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Abstract. In the setup of metric spaces, many recent studies established a significant variety of control type
mappings and illustrated some fixed point results. To represent various contractivity conditions, Khojasteh
et al. have established the idea of a simulation function and came up with certain conclusions about the
fixed point. For two nonlinear operators utilizing this type of control function, in this study we explore the
existence of the best proximity coincidence point in this study by generalizing the concept of simulation
functions. Finally, we applied our results for a new type of nonlinear integral equations.

1. Introduction and preliminaries

LetΩ be a metric space and let Γ,S : Ω→ Ω be two mappings. A point x ∈ X is called a fixed point of Γ
if Γx = x and a point x ∈ Ω is called a coincidence point of Γ and S if Γx = Sx. Also, a point x ∈ Ω is called a
common fixed point of Γ and S if Γx = Sx = x. Suppose that A and B be nonempty subsets of Ω. Let:

A◦ = {u ∈ A : d(u, v) = d(A,B) f or some v ∈ B},
B◦ = {v ∈ B : d(u, v) = d(A,B) f or some u ∈ A}.

If there is a pair (ϑ◦, ς◦) ∈ A × B for which d(ϑ◦, ς◦) = d(A,B), where d(A,B) is the distance between A and
B, then the pair (ϑ◦, ς◦) is said to be a best proximity pair for (A,B). Best proximity pair evolves as an
expansion of the concept of best approximation.

The best proximity points of (A,B) can be find by considering a map Γ : A∪B→ A∪B. A point u ∈ A∪B
is called a best proximity point of the pair (A,B), if d(u,Γu) = d(A,B) and the family of all best proximity
points of (A,B), PΓ(A,B), is

PΓ(A,B) = {u ∈ A ∪ B : d(u,Γu) = d(A,B)}.
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The best proximity point is also an expansion of the concept of fixed-point because, if A∩B , ∅, then every
best proximity point is a fixed point of Γ. There are a number of contributing publications on the subject
of fixed points and common fixed-point theorems (see [7–9, 20, 25, 28]). Common best proximity points
have become one of the most studied topics in the field of fixed point theory. These notions generalize
the concept of a common fixed point and allow us to deal with non-self-mappings. There are many more
results on common best proximity points in the literature; for instance, we can see [10, 24, 30].

Eldred et al. [11] and Sankar Raj et al. [32] presented a best proximity point theorem for relatively
nonexpansive mappings. A best proximity point theorem for contraction mappings has been obtained by
Basha [31]. The best proximity point theorems for various variants of contractions have been explored in
[12, 14, 15, 17–19, 26].

Recently, Khojasteh et al. have explained in [23] the idea of the simulation function in order to express
different contractivity conditions. Hence, it could be possible to treat several fixed-point problems from
a unique common point of view. Furthermore, Roldan et al. in [29] slightly modified their notion of
simulation functions, and they have investigated the existence and uniqueness of coincidence points for
two nonlinear operators by using this kind of control functions.

Karapınar has introduced new fixed point results via simulation functions [22]. Alsubaie et al. extended
the simulation function via rational expressions [4]. Heidary et al. gave a common fixed-point theorem for
Suzuki-type contractions via generalizedΨ-simulation functions [16]. Agarwal et al. introduced the notion
of interpolative Rus-Reich-Ćirić type Z-contractions in the setting of complete metric spaces, and they
considered some immediate consequences of their results [1]. Alqahtani et al. investigated the existence of
a fixed point for some contractions with the help of simulation functions [3, 4]. In continuation, Alghamdi
et al. gave a note on extendedZ-contraction.

