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Abstract. Various classes of hyperideals have been studied in many papers in order to let us fully under-
stand the structures of hyperrings in general. The purpose of this paper is the study of some hyperideals
whose concept is created on the basis of the intersection of all n-ary prime hyperideals in category of Krasner
(m,n)-hyperrings. In this regard we introduce notions of N-hyperideals, δ-N-hyperideals, (k,n)-absorbing δ-
N-hyperideals and S-N-hyperideals. The overall framework of these structures is then explained, providing
a number of major conclusions.

1. Introduction

The notion of prime ideal as an extension of the notion of prime number in the ring of integers plays a
highly important role in the theory of rings. In 2017, Terkir et al. [13] proposed a new class of ideals called
n-ideals and investigated some properties of them analogous with prime ideals. Let I be an ideal of ring
R. I refers to an n-ideal if the condition xy ∈ I with x <

√
0 implies y ∈ I for all x, y ∈ I. Afterward, the

concept of (2,n)-ideals in a commutative ring was defined by Tamekhante and Bouba [14]. They gave many
results to show the relations between this new notion and others that already exist. Indeed, the notion is
a generalization of n-ideals. A proper ideal I of R is said to be a (2,n)-ideal if xyz ∈ I for x, y, z ∈ R implies
that xy ∈ I or yz ∈

√
0 or xz ∈

√
0.

Algebraic hyperstructures arise as natural extensions of classical algebraic structures when the com-
position operator is multivalued. The pioneer of this theory was the French mathematician F. Marty [8],
who introduced the concept of hypergroup in 1934 on the occasion of the 8th Congress of Scandinavian
Mathematicians in Stockholm. Since the 1970s, hyperstructure theory has experienced a surge of interest,
when its research field was greatly extended by the introduction of other useful notions. Nowadays, hyper-
compositional algebra has a variety of relationships with other areas of mathematics. One significant type
of hyperrings was introduced by Krasner, when the addition is a hyperoperation, while the multiplication
is an ordinary binary operation, which is said to be Krasner hyperring. An extension of the Krasner hy-
perrings, which is a subclass of (m,n)-hyperrings, was presented by Mirvakili and Davvaz which is called
Krasner (m,n)-hyperring, in [9]. Ameri and Norouzi defined some substancial classes of hyperideals in
Krasner (m,n)-hyperrings [1]. Later, in [7] the concepts of (k,n)-absorbing hyperideals and (k,n)-absorbing
primary hyperideals were studied by Hila et al.. Norouzi and his colleagues illustrated a new defnition for
normal hyperideals in Krasner (m,n)-hyperrings, with respect to that one given in [9] and they proposed in
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[10] that these hyperideals correspond to strongly regular relations. In [5], Asadi and Ameri showed direct
limit of a direct system in the category of Krasner (m,n)-hyperrigs. Ozel Ay et al. presented the idea of
δ-primary on Krasner hyperrings [12]. The notion of δ-primary hyperideals in Krasner (m,n)-hyperrings,
which unifies the prime and primary hyperideals under one frame, was defined in [3]. For a Krasner
hyperring, the concept of n-hyperideals was briefly introduced by Omidi et al. in [11].

For a commutative Krasner (m,n)-hyperring H,
√

0(m,n) is the intersection is taken over all n-ary prime
hyperideals.

√

0(m,n) =
{

a ∈ H |
{
1(a(s), 1(n−s)

H ) = 0, s ≤ n
1(l)(a(s)) = 0 s > n, s = l(n − 1) + 1

}}
is an alternative definition of

√
0(m,n). In this paper, we aim to analyze some notions of hyperideals

established on basis of the intersection of all n-ary prime hyperideals in a commutative Krasner (m,n)-
hyperring. The paper is orgnized as follows. In Section 2, we have given some basic definitions and results of
commutative Krasner (m,n)-hyperrings which we need to develop our paper. In Section 3, we introduce the
idea of n-ary N-hyperiudeals in a commutative Krasner (m,n)-hyperring and give several characterizations
of them. In Section 4, we extend the notion of n-ary N-hyperideals to n-ary δ-N-hyperideals. We obtain
many specific results explaining the structures. Afterward, in Section 5, we study an expansion of the
previous concept called (k,n)-absorbing δ-N-hyperideals. Some properties of them are provided. The last
section is devoted for introducing the n-ary S-N-hyperideals.

2. Preliminaries

For a non-empty set H, the mapping f : Hn
−→ P∗(H) is called an n-ary hyperoperation where P∗(H)

is the family of all the nonempty subsets of H. An n-ary hypergroupoid is an algebraic system (H, f ). Let
H1, · · · ,Hn be non-empty subsets of H. Then f (Hn

1 ) = f (H1, · · · ,Hn) is defined by
⋃{

f (an
1) | ai ∈ Hi, 1 ≤ i ≤ n

}
.

The sequence ai, ai+1, · · · , a j is denoted by a j
i and so we write

f (a1, · · · , ai, bi+1, · · · , b j, c j+1, · · · , cn) = f (ai
1, b

j
i+1, c

n
j+1).

Moreover, if bi+1 = · · · = b j = b, then we write f (ai
1, b

( j−i), cn
j+1). a j

i is the empty symbol if j < i. For an n-ary
hyperoperation f , (l(n − 1) + 1)-ary hyperoperation f(l) is given by

f(l)(a
l(n−1)+1
1 ) = f

(
f
(
· · · , f ( f (an

1), a2n−1
n+1 ), · · ·

)
, al(n−1)+1

(l−1)(n−1)+1

)
.

Recall from [9] that an algebraic hyperstructure (H, f , 1) , or simply H, is called a commutative Krasner
(m,n)-hyperring if

(1) (H, f ) is a canonical m-ary hypergroup, i.e., for 1 ≤ i < j ≤ n and a2n−1
1 ∈ H, f

(
ai−1

1 , f (an+i−1
i ), a2n−1

n+i

)
=

f
(
a j−1

1 , f (an+ j−1
j ), a2n−1

n+ j

)
and −1 : H −→ H is a unitary operation such that

(i) there exists a unique e ∈ H, such that f (a, e(m−1)) = a for every a ∈ H and e−1 = e;

(ii) for each a ∈ H there exists a unique a−1
∈ H with e ∈ f (a, a−1, e(m−2));

(iii) if a ∈ f (am
1 ), then ai ∈ f (a, a−1, · · · , a−1

i−1, a
−1
i+1, · · · , a

−1
m ) for all i,

(iv) f (am
1 ) = f (aσ(m)

σ(1) ) for all σ ∈ Sn and for all am
1 ∈ H,

(2) (H, 1) is a n-ary semigroup,

(3) 1
(
ai−1

1 , f (xm
1 ), an

i+1

)
= f
(
1(ai−1

1 , x1, an
i+1), · · · , 1(ai−1

1 , xm, an
i+1)
)

for every ai−1
1 , a

n
i+1, x

m
1 ∈ H, and 1 ≤ i ≤ n;
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(4) 1(0, an
2) = 1(a2, 0, an

3) = · · · = 1(an
2 , 0) = 0 for every an

2 ∈ H,

(5) 1(an
1) = 1(aσ(n)

σ(1)) for all σ ∈ Sn and for all an
1 ∈ H.

For a non-empty subset S of H, if (S, f , 1) is a Krasner (m,n)-hyperrin, then S is called a subhyperring of H .
Let I be a non-empty subset of H. I refers to a hyperideal of (R, f , 1) if (I, f ) is an m-ary subhypergroup of
(H, f ) and for every xn

1 ∈ R and 1 ≤ i ≤ n, 1(ai−1
1 , I, a

n
i+1) ⊆ I.

Definition 2.1. [9] Suppose that (H1, f1, 11) and (H2, f2, 12) are two Krasner (m,n)-hyperrings. A mapping d :
H1 −→ H2 is called a homomorphism if

(i) d(1R1 ) = 1R2 ,

(ii) d
(

f1(a1, · · · , am)
)
= f2
(
d(a1), · · · , d(am)

)
,

(iii) d
(
11(b1, · · · , bn)

)
= 12

(
d(b1), · · · , d(bn)

)
for all am

1 ∈ H1 and bn
1 ∈ H1.

Now, We recall some definitions from [1]. Let I be a hyperideal in a commutative Krasner (m,n)-hyperring

R with scalar identity.
√

I
(m,n)

is the intersection is taken over all prime hyperideals of H which contain I. If

the set of all prime hyperideals containing I is empty, then
√

I
(m,n)
= H. Theorem 4.23 in [1] shows that if

a ∈
√

I
(m,n)

then there exists t ∈N such that 1(a(t), 1(n−t)
H ) ∈ I for t ≤ n, or 1(l)(a(t)) ∈ I for t = l(n − 1) + 1.

Definition 2.2. [1] Let I be a proper hyperideal of a commutative Krasner (m,n)-hyperring H with the scalar identity
1R. I refers to a

(1) maximal hyperideal of H if for every hyperideal I′ of H, I ⊆ I′ ⊆ H implies that I′ = M or I′ = H. The
intersection of all maximal hyperideals of H is called the Jacobson radical of H which is denoted by J(m,n)(H). If
H does not have any maximal hyperideal, we define J(m,n)(H) = H.

(2) n-ary prime hyperideal if for hyperideals I1, · · · , In of H, 1(In
1 ) ⊆ I implies that Ii ⊆ I for some 1 ≤ i ≤ n.

Lemma 4.5 in [1] shows that if for all an
1 ∈ H, 1(an

1) ∈ I implies that ai ∈ I for some 1 ≤ i ≤ n, then I is a prime
hyperideal.

(3) n-ary primary hyperideal if 1(an
1) ∈ I and ai < I, then 1(ai−1

1 , 1H, an
i+1) ∈

√
I

(m,n)
for some 1 ≤ i ≤ n. Theorem

4.28 in [1] shows that if I is a primary hyperideal of H, then
√

I
(m,n)

is prime.

Definition 2.3. [1] Let a be an element in a commutative Krasner (m,n)-hyperring H. The hyperideal generated by
a is denoted by < a > and defined by

1(H, a, 1(n−2)) =
{
1(r, a, 1(n−2)) | r ∈ H

}
.

Definition 2.4. [1] Let a be an element in a commutative Krasner (m,n)-hyperring H. It is invertible if there exists
b ∈ R with 1H = 1(a, b, 1

(n−2)
H ). Let U be a subset of H. Then U is invertible if and only if every element of U is

invertible.

