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Statistical convergence in intuitionistic fuzzy G-metric spaces with
order n

Vakeel A. Khan?, SK Ashadul Rahaman?

?Department of Mathematics, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India

Abstract. Mohiudddine and Alotaibi [25] introduced the notion of intuitionistic generalized fuzzy metric
space to extend the generalized fuzzy metric space. Choi et al.[Structure for g-Metric Spaces and Related
Fixed Point Theorems, arXiv preprint arXiv:1804.03651, (2018)] has recently proposed the notion of g—metric
as a generalized notion of the distance function. Employing the idea in this paper, we first put forth
the notion of Intuitionistic fuzzy G-metric space with order n as a generalization of intuitionistic fuzzy
metric space. We describe some properties of this novel space and construct examples based on it. Then,
we propose the concepts of statistical convergence, statistical limit points and statistical cluster points of

sequences in this space and establish theorems in their regard by providing appropriate examples in support
of them.

1. Introduction and preliminaries

The area of fuzzy theory has grown substantially in the fields of both pure and applied mathematics. In
1965, Zadeh [34] proposed the theory of fuzzy sets, which is a generalization of crisp set theory. Based on
this theory, several applications can be found in [3, 4, 7, 8, 13, 16]. In 1975, to generalize the usual notion
of metric, Kramosil and Michdlek [24] put forward the notion of fuzzy metric space. Also, a number of
authors [14, 20, 23] presented the notion of fuzzy metric in various ways. George and Veeramani [19] and
Deng [11] modified the definition of fuzzy metric space introduced by Kramosil and Michdlek [24] and
Grabiec [20], respectively, and defined a Hausdorff topology on the modified fuzzy metric space. On the
other hand, Atanassov [5] introduced an extended notion of fuzzy sets, referred to as intuitionistic fuzzy
sets. Over the years, various authors [6, 10, 11] have made significant progress toward understanding
intuitionistic fuzzy sets. As an extension of the fuzzy metric space proposed by George and Veeramani [19],
Park [30] developed the concept of intuitionistic fuzzy metric space. Alaca et al. [2] proposed the same as
an extension of fuzzy metric space due to Kramosil and Michélek [24].

Across many scientific disciplines, the distance function is a fundamental concept. Despite the current
large and complicated data sets, it is necessary to generalize the definition of a distance function. At first,
it was Gahler[18] who developed the notion of 2—metric space as a nonlinear generalization of ordinary
metric space, having the area of a triangle in R? as an example. Later, it was found that there is no easy
relation between the 2-metric space and the ordinary metric space. Ha et al.[21] have demonstrated that
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while an ordinary metric is a continuous function of its variables, a 2-metric need not be. This led Dhage
[12] to develop a new type of generalized metric space known as D—metric space. It was later verified in [28]
that the topological structure of D-metric spaces was incorrect. Finally, to overcome this problem, Mustafa
and Sims [29] introduced a more appropriate generalized metric space called G-metric space, having the
perimeter of a triangle in IR? as the best possible example. This new approach put an impressive impact on
the field of metric space. Motivated by this, authors in [33] and [25] developed the ideas of the generalized
fuzzy metric space and intuitionistic generalized fuzzy metric space, respectively. In the same way, Zhou et
al.[35] proposed the probabilistic version of G-metric space known as Menger probabilistic G-metric space.

On the other hand, Choi et al.[9] generalized the idea of the ordinary distance between two points by
taking n + 1 points in place of two points and introduced the notion of g-metric with order n. By utilizing
this distance notion, Abazari [1] introduced the Menger probabilistic g-metric space as the generalization
of Menger probabilistic G-metric space, and explored the statistical convergence with respect to the strong
topology by employing the concept of n—dimensional asymptotic density of subsets of IN. In recent times,
there have been significant applications of statistical convergence, as evidenced in [22, 26, 27]. These
developments prompt the exploration of generalizing the concept of the g-metric to intuitionistic fuzzy
settings. Moreover, within this generalized framework, one may fairly question the validity of the concept
of statistical convergence by incorporating the n—dimensional asymptotic density.

Motivated by the above, in this paper, we develop an idea of the intuitionistic fuzzy version of g-metric
space and we call it intuitionistic fuzzy G-metric space with order n that will also be a generalization of the
intuitionistic generalized fuzzy metric space introduced in [25]. Employing the notion of n—dimensional
asymptotic density [1], we also explore the statistical convergence and statistical Cauchy criteria of se-
quences in the above well-defined space. Moreover, we discuss the statistical limit points and the statistical
cluster points of sequences in this space.

Now let us review a few definitions and notations we will use in this paper. Throughout this study, R*
stands for the set of non-negative real numbers.

Definition 1.1. ([29]) Let X be an arbitrary non-empty set and G : ¥> — R* be a mapping. Then (%, G) is
called G-metric space if, for all x, y, z, w € X, the following conditions hold:

(G-1) G(x,y,z)=0ifx=y =2z
(G-2) G(x,x,y)>0ifx#y,
(G-3) G(x,x,y) <G(x,y,z)if y # z,
(G-4) G(x,y,2) = G(y,zx) = G(x,z,y) = ... (symmetry in all three variables),
(G-5) G(x,y,z) < G(x,w,w) + G(w, Y, z).
In such a case, the function G is known as a G-metric on the set X.

Example 1.2. Suppose (¥,d) is an ordinary metric space. Define G : ¥*> — R* by

1
G(x,y,2) = E(d(x, y) +d(y,z) +d(x, z)).
Then (X, G) is a G-metric space.

Remark 1.3. Let (X, G) be a G-metric space. Define dg : ¥ — RR* by

do(x,y) = %(G(x, y,9) + G, x,)).

Then (X, dg) is an ordinary metric space.
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Definition 1.4. ([31]) A function = : [0,1] X [0, 1] — [0, 1] is said to be continuous t-norm if, (1) * is commu-
tative and associative, (2) n =n+1forany0<n <1, (3) foreach0 <1y, m, 3,4 <1, if ;1 < mzand gy < 1y
then 11 * 12 < 13 * 14, and (4) * is continuous.

A function ¢ : [0,1] X [0,1] — [0, 1] is said to be continuous t—conorm if, (1’) ¢ is commutative and
associative, (2’) n = n+0forany 0 <1 < 1, (3’') foreach 0 < 1,12, 13, M2 < 1, if 71 < 13 and 1 < 174 then
N1 ¢ M2 < 13 © 14, and (4') ¢ is continuous.

Example 1.5. Let 1,1 € [0, 1]. Then
(1) 11 %12 = min{m, 12} and g * 12 = 1 - 12 are continuous f-norms.
(2) 71 012 =max{m, n2} and m ¢ 2 = min{n; + 1, 1} are continuous f—conorms on [0, 1].

Remark 1.6. The notions of f-norms and t—conorm are the axiomatic skeletons used to characterize fuzzy
intersections and unions, respectively.

By utilizing the concepts of continuous t-norms and continuous t—conorms, Park [30] developed the
notion of intuitionistic fuzzy metric space as follows:

Definition 1.7. ([30]) Let X be a non—empty set, * and ¢ be continuous t-norm and continuous t-conorm,
respectively, and M, N be fuzzy sets on X¥2x(0,00). The five—tuple (X, M, N, *, ¢) is called an intuitionistic fuzzy
metric space (in short, [IFM-space) if, for all x, ¥,z € X and p, g > 0, the following conditions hold:

(IF-1) M(x,y,p) +N(x,y,p) <1,

(IF-2) M(x,y,p) >0,

(IF-3) M(x,y,p)=1 < x=y,

(IF-4) M(x, y,p) =M(y, x,p),

(IF-5) M(x,z,p)*M(z,¥,9) <Mx, y,p +9),

(IF-6) M(x,v,.): (0, 00) — (0, 1] is continuous,
(IF-7) N(x,y,p) <1,

(IF-8) N(x,y,p) =0 & x =y,

(IF-9) N(x,y,p) = N(y,x,p)

(IF-10) N(x,z,p) o N(z,y,q9) 2 N(x,y,p +9),
(IF-11) N(x,y,.): (0, 00) — (0, 1] is continuous.
In such a case, the tuple (4, N) is called an intuitionistic fuzzy metric (in short, IFM) on X.

Definition 1.8. ([25]) Let X be a non—empty set, * and ¢ be continuous t-norm and continuous t-conorm,
respectively, and M, N be fuzzy sets on X3 x (0,). The five-tuple (X, M, N, #, o) is called an intuitionistic
generalized fuzzy metric space (in short, IGFM-space) if, for all x, y,z,w € X and p, g > 0, the following
conditions hold:

@ M(x, vy,z,p)+N(x,y,zp) <1,

(b) M(x,x,y,p) >0forx #y,

(c) M(x,x,y,p) 2 M(x,y,z,p) for y # z,
d M, y,zp)=1 & x=y=z,
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(e) M(x,y,z,p) = M(ri(x, y,z),p), where 1 is the permutation function,
) M(x,w,w,p)*Mw,y,z,q9) <M, y,z,p+9),
(g) M(x,y,z,.):(0,00) — [0, 1] is continuous,

(h) M is non—decreasing on (0, o), lim M(x, y,z,p) = 1 and lin(} M(x,y,z,p) =0,
p—oo p—

(i) N(x,x,y,p) <lforx#y,

() N(x,x,y,p) <N(x,y,z,p) fory # z,

k) N(x, y,z,p) =0 & x=y=z

) N(x,v,z,p) = N(n(x, y,2z), p), where 7 is the permutation function,
(m) N(x,w,w,p) o Nw,y,z,q) >N, y,z,p+9),

(n) N(x,v,z,.): (0,00) — [0, 1] a continuous,

(0) N is non-increasing on (0, c0), lim N(x, y, z, p) = 0 and lin% N(x,y,z,p) =1.
p—o p—

The tuple (M, N) is known as an intuitionistic generalized fuzzy metric (in short, IGF-metric) on X.

