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Abstract. The existence and multiplicity of solutions for a class of nonlocal elliptic systems are investigated
in this paper. We show that there are precise intervals of positives parameters that the energy functional
associated with the Kirchhoff system problem admit three critical points which are exactly the weak solutions
to our problem, and another intervals of positives parameters that admit many solutions to the Kirchhoff

system problem without the boundedness condition of the Kirchhoff function. Our strategy is focused on
the use of variational approaches.

1. Introduction

In this paper, we focus on the existence of multiple solutions for the following Kirchhof-type systems
involving two positives parameters in fractional Orlicz-Sobolev spaces

—Ky(F(@n))((=A);, @1 +ar(lwi)wr) = APy, & @1, @, .., @) in §,
+uHy, (z, w1, w2, ..., wy)
~ - 1.1)
_Kn(yn(a)n))((_A)Z”(‘)wn + an(|wn|)wn) = /\Fwn(z/ W1, Wy, ..., Wy) in §,
+uHey, (z, w1, @y, ..., wy)
w=wr=..=w, =0 on R"\Q,

where {3 is a bounded open domain in IR” (n > 3) with lipchitz boundary d53, K, : R — R, are increasing
continuous functions with1 =1, 2,...,n, and satisfying:

(M;) there exists positives numbers «, > 0, such that: a, < K,(y), forally >0,

y
(M) 36, >0, such that : K(y) > 0,K.(y)y, K(y) = f K,(r)ydr, forally =0,
0
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A(Dw,)du + f A )dx, for all x € §, w, € WL (), du = % Also, F, H :

and ¥(w,) = f
x

§UxIR" — Rare functions such that F(., z), H(., z) are measurable inrespect tox € {3 forallz = (z1,...,z,) € R"
and is C! in respect to z for all x € § and satisfies the following assumption
(Go): for each (z1,...,z,) e R",S>0and 1 <1< mn,

sup |G, (x,z1,...,z,) € LY.

F;, (resp. H;,) designates the partial derivative of F (resp. H) in respect to z,. s € (0,1), A, u are two positives
parameters, (-A)’ 0 is the nonlocal fractional 4,(.)-Laplacian operator which debuted in [9] as follows

dy
lx —yl"

(=A);, @ (x) = P-Vf ﬂ1(|Dsw1|)Dsa)z ,
RN
w;(x) — wi(y)
e —yP

decreasing and right continuous functions, with

for all x € R", D’w, = , is the s-Holder quotient and the functions 4,: R* — R* are non-

4,(00=0, a(y)>0 for y>0 and lima(y)= oo, (1.2)
}/4}00

which partnered with the function ¢,: R — R defined by

a(lylyy fory#Q0,
() = 1.3
() {0 fory =0, (1.3)
is such that is an odd, increasing homeomorphism from R onto itself.

Throughout this paper we assume that,

n yP.(y) _ oY)

1< =<l :=inf——— <m,:=su < 0o,
s TR Ag) ST A

y>0, s €(0,s). (1.4)

In this study, we use appropriate variational methods in the fractional Orlicz-Sobolev space W*ILA($2)
to solve our problem. Bonder et al [9] was the first to introduce such space. Currently, WILA($2) is an
extension of the traditional fractional Sobolev space W*?(3) [12]. As a result, Azroul [4] and El-houari [13]
have extended a number of features of fractional Sobolev spaces to W*IL4(§2). The applicability of these
spaces in many branches of mathematics has piqued people’s interest (see e.g. recent results contained in
[10, 18} [25] and reference therein). It has been the topic of research in a variety of directions. It's impossible
to cover every aspect of the subject, so we’ll only present few instances for those who are interested. For
instance, consider physics of plasmas and biophysics [21],

Alw) = %lep + élwlq, 1<p<mn, qepp).
In nonlinear elasticity [15],

Aw) =1+’ -1, pe (1}1”72) 03

Non-local elliptic problems with fractional a(.)-Laplacian operators and Dirichlet-type boundary con-
ditions became more prevalent in recent years, see [6} 11 [13] [14} [19] and reference therein. For example.
In [20], by using the mountain pass theorem, we proved the existence of non trivial weak solutions to the
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non-local Kirchhoff problem:

Ky( f QA1(|D5w1|>du)(—A>zmw1 = Fo(x,01,@2) inQ,

Ko A2(|Dsw2|)d#)(—A),s,l(‘)wz = Fo,(x,an,w2) inQ, (1.5)
¥

w1 = Wy = 0 on IR”\Q

Also, Heidarkhani et al. in [22] have studiend the following non-homogeneous Neumann problems
involving two parameters

_K( fgz [AGVel) + A(le)]dx)((—A)(,,u + @(lw))) = AFo(x, ) + uHy(x, @) in §Q,

(1.6)
299_?: -0 ondsy.
If o(y) = plylF-?y, then the problem becomes widely known p-Kirchhoff-type problem
—K( f Vol + Ia)l”]dx)((—A)pa) P 20) = AFu(r,0) + pH (@) in 8, W
9] .
% =0 ondsy,
which is associated with the stationary version of the Kirchhoff problem.
Pw Py E (T1domP\Pw
28 (2= 2= = 1.
987/2 (h+2Lf0'8x )3x2 0 (1.8)

presented by Kirchhoff in 1883 [23]. This study is a natural extension of previous work on Kirchhoff type
problems in (classical) Sobolev spaces and in Orlicz-Sobolev spaces based on Young functions in a broad
family of functional spaces known as fractional Orlicz-Sobolev space. Although the strategy used in this
study isn’t new, the results are. We remember the following three critical points theorem, obtained by G.
Bonanno and S.A. Marano in [§].

Theorem 1.1. Let X be a reflexive real Banach space, .# : X — R be a function such that:
i) .# is continuous and .#(0) = 0.
ii) J is Giteaux differentiable and its Giteaux derivative is compact.
Let £ : X — R be a function such that:
i) £ is sequential weak lower semicontinuous and £ (0) = 0.
ii) £ is Gateaux differentiable and its derivative is bounded on bounded subsets of X.
iii) The Gateaux derivative of £ admits a continuous inverse on X*.
If there exist T > 0 and ¥ € X, with © < £(9) such that:

SUP e g-1(coor) 2 (@) 7 (5)
(1) . ( : Z0)

S (0 T

(12) for each A € %, ] 70 Wy 7@
Then, for every compact interval [a,b] C %,, there exists o > 0 with the property:
for every A € [a,b], the equation #'(w)-AF"(w) = 0 has at least three solutions in X whose norms are less than ¢.

) [ the functional £-A.7 is coercive.

We apply the following multiple critical point theorem, which is established in [7], to achieve the result of
problem (L.1).

Theorem 1.2. Let £, % : X — R be two Gateaux differentiable functionals in reflexive (real Banach) space X,
such that .7 is sequentially (weakly) upper semicontinuous, . is continuous, coercive and sequential weak lower
semicontinuous. For each T > infx &, let

o= i Pweziicon 707 )
T we N (—oo) T— Z(w)

7
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and

0:= lim info(7).
T (infx £L)*

If 6 < oo, then for every A € (0, 1), one of this holds:

(i) A global minimum of £ exists, as well as, a local minimum of hy := £ — A.%.

(ii) A sequence {wy} of pairwise distinct critical points (local minima) of hy exists, that converges (weakly) to a global
minimum of £ with lim,_,1c £ (wy) = infx 2.

This work is motived by [22] and paper above. The following is a breakdown of how this work is organized.
We quickly review certain Orlicz and fractional Orlicz-Sobolev space features in Sect.2. Sect. 3 is concerned
with defining the data assumptions and present the existing solutions to the problems as well as their
proofs. In Sect. 4, we give some examples of functions ¢, A, K H and F for which the results of this paper
can be applied.

2. Some preliminary results
The reader is refered to [1} 2,5, 9} 24] to learn more about Orlicz and fractional Orlicz-Sobolev space.

We take notice of N the set of all N-functions. Leta be as in (I.2). We’ll use the notation A(z) = J;)Z o(r)dr,

for every z € IR, then, A € N and its complementary A given by this relationship A(z) := sup,.o{zr — A(r)}, is
also in N. We point out that A € A,. if for a certain constant k > 0,

A(2z) < kA(z), foreveryz>0. (2.1)
We observe that A and A satisfies the following Young’s inequality:

rz < A(r)+A(z) forallz, r>0and x € §. (2.2)
Recall that A* € N is defined by

lpy _ ()
(A%) (Z)—j(; o dr forz >0,

where we mention that

—1 +oo -1
(Ho) f ( V) dz < o and (Hm)f ( y) dz = +oo, for s €(0,1).