Gabeleh et al. proposed a new type of simulation functions and, using Meir-Keeler condensing operators
and the notion of measure of non-compactness, established a new generalisation of Darbo’s fixed point
theorem [13]. Monfared et al. [27] introducedαµ-admissible mappings, Zµ-contractions and Nµ-contractions
via simulation functions. They proved some new fixed-point theorems for some classes of contractions via
α-admissible simulation mappings as well. The existence of fixed points for certain operators via simulation
functions has been investigated in the context of complete M-metric spaces by Asadi et al. [5]. Also, Asadi
et al. gave a new approach to generalising Darbo’s fixed point problem by using simulation functions with
an application to integral equations [6].

At the end, Karapınar and Khojasteh have investigated the existence of the best proximity points of
certain mappings via simulation functions in the framework of complete metric spaces.

Definition 1.1. [29] A simulation function is a mapping ξ : [0,∞)×[0,∞)→ R satisfying the following conditions:
(1) ξ(0, 0) = 0;
(2) ξ(t, s) < s − t for all t, s > 0;
(3) if {tn} and {sn} be sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0 and tn < sn, then lim sup

n→∞
ξ(tn, sn) < 0.

Suppose Z be the set of all simulation functions. Now, in the following we give a new generalization of
the simulation functions.

Definition 1.2. Let α be an arbitrary positive real number. An α-simulation function is a mapping ξα : [α,∞) ×
[α,∞)→ R which is satisfying the following conditions:
(1) ξα(α, α) = 0;
(2) ξα(t, s) < s − t for all t, s > α;
(3) if {tn} and {sn} be sequences in (α,∞) such that limn→∞ tn = limn→∞ sn > α, then lim sup

n→∞
ξα(tn, sn) < 0.

Let Zα be the set of all α-simulation functions. Before presenting our main results using simulation
functions, we give some examples.
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Example 1.3. Let α > 0, k ∈ [0, 1) and let ξα : [α,∞) × [α,∞)→ R be the function defined by:

ξα(t, s) =

2(s − t), if s < t,
k(s − α) − (t − α), otherwise.

Then ξα is an α-simulation function. Verification of (1) and (2) follows from
α < s < t ⇒ ξα(t, s) = 2(s − t) < s − t,

α < t ≤ s ⇒ ξα(t, s) = k(s − α) − (t − α) < (s − α) − (t − α).

Example 1.4. Let α > 0, k ∈ [0, 1) and let ξα : [α,∞) × [α,∞)→ R be the function defined by:

ξα(t, s) =

2(s − t), if s < t,
√

sα − t, otherwise.

Then ξα is an α-simulation function.

Example 1.5. Let ϕ and φ be two altering distance functions such that φ(t) < t ≤ ϕ(t) for all t > 0. Then the
mapping

ξα(t, s) = φ(s) − ϕ(t), ∀ t, s ∈ [α,∞)

is an α-simulation function. If, in the previous example, ϕ(t) = t and φ(t) = kt + (1 − k)α for all t > 0, where
k ∈ [0, 1), then we obtain the following particular case of simulation functions:

ξα(t, s) = ks + (1 − k)α − t, ∀ t, s ∈ [α,∞).

Example 1.6. If ϕ : [α,∞)→ [0,∞) be a continuous function such that ϕ(t) = 0 iff t = α, and we put

ξα(t, s) = s − ϕ(s) − t, ∀ s, t ∈ [α,∞),

then ξα is an α-simulation function.

2. Main Results

In this section, we use the notion of α-simulation function for finding the best proximity pairs, best
proximity points and best proximity coincidence points for a non-self-mapping defined on a metric space.

Definition 2.1. Let (Ω, d) be a metric space, A,B be nonempty subsets of Ω and let Γ,S : A ∪ B → A ∪ B be two
mappings. Let α = d(A,B). We say that the pair of operators (Γ,S) is a pair of cyclic (Z)-contractions if

Γ(A) ⊆ S(B) ⊆ B, Γ(B) ⊆ S(A) ⊆ A

and there exists a pair (ξ, ξα) ∈ Z ×Zα such that

ξ(d(Γx,Γy), d(Sx,Sy)) ≥ 0, ∀ x, y ∈ A, or x, y ∈ B such that d(Sx,Sy) > 0,

and
ξα(d(Γx,Γy), d(Sx,Sy)) ≥ 0, ∀ x ∈ A and ∀ y ∈ B such that d(Sx,Sy) > α.