Definition 1.9. ([9]) Let X be a non-empty set. A function g : X" — R*, where X" = []", X/, is called
g-metric with order n on X if the following conditions hold:

(g1) g(xo,x1,...,x,) =0iff xg = x1 = ... = x,,
(92) g(xo0,x1, ..., Xn) = G(Xr(0), Xr(1), -+ Xn(ny) fOr any permutation  on {0, 1, ..., n},

(93) g(XO/ xl/ s xn) S .’7(]/0/ ]/1/ ey ]/n) for any (x0/ xl/ ey xn)/ (]/0/ ]/1, ey ]/n) € £n+1 Wlth

{xOI xl/ a4 xl’l} —C—- {]/O/ ]/1/ ces }/n}/
(g94) forall xo, x1, ..., X1, Yo, Y1, -, Ym, 2 € Xwithl+m+1=mn,

g(XO, X1y s X1, Z, -~-/Z) + g(yOI Y1, Yms 2, -y Z) = g(XO/ X1, eeer X1, Y0, Y1/ -oe) ynl)'

The tuple (¥, g) is called g—metric space. For n = 1 and n = 2, a g-metric reduces to the ordinary metric
and G-metric, respectively.

Example 1.10. ([9]) Let (X, d) be an ordinary metric space. Define g : X"*1 — R* by

X0, X1, s X ZmaX{X'—X'}
g( 07 ALy eees Vl) 0<i,j<n | i ]l

for all xg, x1, ..., x, € X. Then (¥, g) is a g—metric space.

Definition 1.11. ([9]) A g—metric on X is multiplicity independent, if
g(x0, X1, -0 Xn) = G(Y0, Y1, s Yn)

for all (xo, X1, ..., ), (Yo, Y1, -, Yn) € X1 with {x0, X1, ..., Xu} = {Y0, Y1, s Yu}-

Definition 1.12. ([9]) Let (X, g) be a g—metric space. The g-ball with center at x € X and radius r > 0 is
defined as:

B,(x, 1) = {y eX:g(x,y, ...,y < r}.
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Definition 1.13. ([9]) Let (¥, g) be a g—metric space and (x;) be a sequence in X. Then

(a) (xx) is g—convergent to some x € X if, ¥V £ > 0, 3 K € IN such that

g(xil,xiz, ey xi,l,x) <&, Vi, ... i, = K

(b) (xx) is g—Cauchy if, V £ > 0, 3 K € N such that

g(xio,xil, ey xi”) <&, Vi, ii,..., 1, = K

A g-metric space (¥, g) is complete if every g—Cauchy sequence is g—convergent in X.

2. Intuitionistic fuzzy generalized metric space (IFGM- space)

In this section, by using the concepts of continuous t—norms, continuous t-conorms and intuitionistic
fuzzy sets, we introduce the intuitionistic fuzzy version of g-metric space known as IFGM- as follows:

Definition 2.1. Let X be an arbitrary non-empty set, * and ¢ be continuous t-norm and continuous
t—conorm, respectively, and 9, N be fuzzy sets on X1 x (0,00). The five—tuple (X, 9, N, *, 0) is said to
be an intuitionistic fuzzy generalized metric space ( briefly, [IFGM-space) with order # if, for all p, g € (0, o),
the following conditions hold:

(IFG-1) ‘JJE(xo,xl, ...,xn,p) + il?(xo,xl, ...,xn,p) <1 forall xg, x1,...,x, € X,
(IFG-2) iD?(xo,xo, .y xo,xl,p) > 0 for xg # x1, ¥ xp,x1 € X,

(IFG-3) im(xo,xl, . xn,p) > ‘Jﬁ(yo, Y1, oo yn,p), Y (x0,%1, s Xn), (Yo, Y1, s Yn) € X1 with
{x0, X1, ooy Xnb S {Y0, Y1, oo Y},
(IFG-4) ‘JJE(xo,xl,..., xn,p) =1 &= xg=x1=... =Xy,
(IFG-5) Sﬁ(xo, X1, ey X, p) = Ym(xn(o), Xre(1)s -er xn(n),p) for any permutation 7on {0, 1, ..., n},
(IFG-6) for all xo, X1, ..., X, Yo, Y1, -, Ym, 2 € Xwith I+ m+1=mn,
‘Jﬁ(xo, X1,y X1, 2, 00 2, p) * ‘JJE(yO, Y1, oer Ymr 2o or 2, q) < iUE(xO, X1, eer XL, YO, Y1y oo Y, P+ q),

(IFG-7) S)Ji(xo,xl, ey X, ) : (0, 00) — [0, 1] is a continuous function,

(IFG-8) lim ﬂﬁ(xo,xl, .y xn,p) =1forall xo,x1,...,x, € X,
p—)OO

(IFG-9) m(xo,xo, .y xo,xl,p) < 1forxg#x1,VY x9,%x1 €X,

(IFG-10) ilt(xo,xl, ey xn,p) < 5]2(]/0, Y, ees yn,p), Y (%0, X1, s Xn), (Y0, Y1, s Yn) € X1 with
c

{xO/ xl/'-'/ xn} {]/0/ yll-"/ yﬂ}/

(IFG-11) ‘R(xo,xl,..., xn,p) =0 &= xg=X1 =..=Xy,
(IFG-12) ‘R(xo,xl, .y xn,p) = ‘R(xn(o),xn(l), ...,xn(n),p) for any permutation 7 on {0, 1, ..., n},

(IFG-13) for all xg, x1, ..., X1, Yo, Y1, ..., Ym, 2 € Xwithl+ m+1 =n,
R (X0, X1, ) X1, 2, 0 2, p) o iﬁ(yo, Yisoor YmsZs oo 2, q) 2 ‘ﬁ(xo,xl, s X1, Y0, Y1y ooy Ys P+ q),
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(IFG-14) iIt(xo,xl, ey X, ) : (0, 00) — [0, 1] is a continuous function,

(IFG-15) lim ‘Jt(xo,xl, .y xn,p) =0forall xg,x1,...,x, € X.

p—>oo

Further, we call the tuple (M, M), the intuitionistic fuzzy generalized metric (in short, [IFGM) on X.
In order to avoid any confusion, we refer to the five-tuple (X, i, 9, +, o) as the IFGM-space instead of
IFGM-space with order n.

Example 2.2. Let (X, g) be a g—metric space with order n. For p > 0, define

P
p+ g(XO, X1, ooy X”)

ilJi(xO, X1, ...,xn,p) =

and
g(xo,xl,...,xn)

p+ g(xo, X1, eees xn),
where 1y *12 = 11 -m2 and 11 ¢ 12 = min{n; + 1, 1} for all n1, 1, € [0, 1]. Then (X, M, N, %, ¢) is an [FGM-space.

m(xo,xl, ...,xn,p) =

Proof. We only show that (I, 0) satisfies the conditions (IFG—-6) and (IFG-13) and the rest follows easily.

(IFG-6): Letp, g > 0 and xo, x1, ..., X1, Yo, Y1, -, Ym,z2 € X with [ + m + 1 = n. Then

g(xo,xl, e XL, YO, Y1y oo ym) < g(xo,xl, X1, 2, ...,z) + g(yo, Y, oor Ymsr 2y ...,z). @)
Now
_ P ) q
M(x0, X1.., 31,2, w2, D) * (Y0, Y10 Yo 20 - 2,) = P e, R T——
< Pq
pq + p.g(yo, Y1 Ym 2, ...,z) + q.g(xo,xl.., X1, 2, ...,z)
_ 1
1 + g(yo,y1~;lym,z,...,z) + g(xo,m..;;x;,z,...,z)
< 1
1 + g(yo,y1;'-y£;,,,z,...,z) + g(xo,x;.j:,z,...,z)
p+q

) ptg+ g(yo, Y1 Ym, 2, ...,z) + g(xo,xl..,x,,z, ...,z)'
Therefore using the Equation 1, it follows that
p+q
p+q+ g(xo,x1, s XL, Y0, Y1y oo ym)
= iUE(xo,xl..,xl, Yo, Y1, oo Y, P+ q).

EUE(xO, X1y X1,2Z, 00 Z, p) * 9Ji(y0, Vi YmrZs o Z, q) <

(IFG-13): As above, select p, g, ] and m. Then

g(xo,xl, cr X1, Y0, Y1/ eees ]/m) < g(XO, X1, ., X1,Z, ...,Z) + g(yo, Y1, s Yms 2, ...,Z).
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+ +
P4 21+ Pra .
g(x(]/ xl/ cees xl/ ]/(), ]/1/ b ]/m) g(x()/ xl/ b4 xl/ Z/ cees Z) + !](]/O/ ]/1/ cees ]/m/Z/ cees Z)

= 1+

g(xo,xl,...,xl, Yo, Y1, - ym) < g(XO,Xl,...,Xl,Z,...,Z) + g(yo, Yi,ees ym,Z,...,Z)
p+q+ g(xo, X1 eeer X1, Y0, Y15 eees ]/m) B p+ g(xo, X1, s X1,2, .00y Z) +q+ g(yo, Yi, ey Yms 2, ...,Z)
< g(xo,xl,...,xl,z,...,z) N g(yo,yl,...,ym,z,...,z)

- p+ g(xo,xl, s X1, 2, ey z) q+ g(yo, Yi,eoor Y, Z, ...,z).