Let (M, A) € N. The notation M << A means that, for each ¢ > 0,

M(ez)
A(2)

—0 asz— oo. (2.3)

The Orlicz space L4 (w) is defined as the mesurable functions z : { — R such that f A(d |z(x)|)) dx < 4+o0
§2

IZ(x I)

for some d > 0. The usual norm on IL4(5?) is ||z||4 = inf d >0/ f dx < 1}

Recall that, the Holder inequality holds

fgz [z(x)o(x)| dx < |lz][allv]l; for all z € IL4(§2) and v € ILA(£2).

One major inequality in IL4(§2) is

fgz ('Z(x)l) dx<1, forallzeLa())\ {0}, 2.4)

llzll4

After this, we list a few inequalities that will be used for our proofs. The proof is provided in [16].
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Lemma 2.1. Let A € N, then these assertions are equivalent:

1)

1<l'_g>lgA(z)Ss;:0pA(z) = 1m < 400, (2.5)
2)

min{z, 2"} A(p) < A(pz) < max{Z,z"}A(p), Vz,0>0. (2.6)
3) A€ Az.

Lemma 2.2. If A € N satisfies then we have

min(|lzl}, Izl } < fQA(IZI)dx < max{|lzll, llzIl}}, ¥z € La(52). (2.7)
Lemma 2.3. we have A << A*, i.e, lim g(l({;) =0, Yk > 0.
)/—)OO

We now look at the definition of W’IL4(§?), which defined as the mesurable functions z € IL4(§?) such that

Ald|D%z|)du < oo for some d > 0,
Jang 1079
equipped with the norm,

llzlls,a = llzlla + [z]s,4, (2.8)

where [.]; 4, is the Gagliardo semi-norm, given by

[2]oa = inf {d >0: fgz o A('D;Z|)dy < 1}.

We set
WiLA(S) = {z € WLA(R") : z = 0 a.e RV \ ).

In these spaces the generalized Poincaré inequality reads as follows (see [4])
lzlla < Calzlsa, ¥z € WiLa(§2), 2.9

where C,4 is a positive constant. Then (W{ILa(2), [.]5,4) is a real Banach space (with [.];4 ~ ||.|ls4 when § is

bounded). Also is a separable (resp. reflexive) space if and only if A € A, (resp. A € Ay and A € A;). In
addition, if A € A, and A( \/T) is convex, then WiIL(§?) is uniformly convex, see [9].
The following embedding, will be used in this paper [4]:

WoLLa(£2) P Lp(),  if B<<A"

In particular, by Lemma[2.3] we have, A << A*. Then

WELA(S2) & La(S), (2.10)

Moreover, if 'l > N. Then
t
W3LA(S) & L¥(5),
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i.e, there exists ¢ > 0, such that
Zleo < cllzlls,a - 1 € WRLa(S2), (211)
where |z| :=sup|z(x)|and 0 < s’ <s < 1.
xe§)
The fractional a(.)-Laplacian operator specified in (??) is defined between W{L4($2) and its dual space
(WiLA(2))" and the following expression is found ([9], Theorem 6.12)

(@'(2),0) = fgz nga(|DSz|)DS.zDSvd,u=<(—A);(_)z,v>, (2.12)

for all z,v € WIL(§2), where 4(z) := ‘fgz QA(IDSZI)dy.

X

Proposition 2.4. [6] Suppose that A([) is convex, zx — z in WilLa(§2) and
lim sup(¥”(zx), zx — z) < 0. Then z; — z € W3IL4(£2).

Lastly, the next Lemmas, will be useful in what follows.

Lemma 2.5. [5] The following properties are true:
1)

g( [z]ZS,A) <1, forallz € WilLa(£2) \ {0}.

2)
min{[z]i/A, [z]ZfA} <¥Y(z) < max{[z]é’A, [z]ng}, for all z € WiILa(£2).

Lemma 2.6. Let z € WL a(§2). Then

A(D 2Dy + f A > 1L, if lzllon < 1.
fgzxgz 2 A !

AGD 2Dy + f Aledx > I, i llloa > 1.
fgzxgz 2 A !