3. n-ary N-hyperideals

In this section, we present the concept of n-ary N-hyperideals and study many properties of them with
similar n-ary prime hyperideals.

Definition 3.1. Let I be a proper hyperideal of a commutative Krasner (m,n)-hyperring H. I refers to an n-ary

N-hyperideal if whenever xn
1 ∈ H with 1(xn

1) ∈ I and xi <
√

0
(m,n)

for some 1 ≤ i ≤ n imply that 1(xi−1
1 , 1H, xn

i+1) ∈ I.
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Example 3.2. Let x ≥ 1. Consider n-ary hyperintegral domain ([x,∞) ∪ {0},⊞, ·) where ⊞ is defined by

a ⊞ b =


b ⊞ a =

{
a
}

if b = 0,{
min{a, b}

}
if a , 0, b , 0 and a , b,

[a,∞) ∪
{
0
}

if a = b , 0.

and ” · ” is the usual multiplication. The hyperideal 0 is the only n-ary N-hyperideal of ([x,∞) ∪
{
0
}
,⊞, ·).

Theorem 3.3. For an n-ary N-hyperideal I of a commutative Krasner (m,n)-hyperring H, I ⊆
√

0
(m,n)

.

Proof. Let I be an n-ary N-hyperideal of a commutative Krasner (m,n)-hyperring H however I ⊈
√

0
(m,n)

.

Assume that x ∈ I but x <
√

0
(m,n)

. Since I is an n-ary N-hyperideal of H and 1(x, 1(n−1)
H ) ∈ I, we get 1(1(n)

H ) ∈ I,

yielding a contradiction. Consequently, I ⊆
√

0
(m,n)

.

The next Theorem gives a characterization of n-ary N-hyperideals.

Theorem 3.4. Let I be an n-ary prime hyperideal of a commutative Krasner (m,n)-hyperring H. Then I is an n-ary

N-hyperideal if and only if I =
√

0
(m,n)

.

Proof. =⇒ Let I be an n-ary prime hyperideal of H. Clearly,
√

0
(m,n)

⊆ I. Suppose that I is an n-ary N-

hyperideal of H. Hence we obtain I ⊆
√

0
(m,n)

, by Theorem 3.3. Then we conclude that I =
√

0
(m,n)

.

⇐= Let I =
√

0
(m,n)

. We presume xn
1 ∈ H with 1(xn

1) ∈ I such that xi <
√

0
(m,n)

for some 1 ≤ i ≤ n. Since I is an
n-ary prime hyperideal of H and xi < I, then there exists 1 ≤ j ≤ i − 1 or i + 1 ≤ j ≤ n such that x j ∈ I. This
implies that 1(xi−1

1 , 1H, xn
i+1) ∈ I. Thus, I is an n-ary N-hyperideal of H.

In view of Theorem 3.4, we have the following result.

Corollary 3.5. Let H be a commutative Krasner (m,n)-hyperring. Then
√

0(m,n) is an n-ary prime hyperideal of H
if and only if it is an n-ary N-hyperideal of H.

Proof. =⇒ Suppose that
√

0
(m,n)

is an n-ary prime hyperideal of H. By Theorem 3.4,
√

0
(m,n)

is an n-ary
N-hyperideal of H.

⇐= Let
√

0
(m,n)

be an n-ary N-hyperideal of H. Assume that 1(xn
1) ∈

√
0

(m,n)
for some xn

1 ∈ H such that

xi <
√

0
(m,n)

for some 1 ≤ i ≤ n. Then we get 1(xi−1
1 , 1H, xn

i+1) ∈
√

0
(m,n)

. Since
√

0
(m,n)

is an n-ary N-hyperideal

of H, we can continue the process and obtain x j ∈
√

0
(m,n)

for some 1 ≤ j ≤ n. This means that
√

0
(m,n)

is an
n-ary prime hyperideal of H.

Theorem 3.6. Let I be a proper hyperideal of a commutative Krasner (m,n)-hyperring H. If every proper principal
hyperideal is an n-ary N-hyperideal, then so is I.

Proof. Assume that I is a proper hyperideal of H. Let 1(xn
1) ∈ I for some xn

1 ∈ H such that xi <
√

0
(m,n)

for
some 1 ≤ i ≤ n. Since every proper principal hyperideal is an n-ary N-hyperideal and 1(xn

1) ∈ ⟨1(xn
1)⟩, we

get 1(xi−1
1 , 1H, xn

i+1) ∈ ⟨1(xn
1)⟩ ⊆ I. This means that I is a an n-ary N-hyperideal of H.

Theorem 3.7. Let I be a proper hyperideal of a commutative Krasner (m,n)-hyperring H. Then the following
statements are equivalent:

(1) I is an n-ary N-hyperideal of H.
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(2) I = Ex where Ex =
{
y ∈ H | 1(x, y, 1(n−2)

H ) ∈ I
}

for every x <
√

0
(m,n)

.

(3) 1(In
1 ) ⊆ I for some hyperideals In

1 of H such that Ii ∩ (H −
√

0
(m,n)

) , ∅ for some 1 ≤ i ≤ n imply that
1(Ii−1

1 , 1H, In
i+1) ⊆ I.

Proof. (1) =⇒ (2) Let I be an n-ary N-hyperideal of H. We always have I ⊆ Ex for every x ∈ H. Assume

that y ∈ Ex but x <
√

0
(m,n)

. This implies that 1(x, y, 1(n−2)
H ) ∈ I. Since I is an n-ary N-hyperideal of H and

x <
√

0
(m,n)

, then y = 1(y, 1(n−2)
H ) ∈ I. Therefore, we have I = Ex.

(2) =⇒ (3) Let 1(In
1 ) ⊆ I for some hyperideals In

1 of H such that Ii ∩ (H −
√

0
(m,n)

) , ∅ for some 1 ≤ i ≤ n.

Then we get xi ∈ Ii such that xi <
√

0
(m,n)

. Hence, 1(Ii−1
1 , xi, In

I+1) ⊆ I which implies 1(Ii−1
1 , 1H, In

i+1) ⊆ Exi . Since

I = Exi for every xi <
√

0
(m,n)

, then we get 1(Ii−1
1 , 1H, In

i+1) ⊆ I.

(3) =⇒ (1) Assume that 1(xn
1) ∈ I for some xn

1 ∈ H such that xi <
√

0
(m,n)

for some 1 ≤ i ≤ n. We get

1
(
⟨x1⟩, · · · , ⟨xn⟩

)
⊆ ⟨1(xn

1)⟩ ⊆ I and ⟨xi⟩ ⊈
√

0
(m,n)

. Then we conclude that1
(
⟨x1⟩, · · · , ⟨xi−1⟩, 1H, ⟨xi+1⟩, · · · , ⟨xn⟩

)
⊆

I which means 1(xi−1
1 , 1H, xn

i+1) ∈ I. Thus, I is an n-ary N-hyperideal of H.

Theorem 3.8. Let T be a non-empty subset of a commutative Krasner (m,n)-hyperring H. If I is an n-ary N-
hyperideal of H such that T ⊈ I, then ET =

{
x ∈ H | 1(x,T, 1(n−2)

H ) ⊆ I
}

is an n-ary N-hyperideal of H.

Proof. Clealy, ET , H. Assume that 1(xn
1) ∈ ET for some xn

1 ∈ H such that xi <
√

0
(m,n)

for some 1 ≤ i ≤ n.

This means that 1
(
1(xn

1), t, 1(n−2)
H

)
∈ I for each t ∈ T and so 1

(
xi, 1(xi−1

1 , t, x
n
i+1), 1(n−2)

H

)
∈ I. Since I is an n-

ary N-hyperideal of H and xi <
√

0
(m,n)

, we get 1
(
1(xi−1

1 , 1H, xn
i+1), t, 1(n−2)

H

)
= 1(xi−1

1 , t, x
n
i+1) ∈ I which means

1(xi−1
1 , 1H, xn

i+1) ∈ ET. Consequently, ET is an n-ary N-hyperideal of H.

Theorem 3.9. For a maximal N-hyperideal I of a commutative Krasner (m,n)-hyperring H, I =
√

0
(m,n)

.

Proof. Suppose that I is a maximal N-hyperideal of H. Let us consider 1(xn
1) ∈ I for some xn

1 ∈ H. We may
assume that xn < I. By Theorem 3.8, we conclude that Exn is an n-ary N-hyperideal of H with I ⊆ Exn . Since
I is a maximal N-hyperideal of H, we have Exn = I and so 1(xn−1

1 , 1H) ∈ I. Now, we assume that xn−1 < I. In
a similar way, we get 1(xn−2

1 , 1
(2)
H ) ∈ I. By continuing the argument, we obtain x1 ∈ I which implies I is an

n-ary prime hyperideal of H. Then, we conclude that I =
√

0
(m,n)

, by Theorem 3.4.

The next result characterizes hyperrings admitting n-ary N-hyperideals.

Theorem 3.10. Let H be a commutative Krasner (m,n)-hyperring. Then H admits an n-ary N-hyperideal if and

only if
√

0
(m,n)

is an n-ary prime hyperideal of H.

Proof. =⇒ Let I be an n-ary N-hyperideal of H and let Σ be the set of all n-ary N-hyperideals of H. Then
Σ , ∅, since I ∈ Σ. So Σ is a partially ordered set with respect to set inclusion relation. Now, we take the
chain I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · in Σ. Put P =

⋃
∞

i=1 Ii. We prove P is an n-ary N-hyperideal of H. Assume that

1(xn
1) ∈ P for some xn

1 ∈ H such that xi <
√

0
(m,n)

. Then there exists s ∈ N such that 1(xn
1) ∈ Is. Then we get

1(xi−1
1 , 1H, xn

i+1) ∈ Is ⊆ P, as Is is an n-ary N-hyperideal of H and xi <
√

0
(m,n)

. This means that P is a upper
bound of the mentioned chain. By Zorn’s lemma, there is a hyperideal Q which is maximal in Σ. Hence

Q =
√

0
(m,n)

is an n-ary prime hyperideal of H, by Theorem 3.9.

⇐= Let
√

0
(m,n)

be an n-ary prime hyperideal of H. Then it is an n-ary N-hyperideal of H, by Corollary
3.5.
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Corollary 3.11. Let I be a hyperideal of a commutative Krasner (m,n)-hyperring H with I ⊆
√

0
(m,n)

. Then I is an
n-ary N-hyperideal of H if and only if I is an n-ary primary hyperideal of H.

