
Filomat 38:8 (2024), 2835–2846
https://doi.org/10.2298/FIL2408835Y

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, the concepts of Jaggi, Dass-Gupta and Caristi-Ćirić-type bilateral multivalued
contractions are introduced in the framework of metric spaces. New conditions for the existence of fixed
points for such contractions are analyzed. A few consequences in single-valued mappings which include
the conclusion of the main result of Chen et al. [On bilateral contractions. Mathematics, 2019, 7, 538]
are obtained. In addition, nontrivial example are provided to support the validity of the results obtained
herein.

1. Introduction

Banach [1] presented one of the outstanding results concerning contraction mapping which appeared in
Banach thesis in 1922. This famous result is known as Banach Contraction mapping principle. It states that
every contraction mapping on a complete metric space has a unique fixed point. Fixed point theory becomes
a subject of great interest due to its application in mathematics and other areas of research. Fixed point
theorem in metric spaces plays a significant role to construct methods to solve the problem in mathematics
and sciences. Many researchers worked in this area and extended the result either by considering a more
general space or imposing some conditions on the domain of the contraction mapping or by considering
a more general contractive conditions. Meanwhile, the main result in [1] has been modified and applied
in different directions. In some generalizations of the contraction mapping principle, the inequality is
weakened, see, for instance [7], and in others, the topology of the underlying space is weakened, see [13]
and the references therein. Along the line, one prominent improvement of the Banach fixed point theorem
was presented by Hardy-Rogers [6].

Recently, Roldán et al. [23] established some new fixed point theorems for a family of contractions
depending on two functions and some parameters under the name multiparametric contractions and
pointed out significant number of Hardy-Roger’s type contractions in the setting of both metric and b-
metric spaces. Other important versions of the Banach contraction mapping principle were independently
presented by Ćirić [7], Reich [4] and Rus [10]. Banach contraction mapping principle has been generalized
by many researchers in various ways (see, for example, ([2], [5], [14], [15], [22], [27]) and the references
therein). Following the Banach Contraction mapping principle, the concept of multivalued contraction was
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introduced by Nadler [3] and the corresponding fixed point result was proposed therein. Moreover, [24]
extended the concept of weak KKM set-valued mapping from topological vector spaces to hyperconvex
metric spaces. Shagari et. al [21] introduced the idea of αL-compatible mappings of an L-fuzzy map.
Using this idea together with the technique of Meir-Keeler (M − K) contraction, some common fixed point
theorems for L-fuzzy compatible maps were obtained.

One of the initial nonlinear forms of the contraction mapping principle was given by Jaggi [9] and
Dass-Gupta [8], who used rational inequalities in their functional equations. Moreover, Shagari et. al [26]
introduced the concepts of Jaggi and Dass-Gupta type bilateral multi-valued contractions and under some
suitable conditions, the existence of fixed points for such mappings were established. Also, [16] introduced
bilateral contractions which merges two significant approaches in fixed point theory: Caristi-type and
Jaggi-type contractions. An inherent property of the existing fixed point results via the bilateral contraction
is that the fixed point of the concerned mapping is not necessarily unique; for example, see [16, Example
2]. This restriction is an indication that fixed point theorems using bilateral notions are more suitable for
fixed point theory of point-to-set-valued maps.

In 2018, Karapinar [12] studied Jaggi’s inequalities that imply the existence and uniqueness of fixed
points in metric spaces from the view point of partial metric spaces. In addition, Karapinar and Fulga [20]
provided a new hybrid-type contraction that is a combination of a Jaggi-type contraction and interpolative-
type contraction in the framework of complete metric spaces and established the existence and uniqueness
of fixed point. Moreover, Karapinar et. al [19] applied new fixed point theorems of Jaggi and Geraghty-
type on fractional and ordinary differential equations. A hybrid of Jaggi-Meir-Keeler-type contraction
which combined some existing results was introduced by Karapinar and Fulga [28]. Also, Alqahtani and
Karapınar [18] introduced the notion of a bilateral contraction that unified the ideas of Ćirić and Caristi-type
contractions via simulation functions.