Proof. By similar argument in [22], we prove this Lemma. Let g € (1, ||zlls 4) with ||z|[; 4 > 1. By we have

s ! ID*2| 2l
fgz ngA(|D zl)dy + fgz A(lz))dx > B fgz ngA( : ) + fgz A(ﬁ)dx

Since f < ||zlls,a we find

ID°z| Izl
fgz A fg A(Sax>1

Thus,

S 1
fQ o A(D*zl)dy + fgz A(lzl)dx > B,

Letting § 7 |lzlls 4 in the inequality above, we get

f A(D*z))du + f A(lzl)dx >[Iz, ,. (2.13)
§Ix§2 2
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Next, Assume that ||zl[s 4 < 1. Let C € (0, |zlls,4). By we have

5 [ Al i
foQA(lD zl)d/,l+fg21‘\(|z|)de c foQ A( C )dy+f$2A( C )dx.

Set v(x) = ‘% Then we have ||[v]|;4 = % > 1. By (2.13), we infer that

f A(D*ol)du + f A(ldx > o, > 1. (2.14)
1929 Y] ’
Observe that,

A() = TmA(%/), forally >0, 7 € (0,1). 2.15)

From and (2.15), we infer that
f A(D*zl)dy + f A(lzl)dx > C".
§ex§2 §2

Letting C 7 |lzlls,4 in the inequality above, we obtain

| Az [ A >
Q8 Q

O
Proposition 2.7. Let z € WiIL4(£2) and assume that -7 (z) < 7, for 0 < T < 1. Then, ||zlls 4 < 1.
Proof. Letz € WiILa(§2). By 2.16), if #(2) < 7 holds, then ||zlls4 < 1. Now, claim that ||z|l; 4 # 1. Arguing

by contradiction, assume that there exists z € WiL4(2) with ||z|ls4 = 1 and (z) < 7 holds. Let us take
B €(0,1), for all x € (. By similar argument in Lemma 2.6l we obtain that,

fgz XgA(lezl)dy+ fQ A(lzl)dx > .

Letting f ' 1 in the above inequality we obtain

fgzxgz A(ID)dp + fQA(IZI)dx > 1.

that contradicts condition .#(z) < 7. The proof is complete. [

Remark 2.8. Using Lemma[2.1land Lemma[2.5] we can see that
. z
lellsa ~ llzll = infid > 0= 7(5) < 1), (2.16)
for all z in WiILA(S?2).

We define the space X := [];_; WilL,,(§2) for problem (L.I), which is a reflexive Banach space, with

respect to the norm
n

=) lzlla, 2= (12,0020 €X.
1=1
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Hence X — L*(£2) X ... X L*(§2) is compact. We set C > 0, such that

max e |z(¥)|
C:= max{ sup B AR

: forl1<i< n} < +00. (2.17)
newiL\oy |zl a,

Put
F(z) :=f F(x, z)dx,
§

Lemma 2.9. ([3] Lemma 3, [17]] Lemma 3.4) The functions ,.%,, % : W*lLa,(§2) — R are well defined and its the
CHW L4, (§2), R) and we have

(F/(2),Z) = fg XQal(|DSz,|)DSZIDSZldy+ fg a,(|zl)zZ.dx, (2.18)

<£/(Zl)/zz> :f Fz,(xzzz)zzdx/
§e
forall z, € WL, (§2).

At this point, we set the definition of our weak solution, we say that z = (z3,...,z,) € X is a weak
solution for problem (1.1)) if

Zn" K (AT @), 7y - A js; Zn"PZ,(x, 21, Zn)2dx = 0,
1=1 1=1

forallz = (z1,...,z,) € X.

Proposition 2.10. Let T : X — X" be the operator defined by
Uw)w) =Y K(Fw))F (@), wy)
=1

foreach w = (w1, ..., wy), W= (wn,...,w,) €X. Then T has a continuous inverse on the dual space X* of X.

Proof. Due to Minty-Browder theorem [26]. It is enough to check that T is hemicontinuous, coercive, and
uniformly monotone. For every w € X, with |lw,|ls 4, > 1, we have

w1,y )@, wn) = Y K SHlw))
1=1

x( fgz Qa](|D5wl|)|DSw,|2du+ fQ Il )l

X

Appliying (L.4),

@1, e @) @i @) 21 Y K(A@) ().