Proof. Straightforward.

Now, we are interested in the hyperrings over which 0 is the only n-ary N-hyperideal of H.

Theorem 3.12. Let H be a commutative Krasner (m,n)-hyperring. Then 0 is the only n-ary N-hyperideal of H if
and only if H is an n-ary hyperintegral domain.

Proof. =⇒ Let 0 be the only n-ary N-hyperideal of H. Then by Theorem 3.10,
√

0
(m,n)

is an n-ary prime

hyperideal of H. Therefore
√

0
(m,n)

is an n-ary N-hyperideal of H, by Corollary 3.5. Thus 0 =
√

0
(m,n)

is an
n-ary prime hyperideal of H which means H is an n-ary hyperintegral domain.

⇐= Let H be an n-ary hyperintegral domain. Suppose that I is an n-ary N-hyperideal of H. Then I ⊆
√

0
(m,n)

,

by Theorem 3.3. Since H is an n-ary hyperintegral domain, we get 0 =
√

0
(m,n)

. Hence I = 0 is the only n-ary
N-hyperideal of H.

Let (H1, f1, 11) and (H2, f2, 12) be two commutative Krasner (m,n)-hyperrings such that 1H1 and 1H2 be
scalar identitis of H1 and H2, respectively. Then the (m,n)-hyperring (H1 ×H2, f1 × f2, 11 × 12) is defined by
m-ary hyperoperation f = f1 × f2 and n-ary operation 1 = 11 × 12, as follows:

f1 × f2
(
(x1, y1), · · · , (xm, ym)

)
=
{
(x, y) | x ∈ f1(xm

1 ), y ∈ f2(ym
1 )
}

11 × 12

(
(a1, b1), · · · , (an, bn)

)
=
(
11(an

1), 12(bn
1)
)
,

for all xm
1 , a

n
1 ∈ H1 and ym

1 , b
n
1 ∈ H2 [2].

Theorem 3.13. Let (H1, f1, 11) and (H2, f2, 12) be two commutative Krasner (m,n)-hyperrings such that 1H1 and
1H2 be scalar identitis of H1 and H2, respectively. Then H1 ×H2 has no n-ary N-hyperideals.

Proof. Let I1 and I2 be hyperideals of H1 and H2, respectively, and let I1×I2 be an n-ary N-hyperideal of H1×H2.

It is clear that (1H1 , 0H2 ), (0H1 , 1H2 ), (1H1 , 1H2 ) <
√

0H1×H2

(m,n)
but 11 × 12

(
(1H1 , 0H2 ), (0H1 , 1H2 ), (1H1 , 1H2 )(n−2)

)
∈

I1 × I2. Therefore we obtain (1H1 , 0H2 ) = 11 × 12

(
(1H1 , 0H2 ), (1H1 , 1H2 )(n−1)

)
∈ I1 × I2 and (0H1 , 1H2 ) = 11 ×

12

(
(1H1 , 1H2 ), (0H1 , 1H2 ), (1H1 , 1H2 )(n−2)

)
∈ I1 × I2. This implies that

(1H1 , 1H2 ) = f1 × f2
(
(1H1 , 0H2 ), (0H1 , 1H2 ), (0H1 , 0H2 )(m−2))

)
∈ I1 × I2

which means I1 × I2 = H1 ×H2.

Theorem 3.14. Suppose that (H1, f1, 11) and (H2, f2, 12) are two commutative Krasner (m,n)-hyperrings and h :
H1 −→ H2 is a homomorphism. Then:

(1) If h is a monomorphism and I2 is an n-ary N-hyperideal of H2, then h−1(I2) is an n-ary N-hyperideal of H1.
(2) Let h be an epimorphism and I1 be a hyperideal of H1 with Ker(h) ⊆ I1. If I1 is an n-ary N-hyperideal of H1,

then h(I1) is an n-ary N-hyperideal of H2.

Proof. (1) Let 11(xn
1) ∈ h−1(I2) for xn

1 ∈ H1 such that xi <
√

0H1

(m,n)
for some 1 ≤ i ≤ n. Then we have

h
(
11(xn

1)
)
= 12

(
h(xn

1)
)
∈ I2. Since h is a monomorphism and xi <

√
0H1

(m,n)
, then h(xi) <

√
0H2

(m,n)
. Since I2 is a

N-hyperideal of H2, we get the result that

12

(
h(x1), ..., h(xi−1), 1H2 , h(xi+1), ..., h(xn)

)
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= h
(
11(xi−1

1 , 1H1 , xn
i+1)
)

∈ I2
which follows 11(xi−1

1 , 1H1 , xn
i+1) ∈ h−1(I2). Thus h−1(I2) is an n-ary N-hyperideal of H1.

(2) Let 12(yn
1) ∈ h(I1) for some yn

1 ∈ H2 such that yi <
√

0H2

(m,n)
. Since h is an epimorphism, then there

exist xn
1 ∈ R1 with h(x1) = y1, · · · , h(xn) = yn. Therefore h

(
11(xn

1)
)
= 12

(
h(x1), ..., h(xn)

)
= 12(yn

1) ∈ h(I1).

Since Ker(h) ⊆ I1, then we have 11(xn
1) ∈ I1. Since yi <

√
0H2

(m,n)
, then xi <

√
0H1

(m,n)
. Since I1 is an n-ary

N-hyperideal of R1 and xi <
√

0H1

(m,n)
, we obtain 11(xi−1

1 , 1H1 , xn
i+1) ∈ I1 which means

h
(
11(xi−1

1 , 1H1 , x
n
i+1)
)
= 12

(
h(x1), ..., h(xi−1), 1H2 , h(xi+1), ..., h(xn)

)
= 12(yi−1

1 , 1H2 , yn
i+1) ∈ h(I1)

Consequently, h(I1) is an n-ary N-hyperideal of H2.

Corollary 3.15. Let H′ be a subhyperring of a commutative Krasner (m,n)-hyperring H. If I is an n-ary N-hyperideal
of H such that H′ ⊈ I, then H′ ∩ I is an n-ary N-hyperideal of H′.

Proof. Let us consider the identity map j from H′ into H. We conclude that H′ ∩ I is an n-ary N-hyperideal
of H′, by Theorem 3.14 (2).

Let J be a hyperideal of a commutative Krasner (m,n)-hyperring (H, f , 1). Then the set

H/J =
{

f (ai−1
1 , J, a

m
i+1) | ai−1

1 , a
m
i+1 ∈ H

}
endowed with m-ary hyperoperation f which for all a1m

11 , · · · , a
mm
m1 ∈ H

f
(

f (a1(i−1)
11 , J, a1m

1(i+1)), · · · , f (am(i−1)
m1 , J, amm

m(i+1))
)

= f
(

f (am1
11 ), · · · , f (am(i−1)

1(i−1) ), J, f (am(i+1)
1(i+1) ), · · · , f (amm

1m )
)

and with n-ary hyperoperation g which for all a1m
11 , · · · , a

nm
n1 ∈ H

1
(

f (a1(i−1)
11 , J, a1m

1(i+1)), · · · , f (an(i−1)
n1 , J, anm

n(i+1))
)

= f
(
1(an1

11), · · · , 1(an(i−1)
1(i−1)), J, 1(a

n(i+1)
1(i+1)), · · · , f (anm

1m)
)

construct a commutative Krasner (m,n)-hyperring, and (H/J, f , 1) is said to be the quotient Krasner (m,n)-
hyperring of H by J [1].

Now, we determine when the hyperideal I/J is n-ary N-hyperideal in H/J.

Theorem 3.16. Let I and J be two hyperideals of a commutative Krasner (m,n)-hyperring H with J ⊆ I. If I is an
n-ary N-hyperideal of H, then I/J is an n-ary N-hyperideal of H/I.

Proof. Consider the projection map of H of J, that is, θ : H −→ H/J, defined by a −→ f (a, I, 0(m−2)). By using
Theorem 3.14 (2), we are done.

Theorem 3.17. Let I and J be two hyperideals of a commutative Krasner (m,n)-hyperring H with J ⊆ I. If I/J is an
n-ary N-hyperideal of H/J with J ⊆

√
0H

(m,n)
, then I is an n-ary N-hyperideal of H.

Proof. Let 1(xn
1) ∈ I for xn

1 ∈ H such that xi <
√

0H
(m,n)

for some 1 ≤ i ≤ n. Then we get

1
(

f (x1, J, 0
(m−2)
H ), · · · , f (xn, J, 0

(m−2)
H )

)
= f
(
1(xn

1), J, 0(m−2)
H/J

)
∈ I/J.
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Note that f (xi, J, 0
(m−2)
H ) <

√
0H/J

(m,n)
. Since I/J is an n-ary N-hyperideal of H/J and f (xi, J, 0

(m−2)
H ) <

√
0H/J

(m,n)
,

we get the result that

1
(

f (x1, J, 0
(m−2)
H ), · · · , f (xi−1, J, 0

(m−2)
H ), 1H/J, f (xi+1, J, 0

(m−2)
H ),

· · · , f (xn, J, 0
(m−2)
H )

)
∈ I/J

which implies f
(
1(xi−1

1 , 1H, xn
i+1), J, 0(m−2)

H/J

)
∈ I/J. Therefore 1(xi−1

1 , 1H, xn
i+1) ∈ I. Thus I is an n-ary N-hyperideal

of H.

Using Theorem 3.3 and Theorem 3.17, we have the next corollary.

Corollary 3.18. Let I and J be two hyperideals of a commutative Krasner (m,n)-hyperring H with J ⊆ I. If I/J is an
n-ary N-hyperideal of H/J such that J is an n-ary N-hyperideal of H, then I is an n-ary N-hyperideal of H.

Proof. The proof follows from Theorem 3.3 and Theorem 3.17.

4. n-ary δ-N-hyperideals

Recall from [3] that a function δ is a hyperideal expansion of a commutative Krasner (m,n)-hyperring H
if it assigns to each hyperideal I of H a hyperideal δ(I) of H such that I ⊆ δ(I) and if I ⊆ J for any hyperideals
I, J of H, then δ(I) ⊆ δ(J). For instance, δ0(I) = I, δ1(I) =

√
I(m,n) and δH(I) = H for all hyperideals I of H are

hyperideal expansions of H. Moreover, δq(I/J) = δ(I)/J for expansion function δ of H and for all hyperideals
I of H containing hyperideal J is an hyperideal expansion of H. By using a hyperideal expansion δ of H, we
present the following definition.

