BBπ(AD)2 +
s−1∑
i=1
ηiBπ(AD)i+1 +

s−1∑
i=1
θiBBπ(AD)i+2

∆ = BBπ(AD)3 +
s−1∑
i=1
ηiBπ(AD)i+2 +

s−1∑
i=1
θiBBπ(AD)i+3.

ε1 = BπAAπ,
ζ1 = I − BπAAD,
η1 = BBπAπ,
θ1 = 0,

εi+1 = BπAπAεi + (I − BπAAD)ηi,
ζi+1 = BπAπAζi + (I − BπAAD)θi,
ηi+1 = BBπAπεi,
θi+1 = BBπAπθi,

s = max{i(A), i(B)}, t = i(G), i ∈N.

Proof. Set s = max{i(A), i(B)}. By hypothesis, we check that

(BπA)(BπAD) = BπAAD = BπADA = (BπAD)(BπA),
(BπAD)2(BπA) = BπAD(BπADBπA) = BπAD,

(BπAD)(BπA)s+1
− (BπA)s = Bπ(ADAs+1

− As) = 0.

Hence, (BπA)D = BπAD, and so (BπA)π = I − BπABπAD = I − BπAAD. It is easy to verify that

(BπA)D(BπB) = BπADBBπ = 0, (BπA)(BπB)D = 0,
(BπB)π(BπA)(BπB)(BπA)π = BπABAπ = 0.

Since BBπ is nilpotent, it follows by Lemma 2.5 that(
BπA I
BπB 0

)D

=
t−1∑
i=0

(
BπA(BπA)π (BπA)π

BBπ(BπA)π 0

)i (
(BπAD)i+1 (BπAD)i+2

BBπ(BπAD)i+2 BBπ(BπAD)i+3

)
=

t−1∑
i=0

(
BπAAπ I − BπAAD

BπBAπ 0

)i (
Bπ(AD)i+1 Bπ(AD)i+2

BBπ(AD)i+2 BBπ(AD)i+3

)
,

where t = i
(

BπAAπ I − BπAAD

BπBAπ 0

)
.

Write
(

BπAAπ I − BπAAD

BπBAπ 0

)i

=

(
εi ζi
ηi θi

)
. Then

ε1 = BπAAπ,
ζ1 = I − BπAAD,
η1 = BBπAπ,
θ1 = 0.

For each i ≥ 1, we have
εi+1 = BπAπAεi + (I − BπAAD)ηi,
ζi+1 = BπAπAζi + (I − BπAAD)θi,
ηi+1 = BBπAπεi,
θi+1 = BBπAπθi.
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Hence (
BπA I
BπB 0

)D

=

(
Λ Σ
Γ ∆

)
,

where

Λ = BπAD +
s−1∑
i=1
εiBπ(AD)i+1 +

s−1∑
i=1
ζiBBπ(AD)i+2

Σ = Bπ(AD)2 +
s−1∑
i=1
εiBπ(AD)i+2 +

s−1∑
i=1
ζiBBπ(AD)i+3

Γ = BBπ(AD)2 +
s−1∑
i=1
ηiBπ(AD)i+1 +

s−1∑
i=1
θiBBπ(AD)i+2

∆ = BBπ(AD)3 +
s−1∑
i=1
ηiBπ(AD)i+2 +

s−1∑
i=1
θiBBπ(AD)i+3.

Let G =
(

ABπ Bπ

BBπ 0

)
and H =

(
BπA Bπ

BBπ 0

)
. Then we see that

H =
(

BπA I
BBπ 0

) (
Bπ 0
0 Bπ

)
.

Using [18, Lemma 1.4], we get

HD =

(
BπA I
BBπ 0

)D (
Bπ 0
0 Bπ

)
.

It is easy to verify that

G =

(
A I
B 0

) (
Bπ 0
0 Bπ

)
,

H =

(
Bπ 0
0 Bπ

) (
A I
B 0

)
.

By using Lemma 2.3 again, we have

GD =

(
A I
B 0

)
(HD)2

(
Bπ 0
0 Bπ

)
= M

(
Λ Σ
Γ ∆

)2 (
Bπ 0
0 Bπ

)
.

According to Lemma 2.2, (
A I
B 0

)D

= GD +

t−1∑
i=0

(
0 BD

BBD
−ABD

)i+1

GiGπ,

where t = i(G). This completes the proof.