-

Therefore, ‘Jt(xo,xl, o XL, YO, Y1y eoes Y P+ q) < ‘Ji(xo,xl, v X1,2,2Z, 00,2, p) + ‘Ji(yo, Yisoor Yms 2,2, s 2, q). Since,
Eft(xo,xl, s XL Y0, Y1, ooy Y, P+ q) <1, we have

iTt(xO, X1 eer X1, YO, Y1y woos Yms P+ q) < min {iﬁ(xo,xl, ey X1,2,2Z, 00y 2, p) + ‘Ji(yo, Y1, eor Ymr 2,2, 02, q), 1}
= ‘Jt(xo,xl, e X1,2,2, 0,2, p) o ER(]/O, Y1y eor Y202, s 2, q).
O

It can also be observed that the above example is also true for 11 #1; = min{n;, 2} and ny 02 = max{n, 72},
¥ 11,172 € [0,1]. Since the above metric space (X, I, 9, %, ¢) is induced by the g-metric, known as standard
IFGM-space.

Definition 2.3. The tuple (M, N) on IFGM-space (X, M, N, +, ¢) is said to be multiplicity independent if, for
every p >0,
iUi(xo,xl, ...,xn,p) = EUE(yO, Yi, oo yn,p)
and
gt(-x()/ xl/ ceey xnr P) = Sn(y()/ yll cer yrl/ p)
hold for all (xo, x1, ..., Xn), (Yo, Y1, -, Yu) € X1 such that {xo, x1, ..., Xu} = Yo, v1, - Yn}-

Example 2.4. Let X be a non—empty set, 1 *m =11 -mand 1 o =11 + 12 — 11 - 12 for all 1,1, € [0,1].
For every xg,x1, ..., X, € X and p > 0, define 9t and 9 by

n( ) 1, fxp=xi=..=x.
X0, X1, vy Xn, P) = p i

n T Otherwise

0, ifxg=x1=..=x,,

‘Jt(xo,xl,...,xmp) = { ﬁ, Otherwise.

Then (X, M, N, *, ) is an IFGM-space such that (9, N) is multiplicity independent.

Remark 2.5. (a) For n =1 and n = 2, the IFGM-space reduces to IFM-space and IGFM-space, respectively,
and the multiplicity independence coincides with symmetries in the respective metrics.

(b) In Definition 2.1, if we allow the conditions (IFG-3) and (IFG-10) for {xo, x1, ..., Xx} € {Y0, Y1, - Yn},
then (9, 9t) becomes multiplicity independent.

Lemma 2.6. Consider (X, M, N, +,0) to be an IFGM-space. Then ‘JJE(xO,xl, ...,xn,p) and ‘Jt(xo,xl,..., xn,p) are
non—decreasing and non—increasing functions with respect to p, respectively, for all xo, x1, ..., X € X.
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Proof. By using (IFG-6) and (IFG-13), we have
‘JJE(xO,xl, e X, P+ q) > 9)'E<x0,xo, ...,xo,p) * 9Ji(xo,x1, ...,xn,q)
>1= iUE(xO,xl, . xn,q)
> EJJE(xO,xl, s X, q)
and
‘Jt(xo,xl, e X, P+ q) < ‘R(xo,xo, ...,xo,p) o ‘ﬁ(xo,xl, s Xy q)
<00 m(x()/ X1y eees Xty Q)
< ‘.R(xo,xl, ...,x,,,q).

Sincep+q>pandp+q >q, wearedone. [J

In the following Remark, we show that from any given IFM-space, one can generate an IFGM-space
under certain restrictions.

Remark 2.7. Let (X, M, N, #, o) to be an IFM—space satisfying lim M(x, y,p) = 1 and lim N(x, y,p) =0,V x,y € X.
p—)OO p—>00
Then (X, M, N, #, ¢) is an [IFGM-space, where

i)ﬁ(xo,xl,...,xn,p) = min {M(xi, x]-,p)} and

0<i,j<n

ﬂt(xo,xl,...,xn,p) = max {N(xi,xj,p)}.

0<i,j<n

Proof. We only verify the conditions (IFG-1), (IFG-6) and (IFG-13). Let p, g > 0 be given.

(IFG-1): Suppose Ni(xg, x1, ..., X, ) = M(xa, x5, p) and N(xg, x1, ..., Xu, p) = N(x,, x5, p) for some a,f,y,6 €
pp p B P p yr X6, P V4
{0,1,...,n},i.e., M(xa, xp,p) < M(x;, xj,p) and N(x,, x5, p) = N(x;, x;,p) for all i, j € {0, 1, ..., n}. Therefore,

iDE(xo,xl, .y xn,p) + ‘Ji(xo,xl, . xn,p) = M(xa,xﬁ,p) + N(x),,xb,p)

< M(x},, Xs5,P) + N(x},, Xs5,P)
<1

(IFG-6): Suppose xo, X1, ..., X, Yo, Y1, ---» Ym,z € X such that [ + m + 1 = n. Then

iDE(xo, X1,y X1,2, 000y 2, p) * EIR(]/O, Y1, s Ymr Zseor Z, q)

= Oré}}]rsll {M(xi, xj,p), M(xi, z, p)} * nin, {M(yr, Ys, ), M(yy, 2, q)}

< min {M(xi,xj,p)*l"l(yr, Ys, 9), M(xi, x, p) * M(yr, 2, 9), M(xi, 2, p) * M(y1, ys,q),M(xi,z,P)*M(yr,z,q)}-

0<i,j<1
0<r,s<m

By using the condition (3) of Definition 1.4 and the condition (IF-5), we obtain M(x;, z,p) * M(y,,z,q) <
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M(xXi, Y, p + q), Mxi, X5, ) * M(Yr, Ys, q) < M(xi, x5, p +q) and M(xi, 2, p) * M(Yr, Ys, 9) < M(r, s, p +9)- Consequently,
SJI(xO, X1, ey X1, 2, o0y 2, p) * ‘JJE(yO, Y1, eeor Yms 2y oe0r 2, q)

< min {M(xi/ xj/ P + Q)z M(xi/ le p) * M(%, z, q)r M(yrr ]/s/ P + q)r M(xi/ yr/ P + Q)}

0<i,j<1
0<r,s<m

< min {M(xi, Xj, P+, MY, Ys, p + q), Mxi, Yy, p + q)}

T o0<ij<1
0<r,s<m

= EIR(XO, xl/ cey xl/ yO/ yl/ cey yml P + Q)
(IFG-13):

%(xo, X1, ey X1, 2, 00y Z, p) o ‘ﬁ(yo, Y1, oo YmrZs oo Z, q)

= max {N(xi/ xj/ p)/ N(xi/ Z/ p)} ¢ max {N(]/r/ yS/ Q)/ N(]/r/ Z/ Q)}
0<r,s<m

0<i, j<I

> max {N(xi,xj,p) o Ny, Ys, 9), N(xi, xj, p) © N(yy, 2, 9), N(xi, 2, p) © N(yr, Ys, 9), N(xi, 2, p) © N(y1, 2, q)}.

0<i,j<1
0<r,s<m

Again, in the similar way by using the condition (3") of the Definition 1.4 and the condition (IF-10), we
have

iTi(xo, X1, ey X1, 2, 0 Z, p) o SJE(]/O, Y1, oo Ymr 2y eor Z, q)

Z max {N(xi/ xj/ p + Q)/ N(]/r/ ]/s/P + q)/ N(xi/ yr/p + Q)}

0<i,j<1
0<r,s<m

= ER(XO, xl/ cees xl/ yO/ ]/1, cees ym/p + Q}
Hence the result follows. [
We can see that (M, N) is multiplicity independent in this case.

Remark 2.8. Consider (X, 9,9, %, ¢) to be an IFGM-space. Then (X, M, N, , ¢) is an IFM-space, where (M, N)
is defined by

M(x, y,p) = min {93?(0(0,0(1, ...,an,p) rai€{x,yli=0,1, ...,n},

N(x, y,p) = max {iﬁ(ao,al, ...,a,,,p) rai€ix,yl,i=0,1, ...,n}.

Proof. We only show that the tuple (M, N) satisfies the conditions (IF-5) and (IF-10) and the rest follows
easily. Letp,qg > 0 and x,y,z € X. Then

(IF-5): M(x,y,p + q) = min {Sﬁ(ao,al,...,an,p + q) cap € {x,y)i =0, 1,...,n} and M(x,z,p) *M(z,y,9) =

min {EJJE(ﬁO,ﬁl, ...,ﬁn,p) 1Bi€ix,z},i=0, 1,...,n} * min {E)Jt(yo, yl,...,yn,q) 1yi€lzyhi=0,1,.., n}. We need

to show that M(x, y,p + q) > M(x,z,p) * M(z, v, q). If x = y, the inequality hold. Suppose x # y. Then, there is
00,01, ..., On € {x, y} in such a way that

M(x,y,p +q) = min {iUi(aO,al, e Oy, P+ q) caiefx,y),i=0,1,.., n}

= M(S0, 61, ., Ou, p + q)-
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Hence, ‘JJE((SO, 01,0, 0n,p + q) < ﬁR(ao, A1y Ay, P+ q), Y ap,ai,...,an € {x,y}. Suppose | is cardinality of
the set {i 1 0; = x,1 € {0, 1,...,n}}. It is evident that 1 < [ < n. Without loss of generality, let us assume
60 = 61 =..= 61 = x and 6l+1 =..= 6,, =Y. Then
M(x, y, p +q) = DS, 61, ., O, p + )
= EIJE( XX, e X, Y, Yy Y, P+ q).
~———
I-times

Now, by (IFG-6), we have

im( X%, X, Y, Y, Y, Pt q) > EITE( X, X,y X,2,2, ..., 2, p) * EIR( 2,200 2, Y, Yy s q).
N N —_—