Definition 4.1. Assume that δ is a hyperideal expansion of a commutative Krasner (m,n)-hyperring H. A proper

hyperideal I of H is said to be an n-ary δ-N-hyperideal if 1(xn
1) ∈ I for xn

1 ∈ H and xi <
√

0
(m,n)

for some 1 ≤ i ≤ n
imply that 1(xi−1

1 , 1H, xn
i+1) ∈ δ(I).

Example 4.2. Assume that Z12 =
{
0, 1, 2, 3, · · · , 11

}
is the set of all congruence classes of integers modulo 12

and Z⋆12 =
{
1, 5, 7, 11

}
is multiplicative subgroup of units Z12. Construct H as Z12/Z⋆12. Then we have H ={

0̄, 1̄, 2̄, 3̄, 4̄, 6̄
}

in which 0̄ =
{
0
}
, 1̄ =

{
1, 5, 7, 11

}
, 2̄ = 1̄0 =

{
2, 10
}
, 3̄ = 9̄ =

{
3, 9
}
, 4̄ = 8̄ =

{
4, 8
}
, 6̄ =

{
6
}
. Consider

Krasner hyperring (H,⊞, ◦) that for all x̄, ȳ ∈ H, x̄ ◦ ȳ = xy and 2-ary hyperoperation ⊞ is defined as follows

⊞ 0̄ 1̄ 2̄ 3̄ 4̄ 6̄
0̄ 0̄ 1̄ 2̄ 3̄ 4̄ 6̄
1̄ 1̄ 0̄, 2̄, ¯̄4, 6̄ 1̄, 3̄ 2̄, 4̄ 1̄, 3̄ 1̄
2̄ 2̄ 1̄, 3̄ 0̄, 4̄ 1̄ 2̄, 6̄ 4̄
3̄ 3̄ 2̄, 4̄ 1̄ 0̄, 6̄ 1̄ 3̄
4̄ 4̄ 1̄, 3̄ 2̄, 6̄ 1̄ 0̄, 4̄ 2̄
6̄ 6̄ 1̄ 4̄ 3̄ 2̄ 0̄

In the hyperring,
√

0
(2,2)
=
{
0̄, 6̄
}

and I =
{
0̄, 2̄, 4̄, 6̄

}
is a 2-ary δ1-N-hyperring.

Theorem 4.3. Let I be an n-ary δ-primary hyperideal of a commutative Krasner (m,n)-hyperring H such that

I ⊆
√

0
(m,n)

. Then I is an n-ary δ-N-hyperideal of H.

Proof. Let 1(xn
1) ∈ I for xn

1 ∈ H such that xi <
√

0
(m,n)

for some 1 ≤ i ≤ n. By the assumption, xi < I. Since I is an
n-ary δ-primary hyperideal of H, we conclude that 1(xi−1

1 , 1H, xn
i+1) ∈ δ(I). Thus I is an n-ary δ-N-hyperideal

of H.
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The next Theorem shows that the inverse of Theorem 4.3 is true if I =
√

0
(m,n)

.

Theorem 4.4. Let
√

0
(m,n)

be an n-ary δ-N-hyperideal of a commutative Krasner (m,n)-hyperring H. Then
√

0
(m,n)

is an n-ary δ-primary hyperideal of H.

Proof. Let 1(xn
1) ∈

√
0

(m,n)
for some xn

1 ∈ H such that xi <
√

0
(m,n)

for some 1 ≤ i ≤ n. Since
√

0
(m,n)

is an n-ary

δ-N-hyperideal of H, we get the result that 1(xi−1
1 , 1H, xn

i+1) ∈ δ(
√

0
(m,n)

), as needed.

Theorem 4.5. Let I be a proper hyperideal of a commutative Krasner (m,n)-hyperring H. Then the followings are
equivalent:

(1) I is an n-ary δ-N-hyperideal of H.

(2) Ex ⊆
√

0
(m,n)

for all x < δ(I) where Ex =
{
y ∈ H | 1(x, y, 1(n−2)

H ) ∈ I
}
.

(3) If 1(x, In−1
1 ) ⊆ I for some hyperideals In−1

1 of H and for some x ∈ H implies x ∈
√

0
(m,n)

or 1(1H, In−1
1 ) ⊆ δ(I).

(4) If 1(In
1 ) ⊆ I for some hyperideals In−1

1 of H, then Ii ∩ (H−
√

0
(m,n)

) = ∅ for some 1 ≤ i ≤ n or 1(Ii−1
1 , 1H, In

i+1) ⊆
δ(I).

Proof. (1) =⇒ (2) Assume that y ∈ Ex. So 1(y, x, 1(n−2)
H ) ∈ I. Since I is an n-ary δ-N-hyperideal of H and

x = 1(x, 1(n−2)
H ) < δ(I), we obtain y ∈

√
0

(m,n)
which means Ex ⊆

√
0

(m,n)
.

(2) =⇒ (3) Let 1(x, In−1
1 ) ⊆ I for some hyperideals In−1

1 of H and for some x ∈ H such that 1(1H, In−1
1 ) ⊈ δ(I).

Hence there exist a1 ∈ I1, · · · , an−1 ∈ In−1 such that 1(1H, an−1
1 ) < δ(I). Since x ∈ E1(1H ,an−1

1 ), we conclude that

x ∈
√

0
(m,n)

.
(3) =⇒ (4) Let 1(In

1 ) ⊆ I for some hyperideals In−1
1 of H such that Ii ∩ (H −

√
0

(m,n)
) , ∅ for some 1 ≤ i ≤ n.

Therefore we have some x ∈ Ii ∩ (H −
√

0
(m,n)

). Since 1(Ii−1
1 , x, I

n
i+1) ⊆ I, we get 1(Ii−1

1 , 1H, In
i+1) ⊆ δ(I), as

x <
√

0
(m,n)

.
(4) =⇒ (1) Suppose that 1(xn

1) ∈ I for xn
1 ∈ H such that xi <

√
0

(m,n)
for some 1 ≤ i ≤ n. Let us consider

I1 = ⟨x1⟩, · · · , In = ⟨xn⟩. Since Ii ∩ (H −
√

0
(m,n)

) , ∅, we conclude that 1(xi−1
1 , 1H, xn

i+1) ∈ 1(Ii−1
1 , 1H, In

i+1) ⊆ δ(I).
Thus I is an n-ary δ-N-hyperideal of H.

Theorem 4.6. Let I be an n-ary δ-N-hyperideal of a commutative Krasner (m,n)-hyperring H and let x < δ(I). If
Fx ⊆ δ(Ex) where Fx =

{
y ∈ H | 1(y, x, 1(n−2)

H ) ∈ δ(I)
}

and Ex =
{
y ∈ H | 1(y, x, 1(n−2)

H ) ∈ I
}
, then Ex is an n-ary

δ-N-hyperideal of H.

Proof. Let 1(xn
1) ∈ Ex for xn

1 ∈ H such that xi <
√

0
(m,n)

for some 1 ≤ i ≤ n. Hence 1
(
1(xn

1), x, 1(n−2)
H

)
=

1
(
xi, 1(xi−1

1 , x, x
n
i+1), 1(n−2)

H

)
∈ I. Since I is an n-ary δ-N-hyperideal of H, we have 1(xi−1

1 , x, x
n
i+1) ∈ δ(I). Hence

1(xi−1
1 , 1H, xn

i+1) ∈ Fx ⊆ δ(Ex), as needed.

Recall that a hyperideal expansion δ of H is intersection preserving if it satisfies δ(I1 ∩ I2) = δ(I1) ∩ δ(I2)
for each hyperideals I1 and I2 of a commutative Krasner (m,n)-hyperring H. For instance, the hyperideal
expansion δ1 of H is intersection preserving.

Theorem 4.7. Let In
1 be some n-ary δ-N-hyperideals of a Krasner (m,n)-hyperring H and let the hyperideal expansion

δ of H be intersection preserving. Then
⋂n

i=1 Ii is an n-ary δ-N-hyperideal of H.

Proof. Put I =
⋂n

i=1 Ii. Suppose that 1(xn
1) ∈ I for xn

1 ∈ H with 1(xi−1
1 , 1H, xn

i+1) < δ(I). Since the hyperideal
expansion δ of H is intersection preserving, then there exists 1 ≤ t ≤ n with 1(xi−1

1 , 1H, xn
i+1) < δ(It). As It ia an

n-ary δ-N-hyperideal of H, we have xi ∈
√

0
(m,n)

. Therefore I =
⋂n

i=1 Ii is an n-ary δ-N-hyperideal of H.
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Theorem 4.8. Suppose that I1, I2 and I3 are proper hyperideals of a commutative Krasner (m,n)-hyperring H with
I1 ⊆ I2 ⊆ I3 and δ(I1) = δ(I3). If I3 is an n-ary δ-N-hyperideal of H, then I2 is an n-ary δ-N-hyperideal of H.

Proof. Let 1(xn
1) ∈ I2 for some xn

1 ∈ H such that xi <
√

0
(m,n)

. Since I3 is an n-ary δ-N-hyperideal of H
and I2 ⊆ I3, then we conclude that 1(xi−1

1 , 1H, xn
i+1) ∈ δ(I3). Then we get 1(xi−1

1 , 1H, xn
i+1) ∈ δ(I1). Therefore

1(xi−1
1 , 1H, xn

i+1) ∈ δ(I2), as I1 ⊆ I2. Thus I2 is an n-ary δ-N-hyperideal of H.

Theorem 4.9. Suppose that I is a proper hyperideal of a commutative Krasner (m,n)-hyperring H such that δ(I) is
an n-ary N-hyperideal of H. Then I is an n-ary δ-N-hyperideal of H.

Proof. Let δ(I) be an n-ary N-hyperideal of H. Let 1(xn
1) ∈ I for xn

1 ∈ H with xi <
√

0
(m,n)

for some 1 ≤ i ≤ n.
Since I ⊆ δ(I) and δ(I) is an n-ary N-hyperideal of H, then 1(xi−1

1 , 1H, xn
i+1) ∈ δ(I). It follows that I is an n-ary

δ-N-hyperideal of H.

The inverse of the previous theorem is true if δ = δ1. See the next Theorem.