Following the above chain of developments, this paper aims at proposing the concept of bilateral
contraction from the case of single-valued mappings to multivalued mappings. For this purpose, we
introduce the notion of Jaggi-type, Dass-Gupta-type and Caristi-Ciric-type multivalued contractions and
then establish the corresponding fixed point theorems.

2. Preliminaries

We recall some basic definitions and preliminaries that will be needed in this paper.
Let (X, d) be a metric space, CB(X) be a collection of non-empty closed and bounded subset of X and
A,B ∈ CB(X). The Hausdorffmetric H on CB(X) induced by the metric d is given by

H(A,B) = max {sup
a∈A

D(a,B), sup
b∈B

D(b,A)}

D(a,B) = {inf
b∈B

d(a, b)}.

D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}

It is known that H is a metric on CB(X) and H is called the Hausdorffmetric or Pompeiu-Hausdorffmetric
induced by d. It is also known that (CB(X),H) is a complete metric space whenever (X, d) is a complete
metric space.

Definition 2.1. Let (X, d) be a complete metric space and T : X −→ X.

(i) (Jaggi [9]) There exists λ1, λ2 ∈ [0, 1) with λ1 + λ2 < 1 such that
d(Tx,Ty) ≤ λ1d(x, y) + λ2

d(x,Tx)d(y,Ty)
d(x,y)

(ii) (Dass and Gupta [8]) There exists λ1, λ2 ∈ [0, 1) with λ1 + λ2 < 1 such that
d(Tx,Ty) ≤ λ1d(x, y) + λ2

[1+d(x,Tx)]d(y,Ty)
[1+d(x,y)]
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(iii) (Ćirić [7]) There exists a constant λ, 0 ≤ λ < 1, such that, for each x, y ∈ X,
d(Tx,Ty) ≤ λmax{d(x, y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)}.

Not long ago, Chen et al. [16] introduced the notion of Bilateral contraction in the following manner:

Definition 2.2. [16] Let (X, d) be a complete metric space. A self mapping T : X −→ X is called a Jaggi type bilateral
contraction if there is ϑ : X −→ [0,∞) such that, d(x,Tx) > 0 implies

d(Tx,Ty) ≤ [ϑ(x) − ϑ(Tx)]RT(x, y),

for all distinct x, y ∈ X, where

RT(x, y) =Max{d(x, y),
d(x,Tx)d(y,Ty)

d(x, y)
}.

Definition 2.3. [16] Let (X, d) be a complete metric space. A self mapping T : X −→ X is called a Dass-Gupta type
bilateral contraction if there is ϑ : X −→ [0,∞) such that, d(x,Tx) > 0 implies

d(Tx,Ty) ≤ [ϑ(x) − ϑ(Tx)]QT(x, y),

for all x, y ∈ X, where

QT(x, y) =Max{d(x, y),
(1 + d(x,Tx))d(y,Ty)

1 + d(x, y)
}.

Definition 2.4. [18, Definition 2.1] Let T be a self mapping on a complete metric space (X, d). If there exists ξ ∈ Z
and ϑ : X −→ [0,∞) such that, d(x,Tx) > 0 implies

ξ(d(Tx,Ty), (ϑ(x) − ϑ(Tx))CT(x, y)) ≥ 0,

in which

CT(x, y) =Max{d(x, y), d(x,Tx), d(y,Ty),
d(x,Tx) + d(y,Ty)

2
},

for all x, y ∈ X, then T is called a bilateral contraction of Ćirić-Caristi.

Definition 2.5. [17] Let (X, d) be a complete metric space. A self mapping T : X −→ X is called a Ćirić - Caristi
type contraction if there is a mapping ϑ : X −→ R+ such that, d(x,Tx) > 0 implies

d(Tx,Ty) ≤ [ϑ(x) − ϑ(Tx)]N(x, y),

for all x, y ∈ X, where

N(x, y) =Max{d(x, y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)}.