1=1

Using Lemma2.6/and (M), then

n
21
w1, ..., 02)(@1,...,w0n) Zl,aog [Ty -
1=1
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where ap = mina,. So T is coercive. From the continuity of the function K, and Lemmawe can verified
that T is hemicontinuous. Now let u,w € X such that u # w. Since a,(|y|)y, K,(y) are increasing and from
(M) we have

(w) = T(w), w - w) = (Yw), w = w) = (T(w), w - w)

=§m@wﬂ£wﬂmwmwm@m—mmW
+ jg‘z(al(k‘)ll)wl(a)l _wz)dx)]
—ZK F(w)| f a(ID*w)Dw,(D*w, - D°w,)dp
+f (al(|wl|)w1<wl _wz)dx)]
> o f (a.(D°wi)D*,(D*w, — D, ) + fgz w, - w;)dx)|
we [

(2 (@i
[f a,(|D*w,|) w,(Dsw, - Dsw,)d (al(lwll)wi(a)l - w,)dx)]

- ao[ f (a:(D°w,)D*w, - a,(D*w/)D*w,)(D*w, — D*w,)dp

+l;@ﬂ@mm—%wmmﬁ@h—mwﬂ>a

So, T : X — X is strictly monotone. Thus, from Minty-Browder theorem, T°! : X* — X exists and it is
bounded. By demonstrating that T! is sequentially continuous, we can prove that it is continuous. Let
w, — @ in X, letw, = T Yw,) and w = T (w). Then w, is bounded in X, so, w, — wy in X. Since w, — w,
we have

Jﬂo(z(wn)/ Wy — w0> = Ji_{l(;lo<a)nr Wy — w0> =0

that is,

n

Mxmvﬂ£mww%wmw%rﬁww 219)

+ IS‘Z a,(lwnl)wn(wn - wo)dx) =0

From the continuity of the functions K, Proposition and the last equation, the fact that w, — wp in X,
we conclude that w, - wyin X. [

1=1

Now we define the problem’s energy functional g, : X — R by:
gr(w) = ¥(w) = 1.7 (w),
forall w = (wyq, ..., wy) € X, where

V(@) = ) R ().
1=1

Note that, the weak solutions of (1.1) are exactly the critical points of g,. It is well known that W and
F are two continuous, Gateaux differentiable functions and whose Gateaux differentials at the point
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w = (w1, ...,wn) € Xare the functionals W’ and .#’ given by

vw@=ZM$wx&Q
1=1

X

a,(ID°w))D*w,Dv,dy + fgz o, )wvidx), (2.20)

and .
F'(w)(0) = fgz ZFa,l(x,wl,...,wn)v,(x)dx,
1=1

also #’ : X — (X)" is a compact operator.
Lemma 2.11. VW is sequential weak lower semicontinuous and coercive.

Proof. For y > 0, using (M;), we have

W(w) = ZK (@,) >290¢1§”(w1 >90a02y(a))

where 6y = min 0, and by Lemma 2.6} for all u € X with [|w[ls,4, > 1, we have

n

W(w) > Opao ) _ Il

1=1

from which it follows that \V is coercive. Moreover, because of A, are convex, then WV is also convex function,
thus, it is sequentially weakly lower semicontinuous. [

3. Main results.

Our main results are stated below

Theorem 3.1. Assume that conditions (M), (M>) hold, (L.4), A,(/) are convex and
(Fo): F: 2 xR" —= R satisfying condition (Go) and F(x,0,...,0) = 0 for each x € §,
(Fy): there exist h € IL1(§) and positive constants d,, with d, < I, for 1 <1 < n, such that

0 <F(e 1, yw) <h @) Y Il

1=1

for each x € § and every (y1,...,vn) € R",
(Fp) : thereexist 0 < ¢, <1 := 9%0 and &, € R for 1 <1 < n, with

Boctolw] Zn:Al(lzll) > min{(%)m 1<i<n),

1=1

such that

f min{(%)" : 1 }f
sup F(x, 71, ..., yn)dx < - F(x, &, ..., &)dx, (3.1)
82 plserripises ROIQIT T (AE)T V8

where K(1) = max K,(1) and 6y = min 0,. Then, setting

<%:(mmm%ZLM@m% min{(§)":1<1<n) )
LZF(x, &1, ..., &n)dx '[;2 sup F(x,v1,...,Vn)dx

[y1l<er e lynl<en
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for each compact interval [a,b] C %, there exists ¢ > O with the property: For each function H : {J X R" — R
satisfying condition (Gy), for all A € [a, D], there exists 0 > O such that, for each u € [0, 0], the system (1.1) has at
least three weak solutions in X whose norms are less than o.