Theorem 4.10. If I is an n-ary δ1-N-hyperideal of a commutative Krasner (m,n)-hyperring H, then δ1(I) is an n-ary
N-hyperideal of H.

Proof. Let 1(xn
1) ∈ δ1(I) for xn

1 ∈ H such that xi <
√

0
(m,n)

. It implies that there exists t ∈ N such that if t ≤ n,

then 1
(
1(xn

1)(t), 1(n−t)
H

)
∈ I. Therefore we get

1
(
x(t)

i , 1(x
i−1
i , 1H, xn

i+1)(t), 1(n−2t)
H

)
= 1
(
x(t)

i , 1(x
i−1
i , 1H, xn

i+1)(t), 1(1(n)
R ), 1(n−2t−1)

H

)
= 1
(
1(x(t)

i , 1
(n−t)
H ), 1(xi−1

i , 1H, xn
i+1)(t), 1(n−t−1)

H

)
⊆ I.

Since I is an n-ary δ1-N-hyperideal of H and1(x(t)
i , 1

(n−t)) <
√

0
(m,n)

, we get the result that1
(
1(xi−1

i , 1H, xn
i+1)(t), 1(n−t)

H

)
∈

δ1(I) and so 1(xi−1
i , 1H, xn

i+1) ∈ δ1(I). It follows that δ1(I) is an n-ary N-hyperideal of H. By using a similar
argument, one can easily complete the proof where t = l(n − 1) + 1.

Theorem 4.11. Suppose that
√

0
(m,n)

is the only maximal hyperideal of a commutative Krasner (m,n)-hyperring H.
Then for all a ∈ H, ⟨a⟩ is an n-ary hyperideal of H.

Proof. Assume that
√

0
(m,n)

is the only maximal hyperideal of a commutative Krasner (m,n)-hyperring H.
Let a ∈ H and 1(an

1) ∈ ⟨a⟩ for an
1 ∈ H such that ai < ⟨a⟩ for some 1 ≤ i ≤ n. From ai < ⟨a⟩, it follows that ai is an

invertible element. Then we have 1(ai−1
1 , 1H, an

i+1) ∈ ⟨a⟩ ⊆ δ
(
⟨a⟩
)

which means that ⟨a⟩ is an n-ary hyperideal
of H.

Theorem 4.12. Let I be a hyperideal of a commutative Krasner (m,n)-hyperring H and δ be a a hyperideal expansion

of H such that δ
(
δ(I)
)
= δ(I). If I is an n-ary δ-N-hyperideal of H and x <

√
0

(m,n)
, then δ(Ex) = δ(I) where

Ex =
{
y ∈ H | 1(y, x, 1(n−2)

H ) ∈ I
}
.

Proof. Assume that I is an n-ary δ-N-hyperideal of H and x <
√

0
(m,n)

. Let y ∈ Ex. This means 1(y, x, 1(n−2)
H ) ∈ I.

Since I is an n-ary hyperideal of H and x <
√

0
(m,n)

, we get y = (y, 1(n−1)) ∈ δ(I) which implies Ex ⊆ δ(I) and
so δ(Ex) ⊆ δ

(
δ(I)
)
. By the assumpption we have δ(Ex) ⊆ δ(I). On the other hand, we have I ⊆ Ex and so

δ(I) ⊆ δ(Ex). Consequently, δ(Ex) ⊆ δ(I).
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Theorem 4.13. Suppose that I is a maximal n-ary δ-N-hyperideal of a commutative Krasner (m,n)-hyperring H
and x < δ(I). If Fx ⊆ δ(Ex) where Fx =

{
y ∈ H | 1(y, x, 1(n−2)

H ) ∈ δ(I)
}

and Ex =
{
y ∈ H | 1(y, x, 1(n−2)

H ) ∈ I
}
, then

I =
√

0
(m,n)

is an n-ary prime hyperideal of H.

Proof. Let I be a maximal n-ary δ-N-hyperideal of H. Assume that 1(an
1) ∈ I for an

1 ∈ H such that ai < I
for some 1 ≤ i ≤ n. Then, by Theorem 4.6, Ex is an n-ary δ-N-hyperideal of H. Therefore Ex = I by the
maximality of I. Thus we have 1(ai−1

1 1H, an
i+1) ∈ I. Since I is a maximal n-ary δ-N-hyperideal of H, we can

continue the process and so get a j ∈ I for some 1 ≤ j ≤ n which implies I is an n-ary prime hyperideal

of H. This means that
√

0
(m,n)
⊆ I. Now, suppose that I ⊈

√
0

(m,n)
. Then there exist some x ∈ I such that

x <
√

0
(m,n)

. Since 1(x, 1(n−1)
H ) ∈ I and I is an n-ary δ-N-hyperideal of H, then we get the result that 1(1(n)

H ) ∈ I

which is a contradiction. Then we conclude that I =
√

0
(m,n)

.

Theorem 4.14. Let γ and δ be two hyperideal expansions of a commutative Krasner (m,n)-hyperring H. If I is an
n-ary γ-N-hyperideal of H and γ(J) ⊆ δ(J) for all hyperideals J of H, then I is an n-ary δ-N-hyperideal of H. Moreover,
if δ(I) is an n-ary γ-N-hyperideal of H, then I is an n-ary γ ◦ δ-N-hyperideal of H.

Proof. The proof of the first assertion is straightforward. For the second assertion, suppose that 1(xn
1) ∈ I

for xn
1 ∈ H such that xi <

√
0

(m,n)
. Therefore we get 1(xn

1) ∈ δ(I), as I ⊆ δ(I). By the assumption, we conclude

that 1(xi−1
1 , 1H, xn

i+1) ∈ γ
(
δ(I)
)
= γ ◦ δ(I) which means I is an n-ary γ ◦ δ-N-hyperideal of H.

Assume that (H1, f1, 11) and (H2, f2, 12) are two commutative Krasner (m,n)-hyperrings and h : H1 −→ H2
a hyperring homomorphism. Let δ and γ be two hyperideal expansions of H1 and H2, respectively. Recall
from [3] that h is a δγ-homomorphism if δ

(
h−1(I2)

)
= h−1

(
γ(I2)
)

for the hyperideal I2 of H2. Note that

γ
(
h(I1)
)
= h
(
δ(I1)
)

for δγ-epimorphism h and for hyperideal I1 of H1 such that Ker(h) ⊆ I1.
For instance, suppose that (H1, f1, 11) and (H2, f2, 12) are two Krasner (m,n)-hyperrings. If δ1 of H1 and γ1
of H2 are the hyperideal expansions defined in Example 3.2 of [3], then all homomorphism h : H1 −→ H2 is
a δ1γ1-homomorphism.

Theorem 4.15. Let δ and γ be two hyperideal expansions of commutative Krasner (m,n)-hyperrings (H1, f1, 11) and
(H2, f2, 12), respectively, and let h : H1 −→ H2 be a δγ-homomorphism. Then the followings hold :

(1) If I2 is an n-ary γ-N-hyperideal of H2 and h is a monomorphism, then h−1(I2) is an n-ary δ-N-hyperideal of
H1.

(2) If h is an epimorphism and I1 is an n-ary δ-N-hyperideal of H1 containing Ker(h), then h(I1) is an n-ary
γ-N-hyperideal of H2.

Proof. (1) Let 11(xn
1) ∈ h−1(I2) for xn

1 ∈ H1. It follows that 12

(
h(x1), · · · , h(xn)

)
= h
(
11(xn

1)
)
∈ I2. Since I2 is an

n-ary γ-N-hyperideal of H2, then h(xi) ∈
√

0H2

(m,n)
for some 1 ≤ i ≤ n or

12

(
h(x1), ..., h(xi−1), 1H2 , h(xi+1), ..., h(xn)

)
= h
(
11(xi−1

1 , 1H1 , xn
i+1)
)

∈ γ(I2).

In the first possibility, since Ker(h) =
{
0H1

}
, we obtain xi ∈

√
0H1

(m,n)
. In the second possibility, we get the

result that 11(xi−1
1 , 1H1 , xn

i+1) ∈ h−1
(
γ(I2)
)
= δ
(
h−1(I2)

)
. Consequently, h−1(I2) is a δ-N-hyperideal of H1.

(2) Assume that 12(yn
1) ∈ h(I1) for yn

1 ∈ H2 with yi <
√

0H2

(m,n)
for some 1 ≤ i ≤ n. Then there exist xn

1 ∈ H1

such that h(x1) = y1, · · · , h(xn) = yn as h is an epimorphism. Therefor h
(
11(xn

1)) = 12(h(x1), · · · , h(xn)
)
=
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12(yn
1) ∈ h(I1).

Since I1 contains Ker(h), we have 11(xn
1) ∈ I1. Since yi <

√
0H2

(m,n)
, then xi <

√
0H1

(m,n)
. Since I1 is a

δ-N-hyperideal of H1 and xi <
√

0H1

(m,n)
, it follows that 11(xi−1

1 , 1H1 , xn
i+1) ∈ δ(I1) which implies

h
(
11(xi−1

1 , 1H1 , x
n
i+1)
)
= 12

(
h(x1), ..., h(xi−1), 1H2 , h(xi+1), ..., h(xn)

)
= 12(yi−1

1 , 1H2 , yn
i+1)

∈ h
(
δ(I1)
)
.

By the assumption, we have h
(
δ(I1)
)
= γ
(
h(I1)
)
. So 12(yi−1

1 , 1H2 , yn
i+1) ∈ γ

(
h(I1)
)
. Hence h(I1) is an n-ary

γ-N-hyperideal of H2.

Corollary 4.16. Suppose that I and J are two hyperideals of a commutative Krasner (m,n)-hyperring H with J ⊆ I.
If I is an n-ary δ-N-hyperideal of H, then I/J is an n-ary δq-J-hyperideal of H/J.

Proof. The claim follows by using Theorem 4.15 (2) and by a similar argument to that of 4.18.

The next theorem shows that for an n-ary δ-N-hyperideal I of H if δ(
√

I
(m,n)

) contains
√
δ(I)

(m,n)
, then

√
I

(m,n)

is an n-ary δ-N-hyperideal of H.

Theorem 4.17. Suppose that I is an n-ary δ-N-hyperideal of a commutative Krasner (m,n)-hyperring H with√
δ(I)

(m,n)
⊆ δ(
√

I
(m,n)

). Then
√

I
(m,n)

is an n-ary δ-N-hyperideal of H.