Lemma 1:[11] Let (X, d) be a metric space. Let A,B ∈ X and q > 1. Then, for every a ∈ A, there exists b ∈ B
such that

d(a, b) ≤ qH(A,B).
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3. Main Results

In 2021, Noorwali and Yesilkaya [25] introduced the concept of new hybrid contractions that combine
Jaggi hybrid type contractions and Suzuki-type contractions withω-orbital admissible and established fixed
point result in single-valued mapping. Motivated by the results of [25] and [16], we introduce the notion
of Jaggi, bilateral, Dass-Gupta and Caristi-Ćirić-type multivalued contractions. In each case, we establish
the corresponding fixed point theorem in the setting of metric spaces.

Definition 1: Let (X, d) be a metric space. A multivalued mapping T : X −→ CB(X) is called a Jaggi-type
bilateral multivalued contraction if there is ϑ : X −→ R+ such that D(x,Tx) > 0 implies

H(Tx,Ty) ≤ [ϑ(x) − ϑ(Tx)]RT(x, y), (1)

for all distinct x, y ∈ X, where

RT(x, y) = max
{

d(x, y),
D(x,Tx)D(y,Ty)

1 + d(x, y)

}
.

Theorem 1: Let (X, d) be a complete metric space and T : X −→ CB(X) be a multivalued mapping. Moreover,
if the following conditions are satisfied:

C1: T is a Jaggy-type bilateral multivalued contraction;

C2: there exists

K := sup {ϑ(x) − ϑ(Tx) : d(x, y) > 0}

where ϑ : X −→ R+, then there exists u ∈ X such that u ∈ Tu.
Proof: Let x0 ∈ X be arbitrary. Since T : X −→ CB(X), then Txo ∈ CB(X). This implies that Txo , ∅.

Therefore, there exists x1 ∈ X such that x1 ∈ Tx0. For this x1 ∈ X, Tx1 ∈ CB(X) implies that Tx1 , ∅. Hence,
there exists x2 ∈ X such that x2 ∈ Tx1. Similarly, Tx2 ∈ CB(X) implies that Tx2 , ∅. It follows that, there
exists x3 ∈ X such that x3 ∈ Tx2. Continuing in this manner, we construct a sequence {xn} in X such that
xn+1 = Txn, for n = 0, 1, 2, .... Note that if there exists n0 ∈ N such that xn0 = xn0+1, then xn0 ∈ Txn0+1 and the
proof is finished. Hence, we presume that xn , xn+1 for all n. By Lemma 1, for x1 ∈ Tx0, we can find x2 ∈ Tx1
such that

d(x1, x2) ≤ qH(Tx0,Tx1)
≤ q[ϑ(x0) − ϑ(x1)]RT(x0, x1)

= q[ϑ(x0) − ϑ(x1)] max{d(x0, x1),
D(x0,Tx0).D(x1,Tx1)

1 + d(x0, x1)
}

≤ q[ϑ(x0) − ϑ(x1)] max{d(x0, x1),
d(x0, x1).d(x1, x2)

1 + d(x0, x1)
}

≤ q[ϑ(x0) − ϑ(x1)] max{d(x0, x1),
d(x0, x1).d(x1, x2)

d(x0, x1)
}

≤ q[ϑ(x0) − ϑ(x1)] max{d(x0, x1), d(x1, x2)}
≤ qk max{d(x0, x1), d(x1, x2)}
≤ λmax{d(x0, x1), d(x1, x2)},

where λ ≤ qk < 1 . Hence, we see that

d(x1, x2) ≤ λmax{d(x0, x1), d(x1, x2)}

Thus, we have two cases to consider as follows:
Case 1: Suppose that the max{d(x0, x1), d(x1, x2)} = d(x0, x1). Then, we see that

d(x1, x2) ≤ λd(x0, x1).
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Case 2: Suppose that the max{d(x0, x1), d(x1, x2)} = d(x1, x2). We see that

d(x1, x2) ≤ λd(x1, x2)
(1 − λ)d(x1, x2) ≤ 0

d(x1, x2) ≤ 0,

and this is a contradiction. Similarly, by Lemma 1, for x2 ∈ Tx1, we can find x3 ∈ Tx2 such that

d(x2, x3) ≤ qH(Tx1,Tx2)
≤ q[ϑ(x1) − ϑ(x2)]RT(x1, x2)