We set
sup  F(x,y1,...,yn)dx
. IS G ynER(Q©)
B := liminf -

{—0* Cm

and
F(x,Cq,...,Cp)dx
D:= limsup

Corsi=0%07)  Lica KilIR10C")
where R(C) := {(y1,...,y) € R* : L [y1] < C} forall ¢ > 0.
Theorem 3.2. Assume that conditions (M), (My) and hold and consider the following:

(F3): Hx,71,...,vn) 2 0 forall (x,y1,...,7n) € X R
let o > 0 such that

A,
lim ﬁ < 0. (3.2)

),_)04- ymx
Further, assume that

fgz sup  F(x,y1,...,Yn)dx f F(x,Cy,...,Co)dx
1seeer n R
lim inf 01RO ~ <L limsup 2 — — (3.3)
(=00 ¢ ) o 0400 Laer Ki1£210C")
where m = max m, and
. 1
L = min {Lm, = for0<1< n}. (3.4)
i ()
If,
f sup  Hx,y1,...,vn)dx
S Coivt 82 0nr)eR@)

Hy := ( L (90040) ) Clgg inf o < oo, (3.5)

Then, for every
1 1 1
e )
. c \m\"1LD" B
(Z (7)")

and for every u > 0 with,

1 = C o\
wem= g (-A0(Y () ))

Boax
—i*Ooax

problem (L.1)) has a sequence of pairwise distinct weak solutions, which converges (strongly) to zero in X.
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Proof of Theorem

Proof. From the definitions of W, from condition (F), we have
W) =.%(0)=0.
Notice that

lw(x) = w(y)| < |x = YllIVwl|zswn-

2868

(3.6)

Set w(x) := (&1,...,&,) for any x € R" and &, € R, by (3.6), we deduce w(y) = w(x) = (&1,...,&,) for any

x,y € R?". Clearly, w € X, and from (M,) we have

W) = Y R(7w)) 2 Y 0w 2 oo Y Fw)
=1 1=1

1=1

- 60a0|Q|iAl(51) > min{(%)m 1<1< n} =1,
1=1

Moreover, (M) implies that, K, (y) < K1(1)yei,, then we have,

=

n

W) = Y K(F@)) < Y. RA@)T < ROIQIT Y (AE)T
1=1

1=1 1=1

Moreover, when W(w) < 7 for w = (w1, ..., w,) € X, by (M) and Lemma 2.6} we have

1 1
Ooaollw,lls,a, < max{th,zm }.

Then, by (2.17) we obtain

Therfore, for every w € X,

sup F(w)= sup f F(x, w1 (x), ..., wu(x))dx

weW1((—o0,1)) weW1((—c0,1))

< f sup F(x,y1,...,yn)dx.
S nls

C1eee|Ynl<Cn
Condition (F») implies
SUP yew-1((-c0,1)) F(w) < IS:ZIMISC?B!IDWSC” P 1oy
T - min{(%)mﬂSzSn}
f F(x,&1,...,&n)dx
§

< - 1
ROIQID T (ALE) T
F(w)

<
~ Y(w)
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Thus, assumption (71) of Theoremis satisfied. From (1), as a result, for every positive parameter A, the
function W — A.% is coercive, in particular for every

W(w) T )
Fw)’ SUPp()<r F(w)/)

)\e%g(

Indeed, from (F;) we have

d, d, d,
fgz (@1, ) < fgz h(x>;|wz| s|h|m;||wz||m@scmm;nwzuw

then, from Lemma 2.11)we deduce that

n n
W(w) - A7 (@) 2 6o Y i, ~AClHLe Y il
1=1 =1

n n
l, dtflx
=Y lwil, (oo — ACIHL Y llwoil").
1=1 1=1

Since d, < I, hence, condition (1) of Theorem[1.Tholds. Then all the assumptions of Theorem [I.1]are then
satisfied. In addition, for every function H : {3 X R" — R satisfiying (Go) the function:

I'(w) :=f H(x,w1,...,w,)dx,
Y]

is well defined, continuously Gateaux differentiable on X, with a compact derivative provided by

I ()©®) = fgz ;sz(x,a)l,...,a)n)v,(x)dx.