Definition 2.2. Let (Ω, d) be a metric space. Given two mappings Γ,S : A ∪ B→ A ∪ B, we say that {κn} ⊆ Ω is a
Picard sequence of the pair of cyclic (Z)-contractions (Γ,S) if

Sκn+1 = Γκn.

Since Γ(A) ⊆ S(B) ⊆ B and Γ(B) ⊆ S(A) ⊆ A, it is well known that there is a Picard sequence of (Γ,S) for every point
κ0 ∈ A. Also, if κ0 ∈ A, then we have {κ2n} ⊆ A and {κ2n+1} ⊆ B.
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Definition 2.3. Let A and B be nonempty subsets of a metric space Ω and let Γ,S : A ∪ B→ A ∪ B. A point x ∈ A
is called a best proximity coincidence point (BPC point) of the pair (Γ,S) if

d(Γx,Sx) = d(A,B).

Of course, on the other hand, (Γx,Sx) is a best proximity pair. It is notable that if we have A∩ B , ∅, the point x ∈ A
is a coincidence point of (Γ,S), i.e., Γx = Sx. Also, if we have S = I (i.e., the identity mapping), then the point x ∈ A
is a best proximity point of Γ. Finally, if we have A ∩ B , ∅ and S be the identity mapping, then the point x ∈ A is a
fixed point of Γ.

In the following, we give the main theorem of this section.

Theorem 2.4. Let (Ω, d) be a metric space, A,B nonempty closed subsets of Ω and let Γ,S : A ∪ B → A ∪ B be
mappings such that (Γ,S) be a pair of cyclic (Z)-contractions in (Ω, d) and suppose that there exists a Picard sequence
{κn}n≥0 of (Γ,S). Also assume that (Γ(A), d) or (S(B), d) is complete. Then (Γ,S) have, at least, a BPC point.

Proof. If {κn}n≥0 contains a BPC point of (Γ,S), then the proof is finished. Suppose that {κn}n≥0 does not
contain any BPC point of (Γ,S), that is,

d(Sκn,Sκn+1) > d(A,B), ∀ n ≥ 0.

We divide the proof into four steps.
Step 1. We claim that lim

n→∞
d(Sκn,Sκn+1) = d(A,B).Using the definition of the α-simulation function, we have

0 ≤ ξα(d(Γκn,Γκn+1), d(Sκn,Sκn+1)) = ξα(d(Sκn+1,Sκn+2), d(Sκn,Sκn+1))

< d(Sκn,Sκn+1) − d(Sκn+1,Sκn+2),

which means that d(A,B) ≤ d(Sκn+1,Sκn+2) < d(Sκn,Sκn+1) for all n ∈N. Let dn = d(Sκn,Sκn+1), then {dn} is a
non-increasing sequence of nonnegative real numbers, hence it is convergent. Let r = limn→∞ dn. We prove
r = d(A,B). If tn := dn+1 and sn := dn, then tn < sn and so lim supn→∞ ξα(tn, sn) < 0, which is a contradiction.
Therefore, d(A,B) = limn→∞ dn.

Step 2. In this step, we prove that limn→∞ d(Sκn−1,Sκn+1) = 0.Using the definition of the simulation function,
we have

0 ≤ ξ(d(Γκn−1,Γκn+1), d(Sκn−1,Sκn+1)) = ξ(d(Sκn,Sκn+2), d(Sκn−1,Sκn+1))

< d(Sκn−1,Sκn+1) − d(Sκn,Sκn+2),

which means that 0 ≤ d(Sκn,Sκn+2) < d(Sκn−1,Sκn+1) for all n ∈ N. Let bn = d(Sκn−1,Sκn+1), then {bn} is a
non-increasing sequence of nonnegative real numbers, so it is convergent. Let δ = limn→∞ bn. We prove
that δ = 0. If tn := bn+1 and sn := bn, then tn < sn and so lim supn→∞ ξ(tn, sn) < 0, which is a contradiction.
Therefore, limn→∞ bn=0.

