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EP matrix and the solution of matrix equation
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Abstract. This paper mainly introduces some equivalent conditions for SEP matrix, specifically by con-
structing some specific matrix equations and discussing whether these matrix equations have solutions in
given set to determine whether a group invertible matrix is a SEP matrix.

1. Introduction

Throughout this paper, Cn×n stands for the set of all n × n complex matrices. Let A ∈ Cn×n. Denotes
the conjugate transpose matrix of A by AH. A is called a group invertible matrix if there exists X ∈ Cn×n

such that
AXA = A,XAX = X,AX = XA.

If such X exists, then it is unique, denoted by A#, and is called the group inverse of A [3].
A is said to be Moore − Penrose invertible if there exists X ∈ Cn×n such that

AXA = A,XAX = X, (AX)H = AX, (XA)H = XA.

Such X always exists uniquely by [1, 2], denoted by A+, and is called the Moore − Penrose inverse of A.
Let A ∈ Cn×n is a group invertible matrix. We write

χA = {A,A#,A+,AH, (A#)
H
, (A+)H

}.

A is called partial isometry (or PI) if A = AAHA. Clearly A is PI if and only if A+ = AH; A is called EP
[8] if A# exists and A# = A+; A is called SEP if A# exists and A# = A+ = AH. Evidently, A is SEP if and only
if A is EP and PI. In a ring with involution, SEP elements have been studied in [4, 6, 9–11], and in matrix
theory, by [7].

In this paper, we continue to study SEP matrices. In Section 2, we discuss some properties of SEP
matrices. In Section 3, we research the relationship between the consistency of matrix equations and SEP
matrices. In Section 4, with the help of group invertible matrices and EP matrices, we discuss the form of
the general solution to certain equation.
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2. Some properties of SEP matrices

Lemma 2.1. Let A ∈ Cn×n be a group invertible matrix. Then A is a SEP matrix if and only if AHAHA = AA#AHAA#.

Proof. (=⇒) Assume that A is SEP. Then A# = A+ = AH, this gives

AA#AHAA# = AA#A#AA# = A# = A#A#A = AHAHA.

(⇐=) If AHAHA = AA#AHAA#, then

AA+AHAHA = AA+(AA#AHAA#) = AA#AHAA# = AHAHA.

Post-multiplying the equality by A+(A#)H(A#)HA+, one has AA+A+ = A+. Hence, A is EP, it follows
AHAHA = AA#AHAA# = A#AAHAA# = A+AAHAA+ = AH, this gives A = AHA2. Hence, A is SEP by [6,
Theorem 1.5.3].

Theorem 2.2. Let A ∈ Cn×n be a group invertible matrix. Then
1) AHAHA is an EP matrix with (AHAHA)+ = A+(A#)H(A+)H.
2) (AA#AHAA#)+ = A+A(A+)HAA+.
3) AA#AHAA# is a group invertible matrix with (AA#AHAA#)# = (A+)H.

Proof. 1) Since
(AHAHA)(A+(A#)H(A+)H) = AHAH(A#)H(A+)H = AH(A+)H = A+A,

(AHAHA)(A+(A#)H(A+)H)(AHAHA) = A+A(AHAHA) = AHAHA

and we have

((AHAHA)(A+(A#)H(A+)H))H = (A+A)H = A+A = (AHAHA)(A+(A#)H(A+)H).

Since we get

(A+(A#)H(A+)H)(AHAHA) = A+((A#)H(A+)HAH)AHA = A+(A#)HAHA = A+A,

(A+(A#)H(A+)H)(AHAHA)(A+(A#)H(A+)H) = A+A(A+(A#)H(A+)H) = A+(A#)H(A+)H

and
((A+(A#)H(A+)H)(AHAHA))H = (A+A)H = (A+(A#)H(A+)H)(AHAHA).

Hence, (AHAHA)+ = A+(A#)H(A+)H.
Noting that (A+(A#)H(A+)H)(AHAHA) = (AHAHA)(A+(A#)H(A+)H).
Then (AHAHA)# = A+(A#)H(A+)H = (AHAHA)+.
Therefore AHAHA is EP.
2) and 3) can be shown similarly.

Corollary 2.3. Let A ∈ Cn×n be a group invertible matrix. Then
1) A is an EP matrix if and only if (AHAHA)+ = A+(A+)H(A#)H.
2) A is an EP matrix if and only if AA#AHAA# is an EP matrix.
3) A is a SEP matrix if and only if AA#AHAA# is a SEP matrix.