I-times I-times I-times
Also,

Sﬁ(x, X, X,2,2, ...,z,p) > min {‘m(ﬁo,ﬁl, ...,ﬁn,p) tBielx,z),i=0,1, ...,n}
_——

I-times
=M(x,z,p),

and

‘JJE(Z,Z,...,Z, Yo Y, y,q) > min {9ﬁ(y0,y1,..., yn,q) tyi€fz,yl,i=0, 1,...,n}

N
I-times

=Mz, y,q).
Using the monotonicity of *, we obtain
EUE( X, X, .0, X,2,2,...,2, p) * EIJE( 2,2, 02, Y, Yy Y, q) > M(x, z,p) * Mz, Y, 9).
L ——
I-times I-times

= M(x,y,p+9) =M, zp)*Mzy,9q).
(IF-10): N(x,y,p + q) = max {‘Ji(ao, A1, ey O, P+ q) cai € {x,yli=01, ...,n} and N(x,z,p) o N(z,y,9) =

max{%(ﬁo,ﬁl,...,ﬁn,p) tBi € {x,z),i = O,l,...,n} S max{ﬁt(yo,yl,...,yn,q> cyi € {z,y}i =0, 1,...,n}. We

show that N(x, y,p +¢q) < N(x,z,p) © N(ZI Y q). If x = y, the proof is trivial. Let x # y. Then, there exists
10, M, - M € {x, y} so that

N(x,y,p +¢q) = max {‘ﬁ(ao, A1, ey O, P+ q) rai€{x,y,i=0,1, ...,n}

— m(UO/ My M, P+ q)

ie., 9?(1]0, My eeor s P+ q) > ‘ﬁ(ao,al, ey Oy, P+ q), Y ap, a1, ...,y € {x,y}. Suppose m is cardinality of the set
{i : 1 =x,i € {0, 1,...,n}}, so 1 < m < n. Without loss of generality, assume 79 = 171 = ... = 1,, = x and
Nm+1 = ... =1, = y. Then

N, y,p+¢q) = ER(T]O, My e M, P+ q)
= ER( XX X, Y, Y, Y, P+ q).
N

m-times
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Now, by (IFG-13), we have

9?( X% e X, Y, Y, Y, P+ q) < ‘JE( X, X, .0, X,2,2, ..., 2, p) o ‘J‘L( Z,Z, s Z, Y, Yy er Y, q).
———— ~—_—— ~—
m-times m—-times m-times
Also,

‘R( X, X,y 00y X, 2,2, e, z,p) < max {‘ﬁ(ﬁo,ﬁl,...,ﬁn,p) :Bielxz},i=0,1,.., n}
—

m—-times
=N(x,z,p),

and

iTt( 2,2 Z, Y Yy o y,q) < max {‘R(yo,yl,..., yn,q) 1yi€lzyli=0, 1,...,n}

——
m—-times

=N(z, y,q).

Using the monotonicity of ¢, we obtain

SJt( X, Xy X,2,2, 0y Z, p) o ER( Z,Z, s Z, Y Yy Yy q) < N(x,z,p) o N(z, Y, 9).
S—— S——
m-times m-times
= N(x,y,p+q) <Nx,zp) Nz y,9)

This completes the proof of the theorem. [

Remark 2.9. If (9, 9N) is multiplicity independent on an IFGM-space (X, M, N, x, ¢), then (X, M, N, +, 0) ia an
IFM-space, where
M(x,y,p) = SD?( XX, s X, Y, Yy Yy p)
————
I-times
and
N(x,y,p) = ER( XX, s X Y Yy Y, p)
—_———
m-times

forany 1 <m,n < n.
Proof. The result is the direct conclusion of the Remark 2.8. [

Proposition 2.10. Consider (X,9t, 0N, , ¢) to be an IFGM-space, where n+1n = nand non = n forall n € [0,1].
Then the following hold:

(a) ‘JJE( X, X, ..., X, 2, ...,z,p) > ‘JJE(x, Z, .02, L) and ‘Jt( X, X, ..., X, 2, ...,z,p) < iR(x, Z, .2, i)
——— 21_1 —_— 21—1
I-times I-times

by x,x,...x,z,....,z,p]| =M z,x,...,x,i and V| x,x,...,x,2,...,2,0| <Nz, x, ..., x, P .
p p
N—— 2}’!—] N——
I-times I-times
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Proof. (a): By using the condition (IFG-6), we get

*JJE( X, X, .0,%,2, ...,z,p) > im( X, X, 00Xy 2,000y 2, E) *SUE(x,z, w0 Z, E)

I-times (-1)-times

R CEREE )L CEREt)
> M oz, =) e M5, 2,0z, = | M, 2,2, ).
= (&/,_JC/,Z, z > * X,z zZ 22 * X,z zZ 5

(-2)-times

Since n+n =nforalln € [0,1], we have

SDE( X, X, .00,%,2, ...,z,p) > EDE( X, X, 000Xy 2,000y Z, E) * SIJE(x, Z, .2, E)
S—— N—— 2

I-times (I-2)-times

> ﬂﬁ( X, Xy ey Xy Zy ey 2, %) * EDI(x, Z, ey 2, E) * E)Ji(x,z, vy Z, —)
—_— 2 2

(-3)-times

> EJJE( X, X, .0, X, Z,.00,2, %) * 93?(x, 2.2, E)
H/—/ 2

(1-3)-times

By using the condition (IFG-13), we get

(I-2)-times
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Since 1 o 7 = i for all € [0, 1], we have

ER( X, %X, ., X,2, ...,z,p) < ER( X, X, 000Xy 2,y 2, Ez) o ift(x, Z, .2, %)
I-times (-2)-times
< YR( X, X, .0y X, Z, 002, —3) o iR(x, 2.2, —3) o E)?(x,z, ey Z, %)
— 2
(-3)-times
> ER( X, X, .0y X, 2,002, %) * ‘Jt(x, Z,..0 2, %)
— 2
(-3)-times
p p
< i]?(x,z, w0 Z, F) o ‘Jt(x, Z, .2, F)

=Nlx,z, ..,z % .
(b): By using part (a), we have

Mt(x,x,...,x,z,...,z,p):93?( 2,2, .02, x,...,x,p)
— e ————

I-times (n+1-1-times

> ‘m(z, X, ..., X, L)
znfl

and

O

The following is a description of the implementation of a topology induced by the (3, 9t) in the
IFGM-space (X, M, N, *, o).

Definition 2.11. Let (X, M, N, +, ¢) be an IFGM-space and x; € X. The open ball with center xy and radius
r € (0, 1) with respect to p > 0, is the set

Bgt’m)(p, r) = {y €X: EJJE(xo, VY e, p) >1-rand ‘Jt(xo, VY 0, p) < r}.
Remark 2.12. Let (X,9M,MN, #, 0) be an IFGM-space. Define

g ORI — {T C X: foreachx € T,qr € (0,1) and p > 0 such that Bﬁ”*"”) (p, r) c T}.

Then 7™ is a topology on X induced by (M, N). Clearly, the set {BSUUR)(l l)} is a local base at x € X and

n’n

so the topology 7" is first countable. Also, we notice that every open ball is an open set in the topology
7).

Proposition 2.13. Let (X, 9, N, *, 0) bean IFGM-space. Suppose 9R(x0,x1, ...,xn,p) > 1-nand ilt(xg,xl, . xn,p) <
n for some n € (0,1) and p > 0. Then
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@ Ifn({xo, x1,...,xn}) = 3, then x; € Bgfz’m(p, n)for eachie€ {0,1,...,n}.
(b) If (M, N) is multiplicity independent and n({xg, x1, ..., Xn}) = 2, then x; € Bgfe’m)(p, 77) foreachie{0,1,...,n}.

Proof. (a) Let n({xo,x1,...,x,}) = 3. Clearly, for each i € {0,1,...,n} we have {xo,x;, ..., xi} & {x0,%1,..., Xx}.
Therefore, by using (IFG-3) and (IFG-10), we find

M(xo, i, .., i, p) = M(x0, X1, 0 X, p) > 1= 77
and

N (x0, Xi, .., Xiy p) < R(x0, X1, o X, ) < 1.
Thus x; € BE"™ (p, 1) for each i € {0,1, ..., n}.

(b) Let (M, M) is multiplicity independent and n({xo, x1, ..., x,}) = 2. Thenim(xo,x,-, ey Xi, p) = ED?(xO,xl, ...,xn,p)
and ‘Jt(xo,xi, wer X, p) = ‘Jt(xo,xl, ...,xn,p) for eachi € {0,1, ..., n}. Hence the result follows. []
Theorem 2.14. Consider (X, M, N, *, ©) to be an IFGM-space, where n*1n = nand non = foralln € [0,1]. Then
(Z{, T(gﬁ"m) is Hausdorff.

Proof. Let x,y € X so that x # y. Then 0 < ETJ?(x,y,..., y,p) <land 0 < ER(x,y,...,y,p) <1,¥Vp>0. Let

m = “JJl(x, Yoo y,p) and n; = ‘ﬁ(x, Yoo y,p). Choose 1 € (0,1) such that n = max{n;,1 — np}. For given
1 < 1o < 1, there are n3, 14 € (0,1) such that nz > g and (1 —14) < 1—1y. Put 15 = max{ns, n4}. Now, consider
the open balls Bfﬁ’m)(%, 1- r]5) and B(;R’m)(zﬂn, 1- 775). We show that Bfﬁ’m(%, 1- 775) N B(;Jm)(%, 1- 1]5) = .
Let on contrary,

s c Bg{an,sn(éin’ 1— 775) ﬂ B(ymt,m)(zlinl 1— 715)-
Thenm = EJJE(x, Y, Y, p) > E)J?(x, Z, .2, g)*ﬂﬁ(z, YooV, g) By using Proposition 2.10, we get EJJI(Z, YooY, g) >
iUE(y, Z, .2, %) Consequently,

m= SIR(x, Yoo y,p) > im(x, 2,2, g) * SD'E(]/, 2,2, ZE”)

P P )
g L L
> JJE(x, Z,...,2, o ) * EUE(]/, Z, .02, o

215 %15 2 13 %13 > 1o > 11.