Step 3. We claim that {Sκ2n} is Cauchy in (Ω, d). We reason by contradiction. Suppose that {Sκ2n} is not
Cauchy in (Ω, d). Hence, there is ϵ0 > 0 such that for all k ∈N there exist mk,nk ∈N so that mk > nk ≥ k and
d(Sκ2mk ,Sκ2nk ) ≥ ϵ0.

We can assume that mk is the smallest index for which the above relation is valid, that is,

d(Sκ2m(k)−2),Sκ2n(k)) < ϵ0 ∀ k ∈N. (1)

By using (1), we deduce that

ϵ0 ≤ d(Sκ2m(k),Sκ2n(k))
≤ d(Sκ2m(k),Sκ2m(k)−2) + d(Sκ2m(k)−2,Sκ2n(k))
< d(Sκ2m(k),Sκ2m(k)−2) + ϵ0,
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for all k ∈N and also using step 1, it follows that

ϵ0 = lim
k→∞

d(Sκ2m(k),Sκ2n(k)).

Moreover, by

d(Sκ2m(k),Sκ2n(k)) ≤ d(Sκ2m(k),Sκ2m(k)+2) + d(Sκ2m(k)+2,Sκ2n(k)+2) + d(Sκ2n(k)+2,Sκ2n(k))

and
d(Sκ2m(k)+2,Sκ2n(k)+2) ≤ d(Sκ2m(k)+2,Sκ2m(k)) + d(Sκ2m(k),Sκ2n(k)) + d(Sκ2n(k),Sκ2n(k)+2)

for all k ∈N and also using step 1, it follows that

ϵ0 = lim
k→∞

d(Sκ2m(k)+2,Sκ2n(k)+2).

In particular, there is n1 ∈N such that

d(Sκ2m(k),Sκ2n(k)) > ϵ0/2 > 0, d(Sκ2m(k)+2,Sκ2n(k)+2) > ϵ0/2 > 0, ∀ k ≥ n1.

Using the fact that the pair (Γ,S) is a pair of cyclicZ-contractions with respect to ξ, we deduce that

0 ≤ ξ(d(Γκ2m(k)+2,Γκ2n(k)+2), d(Sκ2m(k),Sκ2n(k)))
= ξ(d(Sκ2m(k)+3,Sκ2n(k)+3), d(Sκ2m(k),Sκ2n(k)))
< d(Sκ2m(k),Sκ2n(k)) − d(Sκ2m(k)+3,Sκ2n(k)+3)

∀ k ≥ n1.
In particular,

0 < d(Sκ2m(k)+1,Sκ2n(k)+1) < d(Sκ2m(k),Sκ2n(k)), ∀ k ≥ n1.

Employ the sequences tk = d(Sκ2m(k)+1,Sκ2n(k)+1) and sk = d(Sκ2m(k),Sκ2n(k)). Then tk < sk and lim supk→∞ ξ(tk, sk) <
0, which is a contradiction. Therefore, we must admit that the sequence {Sκ2n} is Cauchy in (Ω, d).

Step 4. Now, we prove that (Γ,S) have a BPC point. Note that Sκ2n+1 = Γκ2n ∈ Γ(A) ⊆ S(B). Since S(B) is
complete, there is u ∈ S(B) such that Sκ2n+1 → u, that is,

lim
n→∞

d(Sκ2n+1,u) = 0 and so lim
n→∞

d(Γκ2n,u) = 0. (2)

Let v ∈ B be a point such that Sv = u. We are going to show that v is a BPC point of (Γ,S). Now,

d(A,B) ≤ d(Sv,Γκ2n−1) ≤ d(Sv,Γκ2n) + d(Γκ2n,Γκ2n−1).