= q[ϑ(x1) − ϑ(x2)] max{d(x1, x2),
D(x1,Tx1).D(x2,Tx2)

1 + d(x1, x2)
}

≤ q[ϑ(x1) − ϑ(x2)] max{d(x1, x2),
d(x1, x2).d(x2, x3)

1 + d(x1, x2)
}

≤ q[ϑ(x1) − ϑ(x2)] max{d(x1, x2),
d(x1, x2).d(x2, x3)

d(x1, x2)
}

≤ q[ϑ(x1) − ϑ(x2)] max{d(x1, x2), d(x2, x3)}
≤ qk max{d(x1, x2), d(x2, x3)}
≤ λmax{d(x1, x2), d(x2, x3)},

where λ ≤ qk < 1. Hence, we see that

d(x2, x3) ≤ λmax{d(x1, x2), d(x2, x3)}

Hence we have two cases to consider.
Case 1: Suppose that max{d(x1, x2), d(x2, x3)} = d(x1, x2).
We see that

d(x2, x3) ≤ λd(x1, x2).

Case 2: Suppose that the max{d(x1, x2), d(x2, x3)} = d(x2, x3). We see that

d(x2, x3) ≤ λd(x2, x3)
(1 − λ)d(x2, x3) ≤ 0

d(x2, x3) ≤ 0,

and this is a contradiction. Continuing in this manner inductively, we have

d(xn, xn+1) ≤ λnd(x0, x1).

Now, we show that, the sequence (xn) in X is Cauchy. Let m,n ∈Nwith n ≤ m, then

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xm−1, xm)
≤ λnd(x0, x1) + λn+1d(x0, x1) + ... + λm−1d(x0, x1)
= (λn + λn+1 + ... + λm−1)d(x0, x1)

=

n+i−1∑
i=n

λid(x0, x1)

≤

∞∑
i=n

λid(x0, x1)
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−→ 0 as n, m −→ ∞. Hence, (xn) in X is a Cauchy sequence. The completeness of (X, d) guarantees that we
can find u ∈ X such that xn −→ u as n −→ ∞. Now,

D(u,Tu) ≤ d(u, xn+1) +D(xn+1,Tu)
≤ d(u, xn+1) +H(Txn,Tu)
≤ d(u, xn+1) + [ϑ(xn) − ϑ(u)]RT(xn,u)

≤ d(u, xn+1) + [ϑ(xn) − ϑ(u)] max{d(xn,u),
D(xn,Txn).D(u,Tu)

1 + d(xn,u)
}

≤ d(u, xn+1) + [ϑ(xn) − ϑ(u)] max{d(xn,u),
d(xn, xn+1).D(u,Tu)

1 + d(xn,u)
}

≤ d(u, xn+1) + [ϑ(xn) − ϑ(u)] max{d(xn,u),
d(xn, xn+1).D(u,Tu)

d(xn,u)
}

≤ d(u, xn+1) + k max{d(xn,u),
d(xn, xn+1).D(u,Tu)

d(xn,u)
}.

Letting n −→ ∞ in the above inequality gives D(u,Tu) ≤ 0 + k max{0, 0} = 0. This implies that u ∈ Tu.
Definition 2: Let (X, d) be a metric space. A mapping T : X −→ CB(X) is called a Dass - Gupta type bilateral
multivalued contraction if there is a mapping ϑ : X −→ R+ such that, D(x,Tx) > 0 implies

H(Tx,Ty) ≤ [ϑ(x) − ϑ(Tx)]QT(x, y), (2)

for all x, y ∈ X, where

QT(x, y) = max {d(x, y),
(1 +D(x,Tx))D(y,Ty)

1 + d(x, y)
}.