= ‘R(x, Yy y,p) < ?R(x, Z, .02, g) o iTt(y, 2,02, 2%)

r ﬁ)
< ?R(x, Z, s 2, T ) o ?R(y, Z, s 2, T

< -ns)o(l-15s)
<(A-na)o(l-m)
<(1—T]0)<1]2.

Thus, we have a contradiction and so (%, T (gﬁm)) is Hausdorff. O
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Remark 2.15. Theorem 2.14 is also true even when the conditions n+n =nandnon =n,V n € [0,1] are
substituted with the condition that the pair (9, 9t) exhibits multiplicity independence.

Proof. In the proof of Theorem 2.14, take 13,14 € (0,1) such that n3 * 13 > g and (1 —14) o (1 — 14) <
(1 = no). Now, consider the open balls B?”’“’”(g, 1- 775) and B(y).n,zn)(g’ 1- 1]5). Then we can easily see that

B;‘Jﬁ,*ﬁ)(g, 1— 775) N Bgﬂt,‘ﬁ)(g/ 1- ,75) =¢. O

Definition 2.16. Let (X, 9, N, +, 0) be an [IFGM-space. A sequence (x) in X is said to be convergent to some
x € X with respect to the (I, N) if, for every n € (0,1) and p > 0, Amy € IN such that “JJI(x, Xiysoeer Xis p) >1-n

and ‘Jt(x, Xiy, ...,xin,p) <nforalliy, iy, ..., 1, = mo.

Theorem 2.17. Let (X, 9, N, x, o) be an IFGM-space and T ™™ be the topology on X. Then a sequence (xi) in X is
convergent to x iﬁim(xk, Xy oeey Xiey X, p) — 1and ?R(xk, Xieyeory Xiey X, p) — 0ask — oo for every p > 0.

Proof. Assume that (xx) converges to x. Then, for every p > 0 and 1 € (0,1), 3 mp € IN such that x; €
Bf:m’m) (p, 17), ¥ k > mg. Consequently, for all k > m, we obtain

i)JE(x, Xiey Xiey ovey Xy p) >1-n
and

ift(x, Xiey Xy ooy Xy p) <.

This implies that l—i)JE(x, Xiey Xiey orey Xk p) < nand 92(x, Xy Xiey oeey Xk p) < 1. Asaresult, we find ‘J.R(xk, Xy oeey Xpey X, p) —
1and m(xk, Xk ooy Xiy x,p) — 0,as k — co.

Conversely, suppose that ‘m(xk, Xieyoee) Xie, X, p) — 1land ‘J?(xk, Xiey erey Xy X, p) — 0 as k — oo for every p > 0.
Then, for given 17 € (0,1), 3my € N so that 1 — 9)?(3(, Xk, Xkey ooy Xk p) < nand ‘Jt(x, Xk, Xkey ooy Xk p) <n,Vk=my.
Hence x; € ij’”"‘“)(p, 1]), ¥ k > my. Thus (xx) is convergent to x. [J
Definition 2.18. Let (X,I, N, ¢) be an IFGM-space. A sequence (x;) in X is said to be Cauchy with
respect to the (M, N) if, for every n € (0,1) and p > 0, I mp € IN such that w?(xio,xil...,xin,p) >1-nand

‘ﬁ(xio,xil...,x,-n,p) < nforallip, iy, .., i, = myp.
An IFGM-space (X, M, N, %, ¢) is said to be complete if every Cauchy sequence (x;) in X is convergent.

Theorem 2.19. Consider (X,9, N, *, o) to be an IFGM-space. Then every convergent sequence (xi) is Cauchy in X.

3. Statistical convergence in IFGM-spaces

Our aim in this section is to explore the concept of statistical convergence of sequences in the [FGM-space
(X, M, N, %, o). In order to accomplish this, let us recall some notions as follows:
Let A € IN. The asymptotic (or natural) density of the set A, denoted by d(A), is defined as:

d(A):]}i_{g%){nsk:neA}

7

provided the limit exists. Here, |B| denotes the cardinality of the set B. A real sequence (x) is called
statistically convergent to [ € R if

d({keIN:|xk—l|>£})=0

holds for every & > 0 and the limit is denoted by x 4 (see [15], [32]).
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Definition 3.1. ([1]) Consider the n—product of N, i.e., N" = 1L, IN. Let Y C N" and Y(k) = {(il, in, ..., iy) €

Y:i,i,.., i, < k}. Then, the n—dimensional asymptotic density of the set Y is defined as
n!
du(Y) = lim Y (k).
For a subset A C IN, the n—dimensional asymptotic density of the set A is defined as d,(A) = %Lr?o ,’{’—ilA(k)l,

where A(K) = {(ki, ks, ..., ku) € A" : ki, o, ..., oy < KJ.

Definition 3.2. ([1]) Consider a subset A = {k,, : m € IN} of IN. Then A is called statistically dense in IN if
d,(A) = I}im Z—ilA(k)l =1

Now we are ready to introduce our main result as follows:

Definition 3.3. Let (X, I, N, , 0) be an [FGM-space and x € X. Forany n € (0,1) and p > 0, the (p, n)—vicinity
of x € X with respect to (9, ) is defined by

ng’m)(p, n) = {(xl,xz, ...,xn) e X" i)JE(x,xl,xz, .y xn,p) >1-nand ‘Jt(x,xl,xz, .y xn,p) < n}.

Definition 3.4. Let (X,M, N, , ©) be an [FGM-space. A sequence (xx) in X is statistically convergent to a
x € X with respect to (9, N) if, for every n € (0,1) and p > 0,

dn({(il,iz, v dy) €N : iUE(x,x,'l,x,-Z, s xi7l,p) <l-nor ‘Jt(x, Xiy, Xiy, ...,xl'”,p) > r]}) =0.

. st—(MN) .
In such a case, we write xy ———> x or st—lim x; = x.
k

Lemma 3.5. Consider (X,9,N, +, o) to be an IFGM-space. Suppose (xx) is a sequence in X. Then, for given p > 0
and 1 € (0, 1), the following are equivalent:

(a) st- 1ikm Xe = X.

®) dy({(i1, iz, .. in) € N - Mi(x, 33, X, X5, p) > 1 = and R(x, xi,, Xs,, . X, p) <)) = 1.
(c) dn({(il,iz, ey ip) € IN" Sﬁ(x,x,-l,xiz,...,xi”,p) <1- r]}) =0and

du({(ir, 12, . in) € N" : 9, 2, i, . %3, P) 2 1)) = 0.
@ du({(ir, 12, .. in) € N" - D(x, %, % o X;,p) > 1 = 1) = Land

du({(ir, 12, ..y 1) € N" 2 R, 23, i, X, p) < 1)) = 1.

Theorem 3.6. Consider (X, M, N, x, 0) to be an [IFGM-space and let (xi) be a sequence in X. Then, for given n € (0, 1)
and p > 0O, the following are equivalent:

(a) st— 1i11<n X = X.

@ du({Gr, i, i) €N 2 (x5, %0 x;, ) & VP (0, m}) = 0.
Proof. The proof is a direct consequence of the definition of statistical convergence. [

Theorem 3.7. Consider (X, 9, N, +, o) to be an IFGM-space. Suppose (xy) is a sequence in X such that st— lill(rn X = X.
Then, for any n € (0,1) and p > 0, we have

dn({(il,iz, ) €N xi; ¢ BS’R'”*>(p, 17) forevery j € {1,2, ...,n}}) =0.
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Proof. For givenn € (0,1) and p > 0, set
Ap,n) = {(il,iz, vy iy) €N : im(x, Xiy, Xiy, ...,xin,p) >1-nand ‘Ji(x, Xiy s Xiyy oes xin,p) < 1]}

and D(p,n) = {(il,iz, i) €IN": Xi; € ngjz’m)(p, r]) forevery je{1,2,.., n}}.

Since st—lilznxk = X, SO d,,(A(p, n)) = 1. Let (i1,12,...in) € A(p,7n). Then iD?(x,xil,x,-Z,...,xin,p) >1-nand

‘Jt(x, Xiy, Xiy, ...,xin,p) < 1. By using Proposition 2.13, we can conclude that Xi; € Bsm’m)(p, 77) for every
j €1{1,2,..,n}. Therefore (i1, i,...iy) € D(p,n) and so A(p,n) € D(p,n). This implies that d,(D(p,n)) = 1.
Hence the result follows. [J

Theorem 3.8. Consider (X, I, N, =, o) to be an IFGM-space. If a sequence (xi) in X is convergent to x € X then
st— likm Xk = X.

Proof. Suppose that (x;) is convergent to x € X. Then, for every n € (0,1) and p > 0, 3 my € N so that
i)ﬁ(x, Xiy, ...,xin,p) >1-nand ‘ﬁ(x,x,-l, ...,xin,p) <n,Vi,i, .. i, = my. Define

A(m) = {(il,iz,..., in) € N" :i1,1p,...,0p <, 9Ji(x, xil,...,x,-n,p) >1-nand ‘Jt(x, Xiy s ...,xin,p) < 17}.

Clearly,

— | | —
|A<m)|z(’” ’"O). — lim 22 |A(m)| = lim i(’” ’”0):1.
n m—oo " m—oo M n

Consequently, lim Z|(A(m))¢| = 0. This implies that st-limx; = x. [0
q Yo am s, p p

We provide the following example to support the fact that the converse of the above Theorem 3.3 does
not hold.