Proof. Assume that 1(xn
1) ∈

√
I

(m,n)
for xn

1 ∈ H with xi <
√

0
(m,n)

for some 1 ≤ i ≤ n. Then there exists t ∈ N

such that if t ≤ n implies that 1
(
1(xn

1)(t), 1(n−t)
H

)
∈ I. Then we get the result that

1
(
x(t)

i , 1(x
i−1
1 , 1H, xn

i+1)(t), 1(n−2t)
H

)
= 1
(
1(x(t)

i , 1
(n−t)
H ), 1(xi−1

1 , 1H, xn
i+1)(t),

1(n−t−1)
H

)
⊆ I.

Since 1(x(t)
i , 1

(n−t)) <
√

0
(m,n)

and I is an n-ary δ-N-hyperideal of H, then we have 1
(
1(xi−1

1 , 1H, xn
i+1)(t), 1(n−t)

H

)
∈

δ(I). It follows that 1(xi−1
1 , 1R, xn

i+1) ∈
√
δ(I)

(m,n)
. Since

√
δ(I)

(m,n)
⊆ δ(
√

I
(m,n)

), then 1(xi−1
1 , 1H, xn

i+1) ∈ δ(
√

I
(m,n)

),

as needed. A similar argument will show that if t = l(n − 1) + 1, then
√

I
(m,n)

is an n-ary δ-N-hyperideal of
H.

Recall from [1] that a non-empty subset S of a Krasner (m,n)-hyperring H is said to be an n-ary multiplicative,
if 1(tn

1) ∈ S for t1, · · · , tn ∈ S. The notion of Krasner (m,n)-hyperring of fractions was introduced in [4].
Assume that δ is a hyperideal expansion of a commutative Krasner (m,n)-hyperring H and S is an n-ary
multiplicative subset of H with 1 ∈ S. Then δS is a hyperideal expansion of S−1H with δS(S−1I) = S−1

(
δ(I)
)
.

Theorem 4.18. Suppose that S is an n-ary multiplicative subset of a commutative Krasner (m,n)-hyperring H with
1 ∈ S. If I is an n-ary δ-N-hyperideal of H and I ∩ S = ∅, then S−1I is an n-ary δS-N-hyperideal of S−1H.

Proof. Let I be an n-ary δ-N-hyperideal of H. Assume that G( x1
s1
, ..., xn

sn
) ∈ S−1I for x1

s1
, ..., xn

sn
∈ S−1H such

that xi
si
<
√

0S−1H
(m,n)

for some 1 ≤ i ≤ n. Hence
1(xn

1 )
1(sn

1 ) ∈ S−1I. This means that there exists t ∈ S such that

1
(
t, 1(xn

1), 1(n−2)
H

)
∈ I and then 1

(
xi, 1(xi−1

1 , t, x
n
i+1), 1(n−2)

H

)
∈ I. Since xi <

√
0

(m,n)
and I is an n-ary δ-N-hyperideal

of H, then we get the result that 1(xi−1
1 , t, x

n
i+1) ∈ δ(I). Therefore G

(
x1
s1
, · · · , xi−1

si−1
, 1H

1H
, xi+1

si+1
, · · · , xn

sn

)
=
1(xi−1

1 ,1H ,xn
i+1)

1(si−1
1 ,1H ,sn

i+1) =

1(xi−1
1 ,t,x

n
i+1)

1(si−1
1 ,t,s

n
i+1) ∈ S−1

(
δ(I)
)
= δS

(
S−1(I)

)
. Consequently, S−1I is an n-ary δS-N-hyperideal of S−1H.
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5. (k, n)-absorbing δ-N-hyperideals

In his paper [14], Tamekkante et al. introduced a generalization of n-ideals of commutative rings, which
they defined as (2,n)-ideals. In this section, we generalize this concept for hyperrings by using the notion
given in previous section.

Definition 5.1. Given a hyperideal expansion δ, a proper hyperideal I of a commutative Krasner (m,n)-hyperring

H is called (k,n)-absorbing N-hyperideal if 1(akn−k+1
1 ) ∈ I for akn−k+1

1 ∈ H implies that 1(a(k−1)n−k+2
1 ) ∈

√
0

(m,n)
or a

1-product of (k − 1)n − k + 2 of a,i s except 1(a(k−1)n−k+2
1 ) is in δ(I).

Example 5.2. If we continue with Example 4.2 and use its notation, then I =
{
0, 3, 6

}
is a (2, 2)-absorbing δ1-N-

hyperring of Z12/Z⋆12.

Theorem 5.3. Let I be a (k,n)-absorbing N-hyperideal of a commutative Krasner (m,n)-hyperring H. Then
√

I
(m,n)

is a (k,n)-absorbing δ-N-hyperideal.

Proof. Assume that 1(akn−k+1
1 ) ∈

√
I

(m,n)
for akn−k+1

1 ∈ H. We presume none of the 1-products of (k− 1)n− k+ 2

of the a,is other than 1(a(k−1)n−k+2
1 ) are in δ(

√
I

(m,n)
). Since 1(akn−k+1

1 ) ∈
√

I
(m,n)

, then for some t ∈ N we

have for t ≤ n, 1
(
1(akn−k+1

1 )(t), 1(n−t)
H

)
∈ I or for t > n with t = l(n − 1) + 1, 1(l)

(
1(akn−k+1

1 )(t)
)
∈ I. In the first

possibilty, since all 1-products of the a,is other than 1(a(k−1)n−k+2
1 ) are not in δ(

√
I

(m,n)
), then they are not in I.

Since I is a (k,n)-absorbing J-hyperideal of H, then we have 1
(
1(x(k−1)n−k+2)

1 )(l), 1(n−t)
H

)
∈
√

0
(m,n)

which means

1(x(k−1)n−k+2
1 ) ∈

√
0

(m,n)
. In the second possibilty, the claim follows by using a similar argument.

Theorem 5.4. Suppose that I is a hyperideal of a commutative Krasner (m,n)-hyperring H such that δ(I) is a
(2,n)-absorbing N-hyperideal. Then I is a (3,n)-absorbing δ-N-hyperideal of H.

Proof. Let 1(a3n−2
1 ) ∈ I for a3n−2

1 ∈ H but 1(a2n−1
1 ) <

√
0

(m,n)
. This means that 1

(
1(a1, a3n−2

2n ), a2n−1
2

)
∈ I ⊆ δ(I). Since

δ(I) is a (2,n)-absorbing N-hyperideal of H and 1(a2n−1
2 ) <

√
0

(m,n)
, then we get the result that 1(an

1 , a
3n−2
2n ) ∈ δ(I)

or 1(a1, a2n−1
n+1 , a

3n−2
2n ) ∈ δ(I). Consequently, I is a (3,n)-absorbing δ-N-hyperideal of H.

Theorem 5.5. Assume that I is a hyperideal of a commutative Krasner (m,n)-hyperring H such that δ(I) is a
(k + 1,n)-absorbing δ-N-hyperideal of H. Then I is a (k + 1,n)-absorbing δ-N-hyperideal of H.

Proof. Suppose that1(a(k+1)n−(k+1)+1
1 ) ∈ I for a(k+1)n−(k+1)+1

1 ∈ H such that1(akn−k+1
1 ) <

√
0

(m,n)
. So1(a(k+1)n−(k+1)+1

1 ) =

1
(
akn−k

1 , 1(a(k+1)n−(k+1)+1
kn−k+1 )

)
∈ I ⊆ δ(I). Since δ(I) is a (k+ 1,n)-absorbing δ-N-hyperideal and 1(akn−k+1

1 ) <
√

0
(m,n)

,

we get the result that 1
(
ai−1

1 , a
kn−k
i+1 , 1(a

(k+1)n−(k+1)+1
kn−k+1 )

)
∈ δ(I) for 1 ≤ i ≤ n. Thus I is a (k + 1,n)-absorbing

δ-N-hyperideal of H.

Theorem 5.6. Let I be a δ-N-hyperideal of a commutative Krasner (m,n)-hyperring H. Then I is a (2,n)-absorbing
δ-N-hyperideal of H.

Proof. Let 1(a2n−1
1 ) ∈ I for a2n−1

1 ∈ H. Since I is a δ-N-hyperideal of H, we get the result that 1(an
1) ∈

√
0

(m,n)

or 1(a2n−1
n+1 ) ∈ δ(I). Therefore we have 1(ai, x2n−1

n+1 ) ∈ δ(I), for 1 ≤ i ≤ n, as δ(I) is a hyperideal of H. Thus I is
(2,n)-absorbing δ-primary.

Next, we determine all integers k > n.

Theorem 5.7. Let I is a (k,n)-absorbing δ-N-hyperideal of a commutative Krasner (m,n)-hyperring H. Then I is
(s,n)-absorbing δ-N-hyperideal for s > n.
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Proof. Let 1(a(k+1)n−(k+1)+1
1 ) ∈ I for a(k+1)n−(k+1)+1

1 ∈ H. Put 1(an+2
1 ) = a. Since I is (k,n)-absorbing δ-N-

hyperideal, then we obtain 1(a, · · · , a(k+1)n−(k+1)+1) ∈
√

0
(m,n)

or a 1-product of kn − k + 1 of the a,is except
1(a, · · · , a(k+1)n−(k+1)+1) is in δ(I). This implies that 1(ai, a

(k+1)n−(k+1)+1
n+3 ) ∈ δ(I) for all 1 ≤ i ≤ n+ 2 which implies I

is a (k + 1,n)-absorbing δ-N-hyperideal. Consequently, I is an (s,n)-absorbing δ-N-hyperideal for s > n.

6. n-ary S-N-hyperideals

In this section, we study the notion of n-ary S-N-hyperideals of a Krasner (m,n)-hyperring H, where
S is an n-ary multiplicative subset of H. The following definition constitutes the S-version of the class of
N-hyperideals.

Definition 6.1. Assume that S is an n-ary multiplicative subset of a commutative Krasner (m,n)-hyperring H. A
hyperideal I of R with I ∩ S = ∅ is said to be an n-ary S-N-hyperideal if there exists an s ∈ S such that for all xn

1 ∈ H

if 1(xn
1) ∈ I with 1(s, xi, 1

(n−2)
H ) <

√
0

(m,n)
for some 1 ≤ i ≤ n, then 1(xi−1

1 , s, x
n
i+1) ∈ I. This element s in S is called an

S-element of I.

Now we give a charactrization of an n-ary S-N-hyperideal.