Thus, by step 1 and (2) we infer that d(Sv,Γκ2n−1) converges to d(A,B). On the other hand,

0 ≤ ξ(d(Γκ2n−1,Γv), d(Sκ2n−1,Sv)) < d(Sκ2n−1,Sv) − d(Γκ2n−1,Γv),

and so
d(Γκ2n−1,Γv) < d(Sκ2n−1,Sv), ∀ n ∈N.

Therefore

lim
n→∞

d(Γκ2n−1,Γv) = 0. (3)

Hence,
d(A,B) ≤ d(Sv,Γv) ≤ d(Sv,Γκ2n−1) + d(Γκ2n−1,Γv).

Hence, if n→∞ by (2) and (3) we have d(Sv,Γv) = d(A,B).

In the following we give some consequences of Theorem 2.4.



M. Paunović et al. / Filomat 38:8 (2024), 2847–2856 2852

Corollary 2.5. Let (Ω, d) be a metric space, A,B nonempty closed subsets of Ω and let Γ,S : A ∪ B → A ∪ B be
mappings such that Γ(A) ⊆ S(B) ⊆ B and Γ(B) ⊆ S(A) ⊆ A and suppose that there exists a Picard sequence {κn}n≥0
of (Γ,S). If ϕ and φ be two altering distance functions such that φ(t) < t ≤ ϕ(t) for every t > 0 and

ϕ(d(Γx,Γy)) ≤ φ(d(Sx,Sy)), ∀ x, y ∈ A or x, y ∈ B

and
d(Γx,Γy) ≤ kd(Sx,Sy) + (1 − k)d(A,B), ∀ x ∈ A, y ∈ B,

also assume that (Γ(A), d) or (S(B), d) is complete, then (Γ,S) have a BPC point.

Proof. It follows from Theorem 2.4 using the simulation function ξ(t, s) = φ(s) − ϕ(t) for all s, t ∈ [0,∞), and
α-simulation function ξα(t, s) = ks + (1 − k)α − t for all s, t ∈ [α,∞).

Corollary 2.6. Let (Ω, d) be a metric space, A,B nonempty closed subsets of Ω and let Γ : A ∪ B → A ∪ B be a
mapping such that Γ(A) ⊆ B and Γ(B) ⊆ A. Let ϕ and φ be two altering distance functions such that φ(t) < t ≤ ϕ(t)
for every t > 0 and

ϕ(d(Γx,Γy)) ≤ φ(d(x, y)), ∀ x, y ∈ A or x, y ∈ B

and
d(Γx,Γy) ≤ kd(x, y) + (1 − k)d(A,B), ∀ x ∈ A, y ∈ B.

Also, assume that (Γ(A), d) is complete. Then Γ have a best proximity point.

Proof. It follows from Corollary 2.5, if S be the identity mapping on Ω.

Theorem 2.7. Let A and B be two nonempty closed and convex subsets of a strictly convex Banach space Ω. Let
Γ,S : A ∪ B → A ∪ B be mappings such that (Γ,S) be a cyclic Z-contraction. Also, assume that Γ(A) or S(B) is
complete. Then (Γ,S) have a unique BPC point.

Proof. By Theorem 2.4 (Γ,S) have at least a BPC point. Suppose that x, y ∈ A such that x , y. Since A
and B are convex, Γx+Γy

2 ∈ B and Sx+Sy
2 ∈ A. Also, since ∥Γx − Sx∥ = d(A,B) and ∥Γy − Sy∥ = d(A,B), then

from strictly convexity assumption of Banach space Ω, ∥ Γx+Γy
2 −

Sx+Sy
2 ∥ < d(A,B), which is a contradiction.

Therefore, x = y. Hence, the proof is completed.

In the following, we give some examples for finding the BPC point.