Proof. 1)(=⇒) If A is EP, then (A#)H(A+)H = (A#)H(A#)H = (A+)H(A#)H.
By Theorem 2.2, we have (AHAHA)+ = A+(A+)H(A#)H.
(⇐=) If (AHAHA)+ = A+(A+)H(A#)H, then, by Theorem 2.2, we have

A+(A#)H(A+)H = A+(A+)H(A#)H.
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Pre-multiplying the last equality by AHAHA, one has A+A = (AA#)H. Hence, A is EP.
2)(=⇒) Assume that A is EP. Then AA+ = A+A, it follows from Theorem 2.2 that

(AA#AHAA#)+ = A+A(A+)HAA+ = AA+(A+)HA+A = (A+)H = (AA#AHAA#)#.

Hence, AA#AHAA# is EP.
(⇐=) If AA#AHAA# is EP, then (AA#AHAA#)+ = (AA#AHAA#)#.
By Theorem 2.2, one has

A+A(A+)HAA+ = (A+)H.

Multiplying the equality on the left by AA#, one has

(A+)H = (A+)HAA+.

Applying the involution on the equality, one has A+ = AA+A+. Hence, A is EP.
3) (=⇒) If A is a SEP matrix, then AA#AHAA# is an EP matrix by 2), and by Lemma 2.1, we have

(AA#AHAA#)H = (AHAHA)H = AHA2 = A = (A+)H = (AA#AHAA#)# = (AA#AHAA#)+.

Hence AA#AHAA# is SEP.
(⇐=) If AA#AHAA# is a SEP matrix, then A is an EP matrix by 2) and (AA#AHAA#)# = (AA#AHAA#)H. By

Theorem 2.2, one obtains
(A+)H = (AA#AHAA#)H.

Hence, A+ = AA#AHAA#. Noting that A is EP. Then AA#AHAA# = AH, so A+ = AH. Thus A is SEP.

Theorem 2.4. Let A ∈ Cn×n be a group invertible matrix. Then A is a SEP matrix if and only if AHAHA =
AA#AHA+A.

Proof. (=⇒) Assume that A is SEP. Then A+A = AA+ = AA# and AHAHA = AA#AHAA# by Lemma 2.1.
Hence AHAHA = AA#AHA+A.

(⇐=) If AHAHA = AA#AHA+A, then

AA#AHA+A = AHAHA = A+AAHAHA = A+A(AA#AHA+A) = AHA+A.

Post-multiplying the last equality by (AA#)H, one gets AA#AH = AH, this infers A is EP by [6, Theorem
1.2.1]. Hence AHAHA = AA#AHA+A = AA#AHAA#, by Lemma 2.1, A is SEP.

3. Compatibility of matrix equation

Observing the equality appeared in Theorem 2.4, we can construct the following equation:

AHXA = AA#XA+A. (1)

In [6, Theorem 1.5.3], it is shown that a matrix A is SEP if and only if AHA+ = A#A+. Inspired by this,
we can give the following theorem.

Theorem 3.1. Let A ∈ Cn×n be a group invertible matrix. Then A is a SEP matrix if and only if Eq.(3.1) has at least
one solution in χA =

{
A,A#,A+,AH, (A#)H, (A+)H

}
.
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Proof. ⇒Assume that A is SEP. Then A# = A+ = AH. It follows AHA2 = A#A2 = A = AA#AA#A = AA#AA+A.
Hence, X = A is a solution.
⇐ 1) If X = A, then AHA2 = AA#AA+A = A. Hence, A is SEP by [6, Theorem 1.5.3].
2) If X = A#, then AHA#A = AA#A#A+A = A#. It follows that A = A#A2 = AHA#AA2 = AHA2. Hence, A is
SEP by [6, Theorem 1.5.3].
3) If X = A+, then AHA+A = AA#A+A+A. Pre-multiplying the equality by En − AA+, one gets

(En − AA+)AHA+A = 0.

Post-multiplying the last equality by (A+A#A)HA+, one has (En − AA+)A+ = 0, this infers A is EP. Hence,
X = A+ = A# is a solution, so A is SEP by 2).
4) If X = AH, then AHAHA = AA#AHA+A. Hence, A is SEP by Theorem 2.4.
5) If X = (A+)H, then AH(A+)HA = AA#(A+)HA+A, e.g. A+A2 = (A+)H. This gives

(A+)H = AA#(A+)H = AA#A+A2 = A

and so A = (A+)H = A+A2. Hence, A is SEP.
6) If X = (A#)H, then AH(A#)HA = AA#(A#)HA+A. Pre-multiplying the equality by En − AA+, one yields
(En−AA+)AH(A#)HA = 0. Post-multiplying the last equality by A+A+, one obtains (En−AA+)A+ = 0. Hence,
A is EP. It follows that X = (A#)H = (A+)H is a solution. Thus A is SEP by 5).