Theorem 6.2. Assume that S is an n-ary multiplicative subset of a commutative Krasner (m,n)-hyperring H and I
is a hyperideal of H disjoint with S. Then I is an n-ary S-N-hyperideal of H if and only if there exists s ∈ S, for all

hyperideals In
1 of H, if 1(In

1 ) ⊆ I, then 1(s, Ii, 1(n−1)) ⊆
√

0
(m,n)

for some 1 ≤ i ≤ n or 1(Ii−1
1 , s, I

n
i+1) ⊆ I.

Proof. =⇒ Let I be an n-ary S-N-hyperideal of H. Suppose that 1(In
1 ) ∈ I for some hyperideals In

1 of H such

that 1(s, Ii, 1
(n−2)
H ) ⊈

√
0

(m,n)
and 1(Ii−1

1 , s, I
n
i+1) ⊈ I for all s ∈ S. Then there exists ai ∈ Ii for each 1 ≤ i ≤ n such

that 1(an
1) ∈ I but 1(s, ai, 1

(n−2)
H ) <

√
0

(m,n)
and 1(ai−1

1 , s, a
n
i+1) < I, a contradiction.

⇐= Suppose that 1(xn
1) ∈ I for some xn

1 ∈ H. Then 1
(
⟨x1⟩, · · · , ⟨xn⟩

)
⊆ I. By the assumption, we are done.

Theorem 6.3. Let S be an n-ary multiplicative subset of a commutative Krasner (m,n)-hyperring H. If In
1 are some

n-ary S-N-hyperideals of H, then
⋂n

t=1 It is an n-ary S-N-hyperideal of H.

Proof. Let In
1 be n-ary S-N-hyperideals of H. Suppose that for each 1 ≤ t ≤ n, there exists st ∈ S such that if

1(an
1) ∈ It for some an

1 ∈ H, then 1(st, ai, 1
(n−2)
H ) ∈

√
0

(m,n)
or 1(ai−1

1 , st, an
i+1) ∈ It. Now, assume that 1(an

1) ∈
⋂n

t=1 It
for some an

1 ∈ H. This means that 1(an
1) ∈ It for each 1 ≤ t ≤ n. Put Πn

t=1st ∈ S. Then we get the result thet

1(s, ai, 1
(n−2)
H ) ∈

√
0

(m,n)
or 1(ai−1

1 , s, a
n
i+1) ∈

⋂n
t=1 It, as claimed.

Theorem 6.4. Assume that S is an n-ary multiplicative subset of a commutative Krasner (m,n)-hyperring H and I
is a hyperideal of H such that I ∩ S = ∅. If Es =

{
y ∈ H | 1(y, s, 1(n−2)

H ) ∈ I
}

is an n-ary N-hyperideal of H for some
s ∈ S, then I is an n-ary S-N-hyperideal of H.

Proof. Let Es be an n-ary N-hyperideal of H for some s ∈ S. Suppose that 1(xn
1) ∈ I for xn

1 ∈ H such that

1(s, xi, 1
(n−2)
H ) <

√
0

(m,n)
for some 1 ≤ i ≤ n. Therefore 1

(
1(xn

1), s, 1(n−2)
H )

)
∈ I and so 1(xn

1) ∈ Es. Since Es is an

n-ary N-hyperideal of H for some s ∈ S and xi <
√

0
(m,n)

, we get the result that 1(xi−1
1 , 1H, xn

i+1) ∈ Es which

means 1
(
1(xi−1

1 , 1H, xn
i+1), s, 1(n−2)

H

)
= 1(xi−1

1 , s, x
n
i+1) ∈ I. Consequently, I is an n-ary S-N-hyperideal of H.

In the following theorem, we determine a condition on I when the converse holds.

Theorem 6.5. Assume that S is an n-ary multiplicative subset of a commutative Krasner (m,n)-hyperring H and I is

a hyperideal of H such that I∩S = ∅. If I is an n-ary S-N-hyperideal of H and Fs =
{
y ∈ H | 1(y, s, 1(n−2)

H ) ∈
√

0
(m,n)}

is an n-ary N-hyperideal for an S-element s ∈ S of I, then Es =
{
y ∈ H | 1(y, s, 1(n−2)

H ) ∈ I
}

is an n-ary N-hyperideal of
H.
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Proof. Let 1(xn
1) ∈ Es for xn

1 ∈ H. Then we have 1
(
1(xn

1), s, 1(n−2)
H

)
∈ I and so 1

(
xi, 1(xi−1

1 , s, x
n
i+1), 1(n−2)

H

)
∈

I. Since I is an n-ary S-N-hyperideal of H, we get the result that either 1(s, xi, 1
(n−2)
H ) ∈

√
0

(m,n)
or

1
(
1(xi−1

1 , s, x
n
i+1), s, 1(n−2)

H

)
= 1
(
1(xi−1

1 , 1H, xn
i+1), 1(s(2), 1(n−2)

H ), 1(n−2)
H

)
∈ I. In the former case, by Theorem 3.3

we conclude that Fs =
√

0
(m,n)

, as Fs is an n-ary N-hyperideal. Therefore xi ∈
√

0
(m,n)

. In the second case,

suppose that 1(xi−1
1 , s, x

n
i+1) < I. Then we obtain 1

(
1(s(2, 1(n−2)

H ), s, 1(n−2)
H

)
= 1(s(3), 1(n−3)

H ) ∈
√

0
(m,n)

. It implies

that s ∈
√

0
(m,n)

, a contradiction. Then we conclude that 1(xi−1
1 , s, x

n
i+1) ∈ I which means 1(xi−1

1 , 1H, xn
i+1) ∈ Es

which implies Es is an n-ary N-hyperideal of H.

Theorem 6.6. Let S ⊆ S′ be two n-ary multiplicative subsets of a commutative Krasner (m,n)-hyperring H and I be
an n-ary S′-N-hyperideal of H. If for each s ∈ S′, there is an element s′ ∈ S′ with 1(s, s′, 1(n−2)

H ) ∈ S, then I is an n-ary
S-N-hyperideal of H.

Proof. Let 1(an
1) ∈ I. Since I is an n-ary S′-N-hyperideal of H, we have either 1(s, ai, 1

(n−2)
H ) ∈

√
0

(m,n)
or

1(ai−1
1 , s, a

n
i+1) ∈ I for a S′-element s ∈ S′ of I. By the assumption, there exists s′ ∈ S′ such that s′′ =

1(s, s′, 1(n−2)
H ) ∈ S. From 1(s, ai, 1

(n−2)
H ) ∈

√
0

(m,n)
, it follows that 1

(
s′, 1(s, ai, 1

(n−2)
H ), 1(n−2)

H

)
∈
√

0
(m,n)

. Also,

from 1(ai−1
1 , s, a

n
i+1) ∈ I it follows that 1

(
s′, 1(ai−1

1 , s, a
n
i+1), 1(n−2)

H

)
∈ I. Consequently, we get the result that

1(s′′, ai, 1
(n−2)
H ) ∈

√
0

(m,n)
or 1(ai−1

1 , s
′′, an

i+1) ∈ I, as needed.

Theorem 6.7. Let S ⊆ S′ be two n-ary multiplicative subsets of a commutative Krasner (m,n)-hyperring H such
that 1H ∈ S and I be a hyperideal of H with I ∩ S′ = ∅ . If I is an n-ary S-N-hyperideal of H, then S′−1I is an n-ary
S′−1S-N-hyperideal of S′−1H and S′−1I ∩H = Es where Es =

{
y ∈ H | 1(y, s, 1(n−2)) ∈ I

}
and s is an S-element of I.

Proof. Let I be an n-ary S-N-hyperideal of H. It is easy to see that S′−1S∩S′−1I = ∅ . Assume that s
1H
∈ S′−1S for

some S-element s of I. Let G( a1
s1
, · · · , an

sn
) ∈ S′−1I for an

1 ∈ H and sn
1 ∈ S′ such that G( s

1H
, ai

si
, 1H

1H

(n−2)
) <
√

0−1
S′ H

(m,n)

for some 1 ≤ i ≤ n. So
1(an

1 )
1(sn

1 ) ∈ S′−1I which follows there exists t ∈ S′ such that 1(t, 1(an
1), 1(n−2)

H ) ∈ I and

then 1
(
ai, 1(ai−1

1 , t, a
n
i+1), 1(n−2)

H

)
∈ I. Since I is an n-ary S-N-hyperideal of H and 1(s, ai, 1

(n−2)
H ) <

√
0H

(m,n)
,

we get the result that 1
(
s, 1(ai−1

1 , t, a
n
i+1), 1(n−2)

H

)
∈ I which means G

(
a1
s1
, · · · , ai−1

si−1
, s

1H
, ai+1

si+1
, · · · , an

sn

)
=
1(ai−1

1 ,s,a
n
i+1)

1(si−1
1 ,1H ,sn

i+1) =

1(s,1(ai−1
1 ,t,a

n
i+1),1(n−2))

1(si−1
1 ,t,s

n
i+1) ∈ S′−1I. Thus S′−1I is an n-ary S′−1S-N-hyperideal of S′−1H. For the second assertion,

suppose that x ∈ S′−1I ∩ H. Then there exists a ∈ I such that x
1H
= a

t for some t ∈ S′. Therefore there exists

u ∈ S′ such that 1(u, a, 1(n−2)
H ) ∈ I. Since I is an n-ary S-N-hyperideal of H, then there exists s ∈ S ⊆ S′ such

that we have 1(s,u, 1(n−2)
H ) ∈

√
0H

(m,n)
or 1(s, a, 1(n−2)

H ) ∈ I. In the former case, we have a contradiction since

S′ ∩
√

0H
(m,n)

= ∅. Hence 1(s, a, 1(n−2)
H ) ∈ I which implies a ∈ Es which means S′−1I ∩ H ⊆ Es. Since the

inclusion Es ⊆ S′−1I ∩H holds, we get S′−1I ∩H = Es.

We have the following corollary of Theorem 6.7.

Corollary 6.8. Let S be an n-ary multiplicative subset of a commutative Krasner (m,n)-hyperring H such that 1H ∈ S
and I be a hyperideal of H with I ∩ S = ∅ . If I is an n-ary S-N-hyperideal of H, then S−1I is an n-ary N-hyperideal
of S−1H and S−1I ∩H = Es where Es =

{
y ∈ H | 1(y, s, 1(n−2)) ∈ I

}
and s is an S-element of I.