Example 2.8. Let A and B be subsets of R2 defined by

A = {(x, 0) : x ≥ 1}, B = {(0, y) : y ≥ 1}.

Suppose that
Γ(x, y) = ( 4

√
y, 4√x), S(x, y) = (

√
x,
√

y)

and

ξ(s, t) = ks − t, ξα(s, t) =
√
√

2s − t

where k ∈ [0, 1).
Then (Γ,S) is a cyclicZ-contraction on R2 and ∥Γ(1, 0)− S(1, 0)∥ = d(A,B). Here, d(A,B) =

√
2. For (x, 0) ∈ A

and (0, y) ∈ B we put
t = ∥Γ(x, 0) − Γ(0, y)∥, s = ∥S(x, 0) − S(0, y)∥.

Hence
t =
√
√

x +
√

y, s =
√

x + y.

Since √
√

x +
√

y ≤
√
√

2
√

x + y,
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therefore

ξα(s, t) =
√
√

2s − t < s − t, f or all s, t >
√

2 = d(A,B)

and so ξα is a α-simulation function.

Example 2.9. Let A and B be subsets of R2 defined by,

A = [1, 2] × [1, 2], B = [−2,−1] × [−2,−1]

and x◦ ∈ A. Define mappings Γ,S : A ∪ B→ A ∪ B by

Γ(x, y) =


(− x

3 −
2
3 ,−

y
3 −

2
3 ), (x, y) ∈ A,

(− x
3 +

2
3 ,−

y
3 +

2
3 ), (x, y) ∈ B,

(4)

S(x, y) =


( x

2 +
1
2 ,

y
2 +

1
2 ), (x, y) ∈ A,

( x
2 −

1
2 ,

y
2 −

1
2 ), (x, y) ∈ B.

(5)

Obviously, Γ(A) ⊆ S(B) ⊆ B and Γ(B) ⊆ S(A) ⊆ A. Initially, we show that

∥Γ(x, y) − Γ(u,w)∥ ⩽ ∥S(x, y) − S(u,w)∥,

for all (x, y) ∈ A and (u,w) ∈ B. We have

∥Γ(x, y) − Γ(u,w)∥ = ∥(−
x
3
−

2
3
− [−

u
3
+

2
3

],−
y
3
−

2
3
− [−

w
3
+

2
3

])∥

⩽

√
|
u − x

3
−

4
3
|2 + |

w − y
3
−

4
3
|2

⩽

√
|
u − x

2
− 1|2 + |

w − y
2
− 1|2

⩽ ∥S(x, y) − S(u,w)∥,

and S(x∗, y∗) = (x∗, y∗) = (1, 1) such that

∥Γ(x∗, y∗) − S(x∗, y∗)∥ = ∥(1, 1) − (−1,−1)∥ = 2
√

2 = dist(A,B).

3. An application to integral equations

In this section, we apply Corollary 2.6 to study the existence and uniqueness of a solution to a new kind
of nonlinear integral equations. Let f : [−b, b] × R → R and G : [−b, b] × [−b, b] → [0,∞) are continuous
functions. Let X = C([−b, b],R) be the set of real continuous functions on [−b, b]. We endow X with the
standard norm

∥u∥∞ = max
t∈[−b,b]

|u(t)|.

It is well known that (X, ∥.∥∞) is a Banach space. For 0 < a < b, we consider the nonlinear integral equation

∥u(t) −
∫ b

−b
G(t, s) f (s,u(s))ds∥ = 2a,∀ t ∈ [a, b]. (6)

We suppose that

sup
t∈[−b,b]

∫ b

a
|G(t, s)|ds ≤ 1. (7)
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Also, we suppose

−b ≤
∫ b

a
G(−t, s) f (s,u(s))ds ≤ −a,∀ t ∈ [a, b], (8)

and

a ≤
∫ b

a
G(t,−s) f (−s,u(−s))ds ≤ b,∀ t ∈ [a, b]. (9)

Finally, we suppose that for all s ∈ [−b, b], if x(s) ∈ [a, b] and y(s) ∈ [−b,−a], then

| f (s, x(s)) − f (s, y(s))| ≤ k|x(s) − y(s)| + 2a(1 − k) (10)

and if x(s), y(s) ∈ [a, b], then

| f (s, x(s)) − f (s, y(s))| ≤ k|x(s) − y(s)|, (11)

where k ∈ (0, 1). Now, define the set

Θ = {u ∈ X : −b ≤ u(t) ≤ b, f or t ∈ [−b, b]}.