Theorem 2: Let (X, d) be a complete metric space and T : X −→ CB(X) be a multivalued mapping.
Moreover, if the following conditions are satisfied:

C1: T is a Dass-Gupta type bilateral multivalued contraction;

C2: there exists k := sup {ϑ(x) − ϑ(Tx) : d(x, y) > 0},

where ϑ : X −→ R+, then there exists u ∈ X such that u ∈ Tu.
Proof: Let x0 ∈ X be arbitrary and defined a sequence (xn) in X by xn+1 ∈ Txn n = 0, 1, 2, .... Note that if
there exists n0 ∈ N such that xn0 = xn0+1, then xn0 ∈ Txn0+1 and the proof is finished. For this, assume that
xn , xn+1 for all n. By Lemma 1, for x1 ∈ Tx0, we can find x2 ∈ Tx1 such that

d(x1, x2) ≤ qH(Tx0,Tx1)
≤ q[ϑ(x0) − ϑ(x1)]QT(x0, x1)

= q[ϑ(x0) − ϑ(x1)] max{d(x0, x1),
(1 +D(x0,Tx0)).D(x1,Tx1)

1 + d(x0, x1)
}

≤ q[ϑ(x0) − ϑ(x1)] max{d(x0, x1),
(1 + d(x0, x1)).d(x1, x2)

1 + d(x0, x1)
}

≤ q[ϑ(x0) − ϑ(x1)] max{d(x0, x1), d(x1, x2)}
≤ qk max{d(x0, x1), d(x1, x2)}
≤ λmax{d(x0, x1), d(x1, x2)},

where λ ≤ qk < 1. Therefore, we see that

d(x1, x2) ≤ λmax{d(x0, x1), d(x1, x2)}.
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We investigate two cases as follows:
Case 1: Suppose that max{d(x0, x1), d(x1, x2)} = d(x0, x1). We see that d(x1, x2) ≤ λd(x0, x1).
Case 2: Suppose that the max{d(x0, x1), d(x1, x2)} = d(x1, x2). We see that

d(x1, x2) ≤ λd(x1, x2)
(1 − λ)d(x1, x2) ≤ 0

d(x1, x2) ≤ 0

and this is a contradiction. Similarly, by Lemma 1, for x2 ∈ Tx1, we can find x3 ∈ Tx2 such that

d(x2, x3) ≤ qH(Tx1,Tx2)
≤ q[ϑ(x1) − ϑ(x2)]QT(x1, x2)

= q[ϑ(x1) − ϑ(x2)] max{d(x1, x2),
(1 +D(x1,Tx1)).D(x2,Tx2)

1 + d(x1, x2)
}

≤ q[ϑ(x1) − ϑ(x2)] max{d(x1, x2),
(1 + d(x1, x2)).d(x2, x3)

1 + d(x1, x2)
}

≤ q[ϑ(x1) − ϑ(x2)] max{d(x1, x2), d(x2, x3)}
≤ qk max{d(x1, x2), d(x2, x3)}
≤ λmax{d(x1, x2), d(x2, x3)},

where λ ≤ qk < 1, and hence

d(x2, x3) ≤ λmax{d(x1, x2), d(x2, x3)}

Again, we consider two cases as follows:
Case 1: Suppose that the max{d(x1, x2), d(x2, x3)} = d(x1, x2)
We see that d(x2, x3) ≤ λd(x1, x2).
Case 2: Suppose that the max{d(x1, x2), d(x2, x3)} = d(x2, x3). We see that

d(x2, x3) ≤ λd(x2, x3)
(1 − λ)d(x2, x3) ≤ 0

d(x2, x3) ≤ 0,

and this is a contradiction. Continuing in this manner inductively, we have

d(xn, xn+1) ≤ λnd(x0, x1).

Now, we show that the sequence (xn) in X is Cauchy. Let m,n ∈Nwith n ≤ m, then

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xm−1, xm)
≤ λnd(x0, x1) + λn+1d(x0, x1) + ... + λm−1d(x0, x1)
= (λn + λn+1 + ... + λm−1)d(x0, x1)

=

n+i−1∑
i=n

λid(x0, x1)

≤

∞∑
i=n

λid(x0, x1)

−→ 0 as n, m −→ ∞. Hence, (xn) in X is a Cauchy sequence. The completeness of (X, d) guarantees u ∈ X
such that xn −→ u as n −→ ∞.
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Now,