Thus, all the conditions of Theorem [I.1]are satisfied. Also, the solution of the following equation
V'(w) - AF (w) — pI'(w) =0 (3.7)
are exactly the weak solutions of (L.I). As a result, Theorem1.T|leads to the conclusion. [

Proof of Theorem

First, let fix A € 2 and for all p > 0, assume that y < ;. Since A < +1m, one has p, > 0. Fix

c iz
n
( 1(%) )B

it € [0, ua[. Therefore, from we infer that

n

% > (Z (L)m%)m, foralll1<i1<mn. (3.8)
1=1

Puta:=%andb:= L ] m.IfH0=O,Clearly,a=%,b= 1

4 c )™ c "ilx m o
n n
7H0+B(Zx:l (90“0 ) ) (21:1 (eoao) ) B

Since, the fact that A € Z and we obtain,

- 1
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Then, A €]a, b. If Hy # 0, since fi < u,, which implies that

_ Ny Coymym
yH0+/\B(Z(60a0) ) <1,

=1

then
- 1

A< - . A\
£Hy +B( Zﬁ(ﬁ) )

Then A < b. Since A > &, then one has A €]a, b[.

On the other hand, put Q(w) = F(x, w) + gH (x,w), for all x € 3, w € R" and we introduce the functional
2 : X — R for each u € X, as follows

Q(w)zf F(x,a))dx+gf H(x, w)dx.
2 AJQ

It is generally known that 2 is a Gateaux differentiable functional and sequentially weakly upper semicon-
tinuous, with a Gateaux derivative at the point u € X, is the functional 2’(w) € X" given by

2 (w)(v) = LZ ;le(x,a)l,...,a)n)v,(x)dx + % fgz ;le(x, W1, ..., Wy)0(X)dx.

Put hij(w) := W(w) — A 2(w).In view of (3.7), we can easily see that the weak solutions of the problem
are also weak solutions to the equation h}\(w) = 0. Now, we want to show that 6 < +oco. We can seek for
weak solutions of problem by applying Theorem For that let {C¢} be a real sequence such that
lim,, ;0o G = 0. Then,

sup F(x,71,...,yn)dx
I;Z 1,

kll -v)/n)ER(Ck) C;’
— 400 k
f sup  F(x,y1,...,vn)dx 39
. JEL 1 yn)eR©)
= lim -
C—0+ Cm
=B < 400
Put 7y = L;m for all k € N. Then, by Lemmasand Proposition we can deduce that
n C "
=1\ Bgagy

=

W] = o0, 7]) 1= {u = (@1, 0p) € X: W(w) < 1) € fu € X2 ) K(Alw)) < ).
1=1

By (M) and Lemma 2.6} we have, for k large enough (0 < 7; < 1),
Ooaollwill, < Tk,

and from (2.17) we have max,cg |w;(x)| < C|lw|ls;4,- Then for all x € )

Cty )%
Ooro’

()] < (
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Then we have

W - o0, il) = fu € X2 Y ()] < G,
1=1

Consequently,

sup Q(w)g.f;Z( sup  Q(x,y1,...,yn)dx.
V1

ueW-1(J-co, i)  J§L (1 Vn)ER(Ck)
Considering that W(0) = 0 and 2(0) = 0, for all x € §2, for all n € IN one has

sup  2@) - 2(w) sup  Z2(@)
. 0V (]~co,74[) veW-1(]—co,74[)
() = inf <
() UueW-1(]—co,7,[) T, — W(w) Tk

Q(x/ 7/1/ cecy ‘)/H)dx

C \ar\" VSO /) ER(G)
S(Z( )) (1, Vn)ER(Ck)

Boao

o

f sup F(x,y1,...,yn)dx
§2 (1 ym)ER(G)

:(i(efao);‘)m g

1=1
f sup  H(x,y1,...,Yn)dx
§2 01, 7n)ER@)

A =

1=1

hence, by (3.3), (3.5), and (3.9) , we infer that
0:

1=1

lim(i)pf (1) < likm inf @(ty)
. ) 0 sup  F(x,y1,...,yn)dx

C \m\",. (/1,0 y ) ER(G)
< — -
= (Z(Goao) ) Jm o

k

. _ f sup  H(x,y1,..., yn)dx
C \n )’" $¢ 1 yn)ER(CE)

lim ———— -
k—o0 Cm

sup  F(x,y1,...,vn)dx
IS:Z (02}

1 . Yol Vi, Vrz)eR(Ck) p'
< =1 - =H
= Libe cr X
F(x/ Cl/- "/Cl’l)dx — _
< lim sup — — + gHo =D+ gHO < +00,
Crl)= (07,0 Laer KilIQ208™) A A
Moreover, since H is nonnegative we have
Q(x/ Clr”-/Cn)dx LZF(X/ Clr”-/Cn)dx

lim sup — - > limsup — —
@) =070 Ly Ki(182108™) (Crnl)= (07,00 2apmr Ki(I§2108™)