Proof. Let I be an n-ary S-N-hyperideal of H. Then, by Theorem 6.7, S−1I is an n-ary S−1S-N-hyperideal of
S−1H. Suppose that G( a1

s1
, · · · , an

sn
) ∈ S−1I for an

1 ∈ H and sn
1 ∈ S. There there exist an S−1S-element u

v of S−1I

such that G( u
v ,

ai
si
, 1H

1H

(n−2)
) ∈
√

0S−1H
(m,n)

or G
(

a1
s1
, · · · , ai−1

si−1
, u

v ,
ai+1
si+1
, · · · , an

sn

)
∈ S−1I for some 1 ≤ i ≤ n. Then we get
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the result that S−1I is an n-ary N-hyperideal of S−1H, as u
v is invertible. For the second assertion, we use a

similar argument to that of Theorem 6.7.

From Theorem 6.7 and Corollary 6.8, we can conclude the following.

Theorem 6.9. Let S be an n-ary multiplicative subset of a commutative Krasner (m,n)-hyperring H such that 1H ∈ S
and I be a hyperideal of H with I ∩ S = ∅. Then I is an n-ary S-N-hyperideal of H if and only if S−1I is an n-ary

N-hyperideal of S−1H and S−1I ∩ H = Es and S−1
√

0
(m,n)
∩ H = Fs′ where Es =

{
y ∈ H | 1(y, s, 1(n−2)) ∈ I

}
and

Fs′ =
{
z ∈ H | 1(z, s′, 1(n−2)) ∈

√
0

(m,n)}
for some s, s′ ∈ S.

Proof. =⇒ Let I be an n-ary S-N-hyperideal of H. Then, by Corollary 6.8 we conclude that S−1I is an n-ary
N-hyperideal of S−1H. The rest of the claim follows by a similar argument to that of Theorem 6.7.

⇐= Assume that S−1I is an n-ary N-hyperideal of S−1H, S−1I ∩H = Es and S−1
√

0
(m,n)
∩H = Fs′ where Es ={

y ∈ H | 1(y, s, 1(n−2)
H ) ∈ I

}
and Fs′ =

{
z ∈ H | 1(z, s′, 1(n−2)

H ) ∈
√

0
(m,n)}

for some s, s′ ∈ S. Put 1(s, s′, 1(n−2)
H ) = s′′.

Assume that 1(an
1) ∈ I for an

1 ∈ H. This implies that G( a1
1H
, · · · , an

1H
) ∈ S−1I. Then we get the result that either

ai
1H
∈

√

S−10
(m,n)
= S−1

√
0

(m,n)
or G
(

a1
1H
, · · · , ai−1

1H
, 1H

1H
, ai+1

1H
, · · · , an

1H

)
∈ S−1I for some 1 ≤ i ≤ n. In the first case, we

get 1(t, ai, 1
(n−2)
H ) ∈

√
0

(m,n)
for some t ∈ S which implies ai =

1(t,ai,1
(n−2)
H )

1(t,1(n−1)
H )

∈ S−1
√

0
(m,n)
∩H = Fs′ . This means that

1(s′, ai, 1
(n−2)
H ) ∈

√
0

(m,n)
. Then we obtain 1(s′′, ai, 1

(n−2)
H ) = 1

(
1(s, s′, 1(n−2)

H ), ai, 1
(n−2)
H

)
∈
√

0
(m,n)

. In the second

case, we get 1(ai−1
1 , t

′, an
i+1) ∈ I for some t′ ∈ S. This implies that 1(ai−1

1 , 1H, an
i+1) =

1(ai−1
1 ,t

′,an
i+1)

1(t′,1(n−1)
H )

∈ S−1I ∩ H = Es.

Then we conclude that 1(ai−1
1 , s

′′, an
i+1) = 1

(
ai−1

1 , 1(s, s
′, 1(n−2)

H ), an
i+1

)
∈ I. Consequently, I is an n-ary S-N-

hyperideal of H.

Theorem 6.10. Let S1 and S2 be n-ary multiplicative subsets of commutative Krasner (m,n)-hyperrings (H1, f1, 11)
and (H2, f2, 12), respectively, and let 1H1 and 1H2 be scalar identitis of H1 and H2, respectively. Then the following
statements hold.

(1) I1 ×H2 is an n-ary S-N-hyperideal of H1 ×H2 where S = S1 × S2 if and only if I1 is an n-ary S1-N-hyperideal
of H1 and S2 ∩

√
0H2 , ∅.

(2) H1 × I2 is an n-ary S-N-hyperideal of H1 ×H2 where S = S1 × S2 if and only if I2 is an n-ary S2-N-hyperideal
of H2 and S1 ∩

√
0H1 , ∅.

Proof. =⇒ Let I1×H2 be an n-ary S-N-hyperideal of H1×H2 where S = S1×S2 and let (s1, s2) be an S-element
of I1 ×H2. Suppose that 11(an

1) ∈ I1 for some an
1 ∈ H1. So we consider the following cases.

Case 1: Let 11(ai−1
1 , s1, an

i+1) < I1. Then we get

11 × 12

(
(a1, 1H2 ), · · · , (an, 1H2 )

)
∈ I1 ×H2

but

11 × 12

(
(a1, 1H2 ), · · · , (ai−1, 1H2 ), (s1, s2), (ai+1, 1H2 ), · · · (an, 1H2 )

)
< I1 ×H2.

Then we get the result that 11 × 12

(
(s1, s2), (ai, 1H2 ), (1H1 , 1H2 )(n−2)

)
∈
√

0H1×H2 =
√

0H1 ×
√

0H2 , as I1 ×H2 is an

n-ary S-N-hyperideal of H1 ×H2. Hence 1(s1, ai, 1
(n−2)
H1

) ∈
√

0H1 and s2 ∈ S2 ∩
√

0H2 , as needed.
Case 2: In this case we suppose that 11(ai−1

1 , s1, an
i+1) ∈ I1. Then we have

11 × 12

(
(a1, 1H2 ), · · · , (ai−1, 1H2 ), (s1, s2), (ai+1, 1H2 ), · · · (an, 1H2 )

)
∈ I1 ×H2.
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Since 11 × 12

(
(s1, s2)(2), (1H1 , 1H2 )(n−2)

)
< I1 ×H2, we get the result that

11 × 12

(
(a1, 1H2 ), · · · , (ai−1, 1H2 ), (s1, s2), (ai+1, 1H2 ), · · · (an, 1H2 )

)
∈
√

0H1×H2

=
√

0H1 ×
√

0H2 .
⇐= Let I1 be an n-ary S1-N-hyperideal of H1 and let s1 be an S1-element of I1 and s2 ∈ S2 ∩

√
0H2 . Now,

assume that 11 × 12

(
(a1, b1), · · · , (an, bn)

)
∈ I1 × H2 for some an

1 ∈ H1 and bn
1 ∈ H2. Then we have 11(an

1) ∈ I1.

Hence we get either 11(s1, ai, 1
(n−2)
H ) ∈

√
0H1 for some 1 ≤ i ≤ n or 1(ai−1

1 , s1, an
i+1) ∈ I1. Therefore 11 ×

12

(
(s1, 1H2 ), (ai, bi), (1H1 , 1H2 )(n−2)

)
∈
√

0H1×
√

0H2 or11×12

(
(a1, b1), · · · , (ai−1, bi−1), (s1, s2), (ai+1, bi+1), · · · , (an, bn)

)
∈

I1 ×H2. So (s1, s2) is an S-element of I1 ×H2.
(2) The proof is similar to (1).

Theorem 6.11. Let S1 and S2 be n-ary multiplicative subsets of commutative Krasner (m,n)-hyperrings (H1, f1, 11)
and (H2, f2, 12), respectively, and let I1 and I2 be proper hyperideals of H1 and H2, respectively. If one of the following
cases holds,

(1)
√

0H2

(m,n)
∩ S2 , ∅ and I1 is an n-ary S1-N-hyperideal of H1.

(2)
√

0H1

(m,n)
∩ S1 , ∅ and I2 is an n-ary S2-N-hyperideal of H2.

then I1 × I2 is an n-ary S-N-hyperideal of H1 ×H2 where S = S1 × S2.

Proof. Let
√

0H2

(m,n)
∩ S2 , ∅ and I1 be an n-ary S1-N-hyperideal of H1. So 0H2 ∈ I2 ∩ S2 , ∅ and I1 ∩ S1 = ∅.

Suppose that 11 × 12

(
(a1, b1), · · · , (an, bn)

)
∈ I1 × I2 for some an

1 ∈ H1 and bn
1 ∈ H2 and s1 is an S1-element of I1.

Hence we have 11(an
1) ∈ I1. Then either 11(s1, ai, 1

(n−2)
H1

) ∈
√

0H1

(m,n)
for some 1 ≤ i ≤ n or 11(ai−1

1 , s1, an
i+1) ∈ I1.

So

11 × 12

(
(s1, 0), (ai, bi), (1H1 , 1H2 )(n−2)

)
∈
√

0H1

(m,n)
×
√

0H2

(m,n)

or

11 × 12

(
(a1, b1), · · · , (ai−1, bi−1), (s1, 0), (ai+1, bi+1), · · · , (an, bn)

)
∈ I1 × I2.

Thus (s1, 0H2 ) is an S-element of I1 × I2.
Also, if Case 2 holds, then by using a similar argument, we can show that I1 × I2 is an n-ary S-N-hyperideal
of H1 ×H2 where S = S1 × S2.

7. Conclusion

In this paper, our purpose was to introduce and study the concept of n-ary N-hyperideals and some of it,s
generalizations such as n-ary δ-N-hyperideals, (k,n)-absorbing δ-N-hyperideals and n-ary S-N-hyperideals
over a commutative Krasner (m,n)-hyperring. Some results and characterizations with a number of sup-
porting examples were given to explain the structures of these concepts. For instance, we indicated that

a commutative Krasner (m,n)-hyperring H admits an n-ary N-hyperideal if and only if
√

0
(m,n)

is an n-ary
prime hyperideal of H. We proved that if δ(I) is an n-ary N-hyperideal of H, then I is an n-ary δ-N-hyperideal
of H. We showed that the inverse of the theorem is true if δ = δ1. We characterized n-ary N-hyperideals
and also n-ary S-N-hyperideals of cartesian product of Krasner (m,n)-hyperrings. As future work, we will
study n-ary N-subhypermodules.
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