The proof of Theorem 3.1 implies the following corollary.

Corollary 3.2. Let A ∈ Cn×n be a group invertible matrix. Then A is SEP if and only if (A+)H = A+A2.

Now we can change Eq.(3.1) as follows

AHXY = AA#XA+Y. (2)

Lemma 3.3. [11, Corollary 2.10] Let A ∈ Cn×n be a group invertible matrix. Then the followings are equivalent:
1) A is a PI matrix;
2) AHA+ = AHAH;
3) AHA+ = A+A+.

Theorem 3.4. Let A ∈ Cn×n be a group invertible matrix. Then A is a SEP matrix if and only if Eq.(3.2) has at least
one solution in χ2

A = {(x, y)|x, y ∈ χA}.

Proof. ”⇒” Assume that A is SEP. Then (X,Y) = (A,A) is a solution.
”⇐” I) If Y = A, then we have the following equation

AHXA = AA#XA+A. (3)

By Theorem 3.1, A is SEP;
II) If Y = A#, then we have the following equation

AHXA# = AA#XA+A#. (4)

Post-multiplying Eq.(3.4) by A2, we obtain Eq.(3.1). Hence, A is SEP by Theorem 3.1;
III) If Y = A+, then we have the following equation

AHXA+ = AA#XA+A+. (5)

1) If X = A, then AHAA+ = AA#AA+A+, e.g. AH = AA+A+. Pre-multiplying the equality by (AA#)H, one
obtains AH = A+, it follows that A+ = AH = AA+A+. Thus A is EP and so A is SEP;
2) If X = A#, then AHA#A+ = AA#A#A+A+ = A#A+A+, this gives

(En − A+A)A#A+A+ = (En − A+A)AHA#A+ = 0.
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Post-multiplying the last equality by A(AA#)HA3, one obtains (En − A+A)A = 0, this infers A is EP. Hence,
Y = A+ = A#, it follows from II) that A is SEP;
3) If X = A+, then AHA+A+ = AA#A+A+A+. By [11, Lemma 2.11], we have AHA+ = AA#A+A+, that is,
AHAA+A+ = AA#A+A+. Again by [11, Lemma 2.11], we gets AH = AA#A+, and AHA2 = AA#A+A2 = A.
Hence, A is SEP by [6, Theorem 1.5.3];
4) If X = AH, then AHAHA+ = AA#AHA+A+. Post-multiplying the equality by A(AA#)H, one has

AHAH = AA#AHA+,

this gives
(En − AA+)AHAH = (En − AA+)AA#AHA+ = 0.

Post-mutiplying the last equality by (A#A#)HA+, one gets (En − AA+)A+ = 0, this implies A is EP. Hence,
AHAH = AA#AHA+ = A#AAHA+ = A+AAHA+ = AHA+, this implies A is PI by Lemma 3.3. Thus A is SEP;
5) If X = (A+)H, then AH(A+)HA+ = AA#(A+)HA+A+, e.g. A+ = (A+)HA+A+.This gives AHA+ = AH(A+)HA+A+ =
A+A+, so A is PI by Lemma 3.3. Noting that A+ = (A+)HA+A+ = AA+A+. Then A is EP and so A is SEP;
6) If X = (A#)H, then AH(A#)HA+ = AA#(A#)HA+A+, e.g. A+ = AA#(A#)HA+A+. Pre-multiplying the equality
by En − AA+, one yields

A+ = AA+A+.

Hence A is EP, it follows that x = (A#)H
= (A+)H. Thus A is SEP by 5).

IV) If Y = AH, then we have the following equation

AHXAH = AA#XA+AH. (6)

Post-mutiplying Eq.(3.6) by (A#)HA+, one gets Eq.(3.5). Hence, A is SEP by III);
V) If Y = (A+)H, then we have the following equation

AHX(A+)H
= AA#XA+(A+)H. (7)

Post-mutiplying Eq.(3.7) by AHA, we get Eq.(3.3). Hence, A is SEP by I);
VI) If Y = (A#)H, then we have the following equation

AHX(A#)
H
= AA#XA+(A#)

H
. (8)

Post-mutiplying the Eq.(3.8) by AHAH, we obtain Eq.(3.6) Hence, A is SEP by IV).

Corollary 3.5. Let A ∈ Cn×n be a group invertible matrix. Then the followings are equivalent:
1) A is a SEP matrix;
2) A+ = (A+)HA+A+;
3) A+ = A+A+(A+)H.

Now we changes Eq.(3.1) as follows

AHXA = AA#XA#A. (9)

Similar to Theorem 3.1, we can give the following theorem.