Example 3.9. Consider the [FGM-space (X, M, %, +, o) defined in Example 2.2, where X = Rand g : R™ —

IR* such that g(xg, x1, ..., X,) = max {|x; — xi|;. Now, define the sequence (x;) in R b
g 0<i,j<n I 4 y

k, ifk=4,) . N
= € IN.
Yk 1, otherwise !

Then, (x3) is statistically convergent to 1, but not convergent.

Theorem 3.10. Consider (X,9,MN, «, o) to be an IFGM-space. Suppose (xi) is a sequence in X such that (xy) is
statistically convergent. Then st— likm Xy is unique.

Proof. Assume that st—lim x; = x and st—1lim x; = z. We need to show that x = z. For given n € (0, 1), choose
p I & n

n1 € (0,1) such that (1 —11) *(1 —11) > 1 —nand n; o 1 < 7. For given p > 0, consider the following sets:
. p p
A(p: T]l) - (l], 12,y Z‘rl) €IN": I X, Xiy s Xiyy eeer Xiy s E <1- 11 Oor N X, Xiyy Xiyy oeer Xiyy E > (s
O p o
(p,m) = {(i1, 12, ..., 1n) € N" : M|z, x3,, X1y, ..., Xi,, 5 <1-nor Nz xi,xi,...r Xi,, 5 > My,

Ac(p, Th) = {(il,iz,..., in) e N": ‘Jﬁ(x,x,-l,xiz,...,xi", g) >1-— m and m(x,xil,xiy...,x,-n, g) < 1’]1},
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B(p,m) = {(il,ig,..., i,) e N": ?[R(z,x,-l,xiz,...,xin, g) >1-mn and ‘Ji(z,x,-],xiz,...,xin, g) m}.

Since st— likm Xx = x and st— likm xx =z, we have d,(A(p, 1)) = 0 and d,,(B(p, m1)) = 0. Also, by Lemma 3.5,

we have d,(A"(p,m) = d,(B°(p,m) = 1. Thus d,(A(p, m) U B(p,m)) = 0, implies d,((A(p, m1) U B(p, m))") =
du(A(p, m)° NB(p,m1)°) = 1. Let (i1, i, ..., i) € A(p, m)° N B(p,n1)°. Then, by using (IFG-6), (IFG-3) and the
part (3) of Definition 1.4, we get

“Jﬁ(x, Z, .02, p) > STJE(x, Xi,, Xi, oo Xiys g) * iU?(x,-n,z, Z,...,2, g)

14 14
> ‘JJ?(x, Xiy s Xiyeery Xi, 5 + M\ 2, X, Xiyooy Xiy ) =

2
2(1-m)*(1-m)
>1-n.

Also, by using (IFG-13), (IFG-10) and part (3’) of Definition 1.4, we have

iTt(x, z, ...,z,p) < iR(x, Xiyy Xiyover Xiys g) o ‘ﬁ(x,'”,z, 2,02, g)

|4 |4
< 5Jt(x, Xiy s Xiyeeoy Xi, 5 o Wz, x4, xiy..., Xi,, 5

Smom
<.

Since 1 € (0,1) is arbitrary, we conclude that im(x, Z, ey 2, p) =1and ?R(x, 2,02, p) =0,¥Yp>0. Hence
x=z. [0

Definition 3.11. Let (X, 9,9, %, ¢) be an [IFGM-space and (xx,) be a subsequence of (xx) in X. Then (x,) is

m

called a statistically dense subsequence of (xi) if the index set {k,, : m € IN} is statistically dense in IN, i.e.,
dy({ky, : m e IN}) = 1.

Theorem 3.12. Consider (X,901, N, =, ) to be an IFGM-space and let (xi) be a sequence in X. Then, the following
are equivalent:

(1) st— h;l<n X = x, for some x € X.

(2) There exists a convergent sequence (zx) in X with x; = zj for almost all k.
(3) There exists a subsequence (xy,,) of (x) such that (xy,,) is statistically dense and (x,,) is convergent.

(4) There exists a subsequence (xy, ) of (xx) such that (xy,) is statistically dense and (xy,,) is convergent.

Proof. (1) = (2)): Letx € X and st- liin X = x. By Lemma 3.5, for any 1 € (0,1) and p > 0, it follows that

dn({(il,iz, ey iy) €IN" Sﬁ(x,x,-l,...,x,-n,p) >1-nand ‘R(x,xil,...,x,-n,p) < n}) =1.

For j € N, consider the set

K(p,j) = {(il,iz,...., i) € N": ‘Jﬁ(x, xi1,...,x,',1,p> >1- % and iTi(x, xil,...,xin,p) < %}
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Clearly, K(p, j + 1) € K(p, j) for every j € IN. Since st— hm X = x, we have

d.(K(p, 1)) =1, (j € N). (2)
Choose an arbitrary (ii,i;,..., 1}1) € K(p,1). Putqy = max{ll,zz, . 1,11} Since Equation 2 holds, there are
(i%, 15 z%) € K(p,2) and g, = max {if, 2, zf,} such that g, > ¢1 and for each k > g, implies

n! . ws , 1 1 1

]}nn o {(11,12, Lin) € N" 1 iy, i, .., 1y < k,i]ﬁ(x,xil,...,xin,p) >1- > and ﬁt(x,x,'l,...,x,'n,p) < E}’ > >

Further again by Equation 2, 3 ( 1 s zfl) € K(p, 3) with g3 = max {if,ig, .y zi} > g such that for each k > g3,

hm n oo

1 1 2
4 n.; ; . . I . . — -
{(11,12, Lin) € N" iy, i, .., 1y < k,ilﬁ(x,x,l,...,xln,p) >1 3 and ‘Jk(x,x,],...,x,n,p) < 3}’ > 3

As a result of continuing this process, by induction, we can build up an increasing sequence (g;) of natural

numbers, gj = max {1{4, vy 1 } such that( i, 2, .y zi,) € K(p, j) and for each k > i,

I
hm Z l{(zl,zz, ,in) € IN" 1 iy, ip, .0, iy < k,‘JJE(x,xil, ...,xin,p) >1- % and ‘Jt(x,xil,...,xin,p) < %}‘

]'_

J
Now consider the sets
7(1={ZEN:1<l<q1}and
7%= | {z = max{ky, ks, . k) : (k1, koo k) € Kp, ), < 1 < qj+1}.
jeEN

Define K = %Ki U K; and the sequence

X1, ifl e 7(,
Z1 =
! x, otherwise.

For 1 € (0,1), choose j € N such that ; < nand hence 1~ > 1 - 7. It follows that the sequence (z)
converges to x with respect to (9, 9).
Now , for fixed k € N and q; < k < gj;1, we have

{ (i) iay ooy in) € IN" < i1,y oy iy < Ky, % 20, 1€ (1,2, ...,n}}
c {(il,iz, i) €N i,y e < k}\{(il,iz, i) €N iy iy in <K

iUE(x, Xi, ...,xin,p) >1- % and SR(x, Xiyy oo x,-n,p) < %}
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This implies that

nl|( . . . .. .
lim ﬁl{ (i1, 02, oy iy) € N" 2 i3, 00, ooy iy S K5 x5, # 23, M E {1,2,...,11}}

k—o0

onl(,. . . .o . onl(,. . . .o .
< lim — {(11,12,..., i) € N" 1 dy,0o, ..., 1, < k} — lim — {(11,12,..., i) € N" 1 iy,1p, ..., 1, < k;
k— o0 k k— o0 k”

(5 5) > 1 and 85, 50) < 3|

|
<1-1lim X

(i1, 12, 0. in) €EIN" 1 iy, 10p, ..., 0, < k;
k—soo0 kT

‘JJ?(x,xil,...,xin,p) >1- % and 9?(x,x,-l,...,x,-n,p) < %}'

< 1 <n
<5<
Since 7 is arbitrary, we conclude that
du({(1, 12, ooy 1) € N" 2 o, oy S K23, # 23, m € (1,2,.,m}}) = 0.
Hence x; = z for almost all k.

((2) = (3)): Let (z) be a convergent sequence in X such that x; = z; for almost all k € IN. Then, the
set A = {k € IN : x¢ = z¢} has d,(A) = 1. Hence, (zx)kea is a statistically dense subsequence of (x;) which is
convergent.

((3) = (4)): The proof directly follows from Theorem 3.8.

((4) = (1)): Let (xx,,) be a subsequence of (xi) such that (xy,,) is statistically dense and (xy,) is statistically
convergent to x € X. Consider the index set B = {k,, : m € N}. Then d,(B) = 1. Now, for any 1 € (0,1) and
p > 0, we obtain

{12, i) € N" 2 i, oy <l M, 35, %3, p) > 1= and R(x, %, ., i, p) < 11}
2 {(il,iz, vy in) €B" 1iy, 0, ., 0, £k ‘JJ?(x, Xiysoees xi”,p) >1-nand iﬂ(x, Xiy, ...,xin,p) < 17}.

This implies

lim Z—j|{(il,i2, i) € N" it iy, iy < T M(x, X1, i, p) > 1= 1 and R(x, xi, ., 25, p) < 1
|

> linol<> Z_” {(il,iz,..., iy) €B":iy,1,...,10, <k ‘Jﬁ(x,xil,...,xin,p) >1-nand ilt(x,xil, ...,xi”,p) < 17}|

k—
=1.
Consequently, (xy) is statistically convergent to x. [
As a direct consequence of the above Theorem 3.12, we have the corollary as follows:

Corollary 3.13. Consider (X,9t,0M,%,0) to be an IFGM-space and (xx) to be a sequence in X such that (xi) is
statistically convergent. Then (xi) has a convergent subsequence.

The converse of the above statement is not generally true, i.e., there can exist a non-statistically con-
vergent sequence that has a convergent subsequence. We have the following example in support of our
statement.