Corollary 3.2. If ADB = 0,ABD = 0 and BπABAπ = 0, then(
A I
B 0

)D

= GD +

t−1∑
i=0

(
0 BD

BBD 0

)i+1

GiGπ,

where

G =
(

A Bπ

BBπ 0

)
,GD =

(
A I
B 0

) (
Λ Σ
Γ ∆

)2

,
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Λ = BπAD +
s−1∑
i=1
εiBπ(AD)i+1 +

s−1∑
i=1
ζiBBπ(AD)i+2

Σ = Bπ(AD)2 +
s−1∑
i=1
εiBπ(AD)i+2 +

s−1∑
i=1
ζiBBπ(AD)i+3

Γ = BBπ(AD)2 +
s−1∑
i=1
ηiBπ(AD)i+1 +

s−1∑
i=1
θiBBπ(AD)i+2

∆ = BBπ(AD)3 +
s−1∑
i=1
ηiBπ(AD)i+2 +

s−1∑
i=1
θiBBπ(AD)i+3.

ε1 = BπAAπ,
ζ1 = I − BπAAD,
η1 = BBπAπ,
θ1 = 0,

εi+1 = BπAπAεi + (I − BπAAD)ηi,
ζi+1 = BπAπAζi + (I − BπAAD)θi,
ηi+1 = BBπAπεi,
θi+1 = BBπAπθi,

s = max{i(A), i(B)}, t = i(G), i ∈N.

Proof. Since ABD = 0, we have ADBD = (AD)2(ABD) = 0, and so ADBπ = AD. Therefore we obtain the result
by Theorem 3.1.

Corollary 3.3. If ADB = 0 and ABAπ = 0, then(
A I
B 0

)D

= GD +

t−1∑
i=0

(
0 BD

BBD 0

)i+1

GiGπ,

where G is constructed as in Corollary 3.2.

Proof. Since ADB = 0 and ABAπ = 0, we have

AB2 = ABAπB + ABAADB = 0,

and then ABD = 0. Setting G as in Corollary 3.2, we have(
A I
B 0

)D

=

(
Bπ 0
0 Bπ

)
GD +

t−1∑
i=0

(
0 BD

BBD 0

)i+1

GiGπ,

as desired.

Corollary 3.4. If ABD = 0 and BπAB = 0, then(
A I
B 0

)D

= GD +

t−1∑
i=0

(
0 BD

BBD 0

)i+1

GiGπ,

where G is constructed as in Corollary 3.2.

Proof. Since ABD = 0 and BπAB = 0, we have

A2B = ABπAB + ABBDAB = 0;

hence, ADB = 0. Setting G as in Corollary 3.2, we derive(
A I
B 0

)D

=

(
Bπ 0
0 Bπ

)
GD +

t−1∑
i=0

(
0 BD

BBD 0

)i+1

GiGπ,

as required.
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We present a numerical example to demonstrate Corollary 3.3 which should be contrast to [16, Theorem
2.3].

Example 3.5. Let M =
(

A I
B 0

)
, where

A =


1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0

 ,B =


0 0 0 0
1 0 0 0
0 0 0 0
1 1 0 0

 ∈ C4×4.

We easily check that

AD =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,Aπ =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
Then

ADB = 0,ABAπ = 0,while BABπ , 0.

One directly verifies that (
AAπ Aπ

BAπ 0

)i

= 0 for every i ≥ 3.

Since B is nilpotent, by using the formula in Corollary 3.3, we have

MD =
2∑

i=0

(
AAπ Aπ

BAπ 0

)i (
(AD)i+1 (AD)i+2

B(AD)i+2 B(AD)i+3

)
=

(
AD (AD)2

B(AD)2 B(AD)3

)
+

(
AAπ Aπ

BAπ 0

)
(

(AD)2 (AD)3

B(AD)3 B(AD)4

)
+

(
AAπ Aπ

BAπ 0

)2 (
(AD)3 (AD)4

B(AD)4 B(AD)5

)
,

Since AD is an idempotent and AπAD = 0, we obtain

MD =

(
AD AD

BAD BAD

)
+

(
AπBAD AπBAD

0 0

)
+

(
AπBAD AπBAD

BAπBAD BAπBAD

)
.

Obviously, AπBAD = BAD and BAπBAD = BAπ. Therefore

MD =

(
AD + AπBAD + BAD AD + AπBAD + BAD

BAD + BAπ BAD + BAπ

)

=



1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
2 0 0 0 2 0 0 0


.
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4. Applications

The aim of this section is to develop the Drazin invertibility of the full block-operator matrix

N =
(

A B
C D

)
,

where A ∈ B(X)D,B ∈ B(X,Y),C ∈ B(Y,X) and D ∈ B(Y)D. For the detailed formula of ND, we leave to
the readers as they can be derived by the straightforward computation according to our proof. For further
use, we apply Corollary 3.3 to establish a new additive property for the Drazin inverse of bounded linear
operators.