D(u,Tu) ≤ d(u, xn+1) +D(xn+1,Tu)
≤ d(u, xn+1) +H(Txn,Tu)
≤ d(u, xn+1) + [ϑ(xn) − ϑ(u)]QT(xn,u)

≤ d(u, xn+1) + [ϑ(xn) − ϑ(u)] max{d(xn,u),
(1 +D(xn,Txn)).D(u,Tu)

1 + d(xn,u)
}

≤ d(u, xn+1) + [ϑ(xn) − ϑ(u)] max{d(xn,u),
(1 + d(xn, xn+1)).D(u,Tu)

1 + d(xn,u)
}

≤ d(u, xn+1) + k max{d(xn,u),
(1 + d(xn, xn+1)).D(u,Tu)

1 + d(xn,u)
}.

Letting n −→ ∞ in the above inequality gives

D(u,Tu) ≤ 0 + k max{0,D(u,Tu)}
≤ kD(u,Tu)

(1 − k)D(u,Tu) ≤ 0
D(u,Tu) ≤ 0.

This implies that u ∈ Tu.
Definition 3: Let (X, d) be a metric space. A mapping T : X −→ CB(X) is called a Ciric - Caristi type

bilateral multivalued contraction if there is a mapping ϑ : X −→ R+ such that D(x,Tx) > 0 implies

H(Tx,Ty) ≤ [ϑ(x) − ϑ(Tx)]N(x, y), (3)

for all x, y ∈ X, where

N(x, y) = max {d(x, y),D(x,Tx),D(y,Ty),D(x,Ty),D(y,Tx)}.

Theorem 3: Let (X, d) be a complete metric space and T : X −→ CB(X) be a multivalued mapping. Moreover,
if the following conditions are satisfied;

CR1: T is a Ćirić - Caristi type bilateral multivalued contraction;

CR2: there exists

k := Sup{ϑ(x) − ϑ(Tx) : d(x, y) > 0},

where ϑ : X −→ R+, then there exists u ∈ X such that u ∈ Tu.
Proof: Let x0 ∈ X be arbitrary and define a sequence (xn) in X by xn+1 ∈ Txn n = 0, 1, 2, .... Note that if
there exists n0 ∈ N such that xn0 = xn0+1, then xn0 ∈ Txn0+1 and the proof is finished. For this, assume that
xn , xn+1 for all n. By Lemma 1, for x1 ∈ Tx0, we can find x2 ∈ Tx1 such that

d(x1, x2) ≤ qH(Tx0,Tx1)
≤ q[ϑ(x0) − ϑ(x1)]N(x0, x1)
= q[ϑ(x0) − ϑ(x1)] max{d(x0, x1),D(x0,Tx0),D(x1,Tx1),D(x1,Tx0),D(x0,Tx1)}
≤ q[ϑ(x0) − ϑ(x1)] max{d(x0, x1), d(x0, x1), d(x1, x2), d(x1, x1), d(x0, x2)}
≤ q[ϑ(x0) − ϑ(x1)] max{d(x0, x1), d(x1, x2), d(x0, x2)}
≤ qk max{d(x0, x1), d(x1, x2), d(x0, x2)}
≤ λmax{d(x0, x1), d(x1, x2), d(x0, x2)}
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where λ ≤ qk < 1, and hence

d(x1, x2) ≤ λmax{d(x0, x1), d(x1, x2), d(x0, x2)}
≤ λmax{d(x0, x1), d(x1, x2), d(x0, x1) + d(x1, x2)}
≤ λ[d(x0, x1) + d(x1, x2)]
= λd(x0, x1) + λd(x1, x2)

(1 − λ)d(x1, x2) = λd(x0, x1)

d(x1, x2) ≤ (
λ

1 − λ
)d(x0, x1).