Theorem 3.6. Let A ∈ Cn×n be a group invertible matrix. Then A is a SEP matrix if and only if Eq.(3.9) has at least
one solution in χA.

The following lemma is interesting which proof is routine.
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Lemma 3.7. Let A ∈ Cn×n be a group invertible matrix. Then
(1) AHXA is a EP matrix with (AHXA)+ = (AHXA)# = A+X#(A+)H for each X ∈ χA;
(2) (AA#XAA#)+ = A+AX+AA+ for each X ∈ χA;
(3) AA#XAA# is a group invertible matrix with (AA#XAA#)# = AA#X+AA# for each X ∈ χA.

Theorem 3.6 and Lemma 3.7 imply the following theorem.

Theorem 3.8. Let A ∈ Cn×n be a group invertible matrix. Then the followings are equivalent:
(1) A is a SEP matrix;
(2) A+X#(A+)H = A+AX+AA+ for each X ∈ χA;
(3) A+X#(A+)H = AA#X+AA# for each X ∈ χA.

4. The general solution of related equations

We now generalize Eq.(3.1) as follows.

AHXA = AA#YA+A. (10)

Theorem 4.1. Let A ∈ Cn×n be a group invertible matrix. Then the general solution of Eq.(4.1) is given by{
X = (A+)HA+P +U − AA+UAA+

Y = A+PA + V − A+AVA+A , where P, U, V ∈ Cn×n with A+P = AA+A+P. (11)

Proof. Frist, we have the formula (4.2) is the solution of Eq.(4.1).
In fact,

AH((A+)H)A+P +U − AA+UAA+)A = A+PA = AA+A+PA = AA#AA+A+PA

= AA#A+PA = AA#(A+PA + V − A+AVA+A)A+A.

Next, let{
X = X0
Y = Y0

(12)

be a solution of Eq.(4.1). Then

AHX0A = AA#Y0A+A.

Choose P = AY0A+, U = X0, V = Y0. Then

A+P = A+AY0A+ = (A+A)(AA#Y0A+A)A+ = A+A(AHX0A)A+ = AHX0AA+

= AA#Y0A+AA+ = AA#Y0A+.

So
AA+A+P = AA+(AA#Y0A+) = AA#Y0A+.

Hence, A+P = AA+A+P.
Noting that

(A+)HA+P = (A+)HAA#Y0A+ = (A+)H(AA#Y0A+A)A+

= (A+)HAHX0AA+ = AA+X0AA+.

Then
X0 = AA+X0AA+ + X0 − AA+X0AA+ = (A+)HA+P +U − AA+UAA+.

Also
A+AY0A+A = A+(AY0A+)A = A+PA,

it follows that
Y0 = A+AY0A+A + Y0 − A+AY0A+A = A+PA + V − A+AVA+A.

Hence, the general solution of Eq.(4.1) is given by the formula (4.2).
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Theorem 4.2. Let A ∈ Cn×n be a group invertible matrix. Then A is a SEP matrix if and only if the general solution
of Eq.(4.1) is given by{

X = (A+)HA+P +U − AA+UAA+

Y = A#P(A+)H + V − A+AVA+A , where P, U, V ∈ Cn×n. (13)

Proof. ⇒ If A is SEP, then A+ = A# and A = (A+)H. And AA+A+P = A+P for all P ∈ Cn×n.
Hence, the formula (4.2) is same as the formula (4.4), it follows from Theorem 4.1 that the general

solution of Eq.(4.1) is given by the formula (4.4).
⇐ If the general solution of Eq.(4.1) is given by the formula (4.4), then

AH((A+)HA+P +U − AA+UAA+)A = AA#(A#P(A+)H + V − A+AVA+A)A+A.

By simple computation, we have
A+PA = A#P(A+)H.

Choose P = A. Then A+A2 = A#A(A+)H = (A+)H.
Hence A is SEP by Corollary 3.2.

Now we construct the following equation.

A(AA#)HAAHXAA+ = A2YAH. (14)

Similar to Theorem 4.1, we have the following theorem.

Theorem 4.3. Let A ∈ Cn×n be a group invertible matrix. Then the general solution of Eq.(4.5) is given by{
X = (A+)HA+P +U − AA+UAA+

Y = A#P(A+)H + V − A+AVA+A , where P, U, V ∈ Cn×n with A+P = A+A+AP. (15)

Combining Theorem 4.2 with Theorem 4.3, we have the following theorem.

Theorem 4.4. Let A ∈ Cn×n be a group invertible matrix. Then A is a SEP matrix if and only Eq.(4.5) has the same
solution as Eq.(4.1).
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