Lemma 4.1. Let P,Q,PQ ∈ B(X)D. If PQ2 = 0,PDQ = 0 and P2QPπ = 0, then P +Q ∈ AD.

Proof. Clearly, P +Q = (I,Q)
(

P
I

)
. Using Lemma 2.3, it suffices to prove

W =
(

P
I

)
(I,Q) =

(
P PQ
I Q

)
has Drazin inverse. Write M = K + L,where

K =
(

P PQ
I 0

)
,L =

(
0 0
0 Q

)
.

Let H =
(

P I
PQ 0

)
. According to Corollary 3.3, H has Drazin inverse. Clearly,

H =
(

I 0
0 PQ

) (
P I
I 0

)
,K =

(
P I
I 0

) (
I 0
0 PQ

)
.

By using Lemma 2.3, K has Drazin inverse. Since PQ2 = 0, we have KL = 0. In light of Lemma 2.1, W has
Drazin inverse. Therefore P +Q has Drazin inverse.

Theorem 4.2. If ADB = 0,DDC = 0,ABC = 0,DCB = 0,A2BDπ = 0 and D2CAπ = 0, then N has Drazin inverse.

Proof. Write N = P +Q, where

P =
(

A 0
0 D

)
,Q =

(
0 B
C 0

)
.

Then

PD =

(
AD 0
0 DD

)
,Pπ =

(
Aπ 0
0 Dπ

)
.

We compute that

PDQ =

(
AD 0
0 DD

) (
0 B
C 0

)
)

=

(
0 ADB

DDC 0

)
= 0,

PQ2 =

(
A 0
0 D

) (
BC 0
0 CB

)
=

(
ABC 0

0 DCB

)
= 0.
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Moreover, we check that

P2QPπ =

(
A2 0
0 D2

) (
0 B
C 0

) (
Aπ 0
0 Dπ

)
=

(
0 A2BDπ

D2CAπ 0

)
= 0.

The result follows by Lemma 4.1.

As an immediate consequence, we derive the following.

Corollary 4.3. If A2B = 0,D2C = 0,ABC = 0 and DCB = 0, then N has Drazin inverse.

Consider the block-operator matrix, whose generalized Shur complement is equal to zero, that is

S =
(

A B
C D

)
,D = CADB (∗),

where A ∈ B(X)D,B ∈ B(X,Y),C ∈ B(Y,X) and D ∈ B(Y)D.

Theorem 4.4. Let A ∈ B(X)D and S be defined in (∗). If ADBC = 0,ABCAπ = 0,BDC = 0 and BD2 = 0, then S
has Drazin inverse.

Proof. Clearly, we have
ADBD = (AD)2ABD = (AD)2AB(CADB)

= AAD(ADBC)ADB = 0.

Write S = P +Q, where

P =
(

A B
0 0

)
,Q =

(
0 0
C D

)
.

Since ADBC = 0, we see that CADB is nilpotent. Obviously, P and Q have Drazin inverses. Moreover, we
have

PD =

(
AD (AD)2B
0 0

)
,Pπ =

(
Aπ −ADB
0 In

)
;

QD = 0,Qπ = I.
We compute that

PDQ =

(
AD (AD)2B
0 0

) (
0 0
C D

)
=

(
(AD)2BC (AD)2BD

0 0

)
= 0,

PQ2 =

(
A B
0 0

) (
0 0

DC D2

)
=

(
BDC BD2

0 0

)
= 0.

Moreover, we check that

P2QPπ =

(
A2 AB
0 0

) (
0 0
C D

) (
Aπ −ADB
0 In

)
=

(
ABCAπ ABD − ABCADB

0 0

)
= 0.

By using Lemma 4.1, S = P +Q has Drazin inverse, as asserted.
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Corollary 4.5. If A ∈ B(X)D and S be defined in (∗). If ADB = 0,CAπ = 0 and BD = 0, then S has Drazin inverse.

Proof. This is immediate from Theorem 4.4.
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[18] H. Zou; J. Chen and D. Mosić, The Drazin invertibility of an anti-triangular matrix over a ring, Studia Scient. Math. Hungar.,

54(2017), 489–508.