Similarly, by Lemma 1, for x2 ∈ Tx1, we can find x3 ∈ Tx2 such that

d(x2, x3) ≤ qH(Tx1,Tx2)
≤ q[ϑ(x1) − ϑ(x2)]N(x1, x2)
= q[ϑ(x1) − ϑ(x2)] max{d(x1, x2),D(x1,Tx1),D(x2,Tx2),D(x2,Tx1),D(x1,Tx2)}
≤ q[ϑ(x1) − ϑ(x2)] max{d(x1, x2), d(x1, x2), d(x2, x3), d(x2, x2), d(x1, x3)}
≤ q[ϑ(x1) − ϑ(x2)] max{d(x1, x2), d(x2, x3), d(x1, x3)}
≤ qk max{d(x1, x2), d(x2, x3), d(x1, x3)}
≤ λmax{d(x1, x2), d(x2, x3), d(x1, x3)},

where λ ≤ qk < 1, and hence

d(x2, x3) ≤ λmax{d(x1, x2), d(x2, x3), d(x1, x3)}
≤ λmax{d(x1, x2), d(x2, x3), d(x1, x2) + d(x2, x3)}
≤ λ[d(x1, x2) + d(x2, x3)]
= λd(x1, x2) + λd(x2, x3)]

(1 − λ)d(x2, x3) = λd(x1, x2)

d(x2, x3) ≤
λ

1 − λ
d(x1, x2)

≤
λ

1 − λ
(
λ

1 − λ
d(x0, x1))

= (
λ

1 − λ
)
2

d(x0, x1).

Continuing in this manner inductively, we have

d(xn, xn+1) ≤ (
λ

1 − λ
)
n

d(x0, x1).

Now, we show that the sequence (xn) in X is Cauchy. Let m,n ∈Nwith n ≤ m, then

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xm−1, xm)

≤ (
λ

1 − λ
)
n

d(x0, x1) + (
λ

1 − λ
)
n+1

d(x0, x1) + ... + (
λ

1 − λ
)
m−1

d(x0, x1)

= [(
λ

1 − λ
)
n

+ (
λ

1 − λ
)
n+1

+ ... + (
λ

1 − λ
)
m−1

]d(x0, x1)

=

n+i−1∑
i=n

[
λ

1 − λ
)
i

d(x0, x1]

≤

∞∑
i=n

[
λ

1 − λ
]
i

d(x0, x1)
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−→ 0 as n, m −→ ∞. Hence, (xn) in X is a Cauchy sequence. The completeness of (X, d) guarantees u ∈ X
such that xn −→ u as n −→ ∞. Now,

D(u,Tu) ≤ d(u, xn+1) +D(xn+1,Tu)
≤ d(u, xn+1) +H(Txn,Tu)
≤ d(u, xn+1) + [ϑ(xn) − ϑ(u)]N(xn,u)
≤ d(u, xn+1) + [ϑ(xn) − ϑ(u)] max{d(xn,u),D(xn,Txn),D(u,Tu),

D(u,Txn),D(xn,Tu)}
≤ d(u, xn+1) + k max{d(xn,u),D(xn,Txn),D(u,Tu),D(u,Txn),D(xn,Tu)}.

Letting n −→ ∞ in the above inequality gives,

D(u,Tu) ≤ 0 + k max{d(u,u),D(u,Tu),D(u,Tu),D(u,Tu),D(u,Tu)}
≤ k max{0,D(u,Tu)}
≤ kD(u,Tu)

(1 − k)D(u,Tu) ≤ 0
D(u,Tu) ≤ 0.

This implies that u ∈ Tu.

Example: Let X = {(3, 3), (3, 4), (5, 5)} be equipped with the taxicab metric d : X × X −→ R, given by

d((x1, x2), (y1, y2)) = |x1 − y1| + |x2 − y2|.

Obviously, (X, d) is a complete metric space. Consider a multivalued mapping T : X −→ CB(X) defined as
follows:

Tx =
{

(3, 4) if x = (3, 3),
(5, 5) if x , (3, 3).

Also, defined ϑ : X −→ R as follows: ϑ(3, 3) = 16, and ϑ(3, 4) = 10. Now, we examine the following cases:
Case I: for x = (3, 3), we have

D((3, 3),T(3, 3)) = inf{d((3, 3), y) : y ∈ T(3, 3)}
= d((3, 3), (3, 4))
= 1.