V. A. Khan, S. K. A. Rahaman / Filomat 38:8 (2024), 2785-2812 2805
Example 3.14. Let (R, g) be a g—metric space with order 1, where

g(xo, X1, ..., Xp) = max {le- - le},\v’ X0, X1, ..., Xn € R.
0<i,j<n

Consider the tuple (M, N) defined in Example 2.2. Let 11 * ) = min{n, 72} and 11 ¢ 7, = max{m, 72}, V¥
M, n2 € [0,1]. Then (R, M, N, *, ) is an IFGM-space. Define (x;) by

Looifk=R )
X = ieN.
k k%, otherwise

Then (x;) is a subsequence of (x;) and it is convergent to 0. Notice that (x) is not statistically convergent.

4. Statistically Cauchy sequence in IFGM-spaces

In this section, we introduce the concept of statistically Cauchy sequences in the [IFGM-space (X, M, N, », ¢)
and investigate some properties.

Definition 4.1. Let (X, I, N, +, 0) be an [IFGM-space. A sequence (xx) in X is statistically Cauchy with respect
to (M, N) if, for every n € (0,1) and p > 0, AN = N(1)) € N such that

do({(i1, 12, i) € N" - M(xi,, X,y %3, 2080, p) < 1= 17 08 R, X, 5, X, P) 2 7)) = 0.

Now, we investigate the relationship between the statistically convergent and the statistically Cauchy
sequences in an IFGM-space as follows:

Theorem 4.2. Consider (X, M, N, *, o) to be an IFGM-space and (xi) to be a sequence in X such that (x) is statistically
convergent. Then (xy) is statistically Cauchy.

Proof. Let st— liin X = x. For givenn € (0,1), select ; € (0,1) sothat (1 —m)*(1—n1) >1-nand o1 <7.

For p > 0, consider the following sets:

P(T]l) = {(il, in, .. i) € IN" : iIJt(xil,xiz,...,xi,l,x, g) <l-mnor i]t(xil,x,-z,...,xin,x, g) > 7]1}

and

P(m) = {(il,iz,..., iy) € N": ‘llt(x,«l,xiz,...,xin,x, g) >1-n1and %(xil,xiz,..., X, X, g) < 171}.

Since st—lilznxk = x, so d,(P(m)) = 0 and d,(P(n1)°) = 1. Let (j1,j2,....ju) € P(m)°. Then, we have

wi(le,sz,...,xjn,x, g) >1-1n;and Ell(le,sz, s Xjs X, g) <m. Fix jr € N, for some k € {1,2, ..., n}. Then

i)JE(xjk,x, vy X, g) > ‘JJE(le,sz, s Xjs X, g) >1-mn and

‘R(xjk,x, s X, g) < ETE(le,x]-z, s Xjs X, g) <M.

For (i1, 13, ...,1,) € P(m), we have
Xiys Xiyy ooy Xis Xjir P | Z M Xiy, Xiyy oe iy, X, 5 M xj,, %, .00, X, X, 5

> =n)*(1-m)
>1-17
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and
?R(xil,xiz, ...,xin,x]-k,p) < ﬂﬁ(xil,x,-z, s Xis X, g) S ?R(xjk,x, v X, X, g)
<mom
<.
This implies that
P(m)" < {(il,iz, oy dy) € N SJE(xil,xiz, ...,x,-n,xjk,p) >1-nand ‘J‘L(xil,xiz, ...,x,'n,xjk,p) < 17}.
Consequently,
dn(P(m)C) < dn<{(i1,i2, wip) €IN™: iUi(xil,x,-z, ...,xl-”,xjk,p) >1-nand i)?(xil,x,-z, ...,xi”,xjk,p) < 17})
Therefore,
dn({(il,iz, vy ly) €IN" EDE(x,-],xiz,..., xin,xjk,p) >1-nand ‘Jt(x,-],xiz,..., xin,xjk,p) < n}) =1
and thus

dn({(il,iz, o iy) €IN" *JJE(x,-l,xiz,..., xi,l,x]-k,p) <l-nor %(xil,x,-z,...,x,-n,x]-k,p) > q}) =0.
This completes the proof of the theorem. [

The converse statement of theorem 4.2 is not true. Let us look at the following example to demonstrate
this:

Example 4.3. Let X = (0,1]. Consider (X,9, N, *,¢), the IFGM-space which is defined in Example 3.9.
Consider the sequence (x) defined by

{1, ifk:i3,},
Xy = 1€ N.

%, otherwise
Then (xy) is statistically Cauchy sequence, but not statistically convergent.

Definition 4.4. Let (X,M, %, +, o) be an IFGM-space. Then (X, 9,9, +, o) is called statistically complete iff
every statistically Cauchy sequence in X is statistically convergent.

Theorem 4.5. If an IFGM-space (X, M, N, =, o) is statistically complete then it is complete.

Proof. Suppose (X, M, N, +, o) is statistically complete. Let (x) be a Cauchy sequence in X. Then it is statisti-
cally Cauchy in X. Since (X, M, N, +, o) is statistically complete, (xy) is statistically convergent. By Corollary
3.13, we have a convergent subsequence (xy,) of (xx). Let (xi,) converges to x. For given 1 € (0, 1), there are
N,M2,M3, M4 € (0,1) such that (1 —m)*(1—m) >1—m,nzonz <n, 1—m)*(1—m) >1-nand nong <.
Put 15 = min{my, 3}

Since (xx) is Cauchy, for given p > 0, 3 mg € IN such that for all iy, i, ..., i, > mp, we have

‘,I]t(x,-o,xil,...,xin, Z) >1- 15

and
%(xio,xil, ees Xy Z) <1s.
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Also, (xx,) is convergent to x. Therefore, there is m; € IN such that Wi(xikl s Xigy s ooes Xi 1 X, 51']) >1-1n4and

%(xikl,xikz,..., Xiy, 1 X, E) < 1y for all i, ix,, ..., ik, = my. Let M = max{mo, m1}. For iy, i1, ..., in, ix,, Iy, - Bk, = M,
by using (IFG-3) and (IFG-6), we have

SJt(xil,xiz, ...,xin,x,p) > ﬂﬁ(xio,xil, veer Xiy s g) * Em(xio,x,-o, weer Xigs X, g)

P 14 P
> SUE(xikn,xikn, ceey xl-kn,x, Z M Xigr Xigr eeer x,-o,x,-kn Z = IN Xigs Xiyyoeer Xiys z

P P 14
> *JJE(xikl,xikz, vy xik”,x, 4_1 m xio,x,-kl, ceey xikn, Z = 9N Xigs Xiyyeeer Xiys Z

> (1 =1n4)* (1 =15) = (1 =15)
>(A-n) (1 -m)*(1-1n2)
>1 =141 -m)
> (1 =)

Again, by using (IFG-10) and (IFG-13), we have

p p
%(xil,xiz, ...,xin,x,p) < ‘ﬁ(xio,xil, e Xis 3 * W Xy, Xigy ees Xigs X, 3

P P P
< ﬂl(xik”,xikn, o Xip s X, 1 # N Xig, Xigy en X Xiy, 1 Nl xiy, Xiy s oo Xiys 5

p p p
< SR(xikl s Xigy s woes X1 X, 1 * N Xigr Xig s +ver Xig, s 1 WA Xiy, Xiy s oees Xi,, 1

<Ny O15*1)5
< N4 o 13 o 13
<M m
<.
This implies that (xx) converges to x and hence (X, M, N, #, ©) is complete. [

Definition 4.6. Let (X,9,MN, , ©) be an [FGM-space. A sequence (x;) in X is called statistically bounded
with respect to (Mt, N) if, for an arbitrary xy € X, there exist 1y € (0,1) and pg > 0 such that

du({(i1, 12, .., 1) € N" : M(xi, i, X, X0, P0) < 1= 19 08 R(Xs,, Xy s Xs,, X0, P0) 2 10}) = 0.

Theorem 4.7. Consider (X,, N, +, 0) to be an IFGM-space. If a sequence (xi) in X is statistically Cauchy then it
is statistically bounded.

Proof. Let the sequence (xy) is statistically Cauchy in X. Then, for every p > 0 and 1 € (0,1), there is
N = N(n) € IN such that the set
i p p
E(p,n) =11, iz, ..., 1) € N" : Ml xy,, x4, .0, X4, XN, 5 >1—-nand N{xy, x5y, ..., X, XN, 5 <

hasasymptoticdensity 1,i.e., d,(E(p, 7)) = 1. Fixxo € ¥Xand letiUt(xN,xN, ey XN, X0, ’—2') =aand iR(xN, XN, -0y XN, X0, ’%) =
y. Since a, ¥ € (0,1), there are 3,0 € (0,1) such that (1 —n)*a >1-Band noy < o. Let (i1, 12, ..., in) € E(p, n).
Then
. . 14 |4
M xi,, Xiy s s Xiy, X0, P ) 2 MU X3y, Xy s ey Xy, XN 5 = xN, XN, o) XN, X0, 5

>1-n)x*a
>1-p
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and

p P
SJ't(xill-xizr ] xi,,/-XOrp) < ER(xill-xizr vees Xiyy XN, 5 oM XN, XNy s XN, X0, E

<neoy
< 0.
Take 1o = max{p, 6}. Then
E(p,n) C {(il,iz, v ip) €N : ‘J.R(xil,xiz, ...,xi”,xo,p) >1-mnoand %(xil,x,«z, .y x,«n,xo,p) < 170}.