Theorem 3.1. Under the assumptions (7)–(12), problem (6) has a solution ua
∈ Θ.

Proof. Let A and B be closed subsets of X such that

A = {u ∈ Θ : u([a, b]) ⊆ [a, b],u([−b, a]) = {a}}

and
B = {u ∈ Θ : u([−b,−a]) ⊆ [−b,−a],u([−a, b]) = {−a}}.

It is clear that d(A,B) = 2a. Define the mapping Γ : X→ X by

Γu(t) =
∫ b

−b
G(t, s) f (s,u(s))ds, t ∈ [−b, b].

We shall prove that

Γ(A) ⊆ B and Γ(B) ⊆ A. (12)

Let u ∈ A, that is, u(s) ∈ [a, b] for all s ∈ [a, b]. (8) implies that −b ≤ Γu(t) ≤ −a for all t ∈ [−b,−a]. Hence,
Γu ∈ B, i.e., Γ(A) ⊆ B. Also, let u ∈ B, that is, u(s) ∈ [−b,−a] for all s ∈ [−a,−b]. (9) implies that a ≤ Γu(t) ≤ b.
Hence, Γu ∈ A, i.e., Γ(B) ⊆ A. Now, using conditions (7) and (12), for all t ∈ [a, b], u ∈ A and v ∈ B, we have

|Γu(t) − Γv(t)| ≤
∫ b

a
G(t, s)| f (s,u(s)) − f (s,−a)|ds

≤ k
∫ b

a
G(t, s)|u(s) − (−a)|ds + (1 − k)2a

∫ b

a
G(t, s)ds

≤ k∥u − v∥∞ + (1 − k)2a
∫ b

a
G(t, s)ds

≤ k∥u − v∥∞ + (1 − k)2a.

Similarly, for all t ∈ [−b,−a], u ∈ A and v ∈ B, we have

|Γu(t) − Γv(t)| ≤
∫
−a

−b
G(t, s)| f (s, a) − f (s, v(s))|ds

≤ k∥u − v∥∞ + (1 − k)2a.
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For all t ∈ [−a, a], u ∈ A and v ∈ B, we have

|Γu(t) − Γv(t)| ≤
∫ a

−a
G(t, s)| f (s, a) − f (s,−a)|ds

≤ k∥u − v∥∞ + (1 − k)2a

and so for all t ∈ [−b, b], u ∈ A and v ∈ B, we have

|Γu(t) − Γv(t)| ≤
∫ b

−b
G(t, s)| f (s,u(s)) + f (s, v(s))|ds

≤ k∥u − v∥∞ + (1 − k)2a.

Hence
∥Γu − Γv∥∞ ≤ k∥u − v∥∞ + (1 − k)d(A,B).

Also, for all t ∈ [−b, b] and u, v ∈ A, we have

|Γu(t) − Γv(t)| ≤
∫ b

−b
G(t, s)| f (s,u(s)) − f (s, v(s))|ds

≤ k
∫ b

a
G(t, s)|u(s) − v(s)|ds

≤ k∥u − v∥∞.

Hence,
∥Γu − Γv∥∞ ≤ k∥u − v∥∞.

Now, all the conditions of Corollary 2.6 are satisfied and we deduce that Γ has a best proximity point u∗ ∈ A,
that is, u∗ ∈ Θ is a solution for (6).
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