Case II: for x = (3, 4), we have

D((3, 4),T(3, 4)) = inf{d((3, 4), y) : y ∈ T(3, 4)}
= d((3, 4), (5, 5))
= 3.

Case III: for x = (5, 5), we have

D((5, 5),T(5, 5)) = inf{d((5, 5), y) : y ∈ T(5, 5)}
= d((5, 5), (5, 5))
= 0.

Now, for x ∈ X with D(x,Tx) > 0 i.e
x ∈ {(3, 3), (3, 4)}, we have
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H(T(3, 3),T(3, 4)) = H((3, 3), (3, 4)) = 3, ϑ(3, 3) − ϑ(3, 4) = 6,

RT((3, 3), (3, 4)) = max{d((3, 3), (3, 4)),
D((3, 3),T(3, 3))D((3, 4),T(3, 4))

1 + d((3, 3), (3, 4))
}

= max{1,
1.3

1 + 1
}

= max{1,
3
2
}

=
3
2
.

Hence,
H(T(3, 3),T(3, 4)) = 3 ≤ 6( 3

2 ) = [ϑ(3, 3) − ϑ(3, 4)]RT((3, 3), (3, 4)).
Thus, for all x, y ∈ X with x , y, D(x,Tx) > 0 and D(y,Ty) > 0 imply H(Tx,Ty) ≤ [ϑ(x) − ϑ(Tx)]RT(x, y),
where RT(x, y) = max{d(x, y), D(x,Tx)D(y,Ty)

1+d(x,y) }. It follows that all the hypotheses of Theorem 1 are satisfied. We
see that T has a fixed point.

By defining the multivalued mapping T : X −→ CB(X) as Tx = {1x}, for all x ∈ X, where 1 : X −→ X is a
single valued mapping, we have the following result.

Corollary 3.1. [16] Suppose that 1 is continuous and forms a Jaggi-type bilateral contraction on a complete metric
(X, d). Then, 1 possesses at least a fixed point.

Corollary 3.2. [16] Suppose that 1 forms a Dass-Gupta-type bilateral contraction on a complete metric (X, d). Then,
1 possesses at least a fixed point

Corollary 3.3. [17] Suppose that 1 is a self-mapping on a complete metric space (X, d). If there is a map-
ping ϑ : X −→ R+ such that d(x, 1x) > 0 implies d(1x, 1y) ≤ [ϑ(x) − ϑ(1x)]N(x, y), in which N(x, y) =
max {d(x, y), d(x, 1x), d(y, 1y), d(x, 1y), d(y, 1x)}. for all x, y ∈M. Then, 1 has a fixed point in X.

4. Conclusion

This paper broadened the scope of fixed point theory of multivalued mappings by incorporating the
bilateral approaches. To this end, Jaggi-type bilateral multivalued contraction, Dass-Gupta type bilateral
multivalued contraction and Ciric-Caristi type multivalued contraction are initiated and the corresponding
fixed point theorems are proved, with example illustrating the hypotheses of the main results. The ideas
in this work, being discussed in the setting of metric spaces, are completely fundamental. Hence, they can
be improved upon when presented in the framework of generalized metric spaces such as b-metric spaces,
F-metric spaces and some other pseudo-metric or quasi metric spaces.
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[25] Noorwali, M., Yeşilkaya, S. S. (2021). On Jaggi-Suzuki-type hybrid contraction mappings. Journal of Function Spaces, 2021, 1-7
[26] Shagari, M. S., Foluke, U. I, Yahaya, S., Fulatan, I. A. (2021). New Multi-valued Contractions with Applications in Dynamic

Programming. International Journa of Mathematical Sciences and Optimization: Theory and Applications, 6(2), 924 - 938.
[27] Shagari, M. S., Yahaya, S., Fulatan I. A. (2022). On Fixed Point results in F-metric space with applications to neutral differential

equations. Mathematical Analysis and its Contemporary Applications, 4(3), 47 – 62.
[28] Karapınar, E., Fulga, A. (2022). Discussion on the hybrid Jaggi-Meir-Keeler type contractions. AIMS Mathematics, 7(7), 12702-

12717.
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