Consequently,

dn({(il,iz, v iy) € IN™: ﬁm(x,-l,xiz, ey xin,xo,p) >1—mnpand ‘J?(xil,xiz, ...,xi”,xo,p) < T)o}) =1,

which implies that

dn({(il,iz, vy dy) €IN" Sﬁ(xil,xiz, ...,xin,xo,p) <1l-nor m(xil,x,-z, ...,x,-n,xo,p) > 770}) =0.
Thus (xx) is statistically bounded. [J
Corollary 4.8. In an IFGM-space (X, M, N, %, o), every statistically convergent sequence is statistically bounded.
Proof. The result follows from Theorem 4.2 and Theorem 4.7. [J
Aside from Theorem 3.12, the following theorem can also be asserted:

Theorem 4.9. Consider (X,M,M,*,0) to be an IFGM-space. Then, for a sequence (xi) in X, the following are
equivalent:

(a) The sequence (xy) is statistically Cauchy.

(b) There exists a statistically dense subsequence (xy,,) of (xx) and (xx,,) is Cauchy in X.

5. Statistical limit points and statistical cluster points

In this section, we extend the ideas of thin subsequence, nonthin subsequence, statistical limit points
and statistical cluster points introduced in [17] in the framework of IFGM-spaces.

Definition 5.1. Let (¥,9,N, +, o) be an IFGM-space. Then x € X is said to be a limit point of a sequence (xy)
in X with respect to (I, N), if there is a subsequence (xx,) of (xx) that converges to x. We denote £ (x;) to
refer to the set of all limit points of the sequence (xy).

Definition 5.2. Let (X,9,0,+,¢) be an IFGM-space and (xx,) be a subsequence of a sequence (x;) in X.
Denote K = {k,, : m € N} C IN. We say that (xy,) is a thin subsequence of (xx) if d,(K) = 0. If 4,(K) # 0 then
we say that (xx,) is a nonthin subsequence of (xx).

Definition 5.3. Let (X, 9,9, ) be an [FGM-space. Then x € X is called a statistical limit point of the
sequence (x;) in X with respect to (9, N), if there exists a nonthin subsequence (xx,,) of (xx) that converges
to x. We denote A®"¥)(x;) to refer to the set of all statistical limit points of (xx).

Definition 5.4. Let (X,9,MN, *, 0) be an IFGM-space. Then x € X is said to be a statistical cluster point of the
sequence (x) in X with respect to (M, N) if, for every n € (0,1) and p > 0,

du({(i1, 12, . ) € N : M3, iy o %1, %,p) > 1= 7 and N(x;, X3, ., X3, 3, p) < 7)) # 0.

By T®""(x;), we denote the set of all statistical clusters points of (x).
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Theorem 5.5. Consider (X,9, N, =, o) to be an IFGM—space and (xi) to be a sequence in X. Then
AR () € TON () € BB (1),

Proof. Let (xx) be a sequence in X and x € A®"*(x;). Then, there exists a subsequence (x;, ) of (x) such that

the index set A = {k,, : m € N} C N has non zero n—dimensional asymptotic density, i.e.,
1
dy(A) = lim %|{(k1,k2,...,kn) €A ki, ko ky SKf| =0

and (xi,) converges to x. Since
{(kl,kz, v ky) €A ‘JJE(xkl,xkz, ...,xkn,x,p) >1-nand ER(xkl,xkz, ...,xkn,x,p) < 1]}
C {(il,iz,..., i) € N": Sﬁ(xil,xiz,...,x,-n,x, p) >1-nand ‘J?(xil,xiz, ...,xin,x,p) < 17}
true for every 1 € (0,1) and p > 0, it follows that
{tr, epy o) € A" Ky €N, j= 1,2, )\ (Ui Ke, oK) € A" M3k, Xy o X, 2, p) S 1= 17

or gt(kaxkz/ _,.,xkn,x,p) > 7]} - {(i1,i2, vy ln) e N": Sﬁ(xil,xiz,...,xin,x,p) >1- n
and gJt(x,-l,xiz, .y xin,x,p) < n}.

Also, the subsequence (xy,,) is convergent to x. Therefore,
{(kl,kz, v ky) € A" EIR(xkl,xkz, ...,xkn,x,p) <l-nor ?R(xkl,xkz, ...,xkn,x,p) > 17}
is a finite subset of N". As a result,

dn({ (i, 12, ...,1y) € IN" : EIJE(xil,x,'z, ...,xj”,x,p) >1-nand ‘Jt(x,-l,xiz, ...,xin,x,p) < 17})
> dy({(kr, kg, o n) €A 1k €N, j=1,2,..,n))-
du({(Kk1, ko, oK) € A" M4y, Xy s X1, %, p) < 1= 1 08 Ry, Xy s X5, %, p) 2 1))
2 dy({(ky ke, k) € A" 1k €N, j=1,2,...,1)) = 0

>t>0.
Consequently, x € T®"(x;) and so A® (x;) € T®W(xy).
Now let y € T®"(x;). Then, for every p > 0 and 17 € (0, 1), we have
d,(H(p,n)) = dn({(il,iz, v iy) €N i]]i(xil,x,-z, ...,x,-n,y,p) >1-nand iTt(xil,xiz, ...,xi”,y,p) < 17}) > 0.

Let (ki, k2, ..., ks) € H(p,17). Then, by Proposition 2.13, we have Xi; € B(;R’m)(p, 17) foreach j €{0,1,...,n}. Set

B= {kj € N:x, € BY"™(p, r])}

Itis clear thatd,(B) = d,(H(p, 7)) > 0 and thus (x;,) is a nonthin subsequence of (x,) along B. Since B contains
an infinite number of positive integers, y € E®""(x;). Therefore, T™"(x;) € E®M(xy). O

Theorem 5.6. Consider (X, Wi, 9, , o) to be an IFGM-space. Suppose (xx) is a sequence in X such that st— liin Xp = X.
Then A(‘]J?,ER) (xk) = r(gﬁrm)(xk) — {x}
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Proof. Let st— h;fn x¢ = x. From Definition 3.4 and Definition 5.4, it follows that x € T®"*(x;). Suppose there

is y € T™M(x,) such that x # . Then, for every 1 € (0,1) and p > 0, we find

du(E(p, m) = ({(i1, 12, . 1a) € N" - M(x3, i ., %3, %, p) > 1 = 1 and N(xi, X, ., %, %, p) < 1)) # 0
and
du(G(p,n) = ({(1, 12, s 1) € N" : M(xi, xiy, 0, X, y,p) > 1= and R(xi, iy, X, 9, p) < 71}) # 0.
Since x # y, we have F(p, 1) N G(p, 1) = ¢. Consequently, F(p, 7)° 2 G(p, 1), i.e.,
(1,12, .. ia) € N™ 2 M(xi, X1y, 33, 2,p) < 1= 1 08 N3, Xiy oy Xs,, 2, p) 2 11}
2 {(i1, i2, o in) € N" : (i, iy o, X3, y,p) > 1 = nand R(xs,, X, ., 3,0 Y, p) < 1)
Hence

do({(i1, 12, i) € N" 2 M(xs,, X, .0, 2, %,p) < 1= 1 0 R(xs,, Xy, 0 X5, %, P) 2 1))

> dn({(ﬁ,iz, v iy) €N ﬁm(x,-l,xiz, .y xin,y,p) >1-nand %(xh,xiz, ...,xin,y,p) < n}) G)

As st—1lim x; = x, we have
k

dn({(il,iz, ey y) €IN" i)ﬁ(xil,xiz,...,x,-n,x, p) <l-nor i)t(xil,xiz, ...,xin,x,p) > 77}) =0.

Therefore, from Equation 3, it follows that
dn({(il,iz, v iy) € N : i)ﬁ(x,'l,xiz, .y xin,y,p) >1-nand ‘Ji(xi],xiz, ...,xi”,y,p) < 17}) =0.

This contradict the fact that y € T®"(x;). Thus T™¥)(x;) = {x}.
Now, suppose st— likm x¢ = x. Then x € A™¥(xy), as implied by Definition 5.3 and Theorem 3.12. Hence,

by Theorem 5.5, we have A®"(x) = {x}. O

The converse of Theorem 5.6 is not true, i.e., it is possible to have a sequence (xi) in X such that
AP () = TN () = {x}, but (x¢) is not statistically convergent to x.

Example 5.7. Consider (IR, M, N, #, ) to be an IFGM-space defined in Example 2.2. Define

1, ifk=2i ) . N
= €
Yk 2, otherwise !

Then A®¥(x;) = T®(xy) = {1,2} but (x¢) is not statistically convergent.

Theorem 5.8. Consider (X,9, N, +, o) to be an IFGM—space. Suppose (xi) and (yx) are two sequences in X such that
Xk = yi for almost all k. Then A™ (x) = AP (y) and TOW (x) = T (1),

Proof. Let xx = yi for almost all k. Thus, the set K; = {k € IN : xx # yi} has zero n-dimensional asymptotic
density, i.e., d,(K;) = 0. Let x € A®¥(x;). Then, there is a subsequence (xy,, ) of (xx) so that (xy,, ) is convergent
to x and the index set K, = {k,, : m € IN} has non zero n—dimensional asymptotic density, i.e., d,(Kz) # 0.
Consider the set

K; = {km €Ky:meN,x # yk].}.
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It is clear that d,,(k3) = 0, i.e.,

n!

lim (ks e i) € K3 K Ky b < g # i f| = 0.
This implies that

. n! "

lim {1, ke i) € K5 Kk, o b < Ko = [ >0,

which is equivalent to

d(D) = dy({kn € Ko 2 ¢, =y, }) > 0.

Now consider the sequence (y,,) along I. Then (y,,) is a nonthin subsequence of (i) that converges to x, and
sox € AM(y,). Thisimplies that A®™ (x) € A®(yy). By symmetry, we also have APV (1) € A® ().
Hence A® (1) = AP (xy).

Similarly, we can show that T®¥)(y,) = T®W(x). O
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