Therefore, from assumption (3.3), (3.10) and (3:1T), we observe that

Acab] ¢ | ¢ ]0%[

2871

(3.10)

(3.11)
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where
A= !
[ et
limsup 2 >
(i) 000) L KilIS210C™)
and

1

e Jo
(X (gz)") timins =

=1

So 2 <0, %[. For a fixed A € 2, the functional h; is unbounded from below. Indeed, since

1
=<D,
A

consider n positive real sequences {,x} and 1 > 0 such that (,x — 0 as k — +oc0 and

f F(x,Cig, .-, Cup)dx

__ _ (3.12)
T Rl

Let {wk(x) = (Ci, -+ -, Cux)} € X be a sequence for all x € §. From (3.6), we have
W(wi(x) = Y R(AC0) = Y R(I4A(C0).
=1 1=1
Moreover, from and since limy_, ;o C,x = 0, there exist & > 0 and n, € IN such that (,x € (0, &) and
A(Cp) < oC foralln > n,.

Since K is increasing, it follows that, for all # > max{n;, ..., 1y}, we have

W) = Y K(I0A4C0) < Y Ri(elsc). (3.13)
1=1

1=1

Moreover, since H is nonnegative we have

() > fgz F, Gt O (3.14)

By (3.12), (3.13) and (3.14), we have
hi(wi(x)) = W(wi(x)) — 1 2(wk(x))

< KI(QK?,'CZ/Z) - /_\ jg\z F(x/ Cl,k! ey Cn,k)dx

1=1
<(1=An) Y Kalsc).
1=1

Since % < 1, then 1 — An < 0 which infer that hj(wi(x)) < 0 = h;(0,...,0). Then (0,...,0) isn’t a local
minimum of k5. Thus, owing to the fact that (0,...,0) is the unique global minimum of ¥, there exists a
sequence {wy} of pairwise distinct critical points of /13 such that limy_, ||wkllls,4, = 0, and this completes the
proof.
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4. Example

In this section, we point out certain examples of functions ¢, A(y), K, H and F for which the results of
this paper can be applied.

Let § € R® be a bounded domain with || = 1 and 1 = 1,2. We can take K, due to Kirchhoff, as
K@) =a,+by*7, a,b,20,a+b,>0,y>0, 4, >1. (4.1)

and

4.2)

B.€(1,400), ifb >0,
ﬁzzl, 1fb,=0

So we can see that,

Kz(y) =ay + %Vﬁ’

Further, it is clear that
K(y)=a,+byP ™t >a,>0 Vy>0

and

N 7 1
Ki(y) = f K (r)dr > EKIO/W Yy > 0.
0 1
Hence, (M;) and (M) holds true (choose 6, = ﬁl,). At this point, we take a; = by =1, 1 = f» = 1 and
by = b, = 0. Now take

|y|4ly .
— 1 #0,
wuw={g%W® 51—0 and ga) = log(1 + PPy, yeR

Similar to Remark 3.6 in [22]], we have [y =5 <m; = 6 and I, = 4 < my = 6. Thus, the condition (1.4) is
satisfied. Also we deduce that 7z = maxm, = 6. Moreover, owing to

—f |r|4 1 and lim 1 ft log(1 + |r)r*r = 0,
;/—)0* log(l + |1’|) 5’ y—0* y &

the condition is also fulfilled (choose ¢ = 3) Also we deduce that L =

28C
Let F : R? - [0, o) be a continuous function deflned by
°(1 + sin(In(1 + |y| if (r,y) #(0,0),
F ) < [P0 sina@ 4 D) if () # 0,0
0 if(r,y) =(0,0),
and
1+ cos(If)))y®e™t if (r,y) # (0,0),
H(r, ) = ( (r)))y ’f( 7/)_ (0,0)
0 if(r,y) =(0,0).
Then,
f |f“|a|XcF % F(r,7)
rl+yl< maxjy r,
= 11m1n §o " = |2 lim inf Iriyl<e 4 =2,
-0+ C6
F(x,r,y)dx
Do I F(rny)
im sup =|Q| limsup ————— =3.

(1-0707 Ki(37°) + Ra(37°) (r)—(0+.0%) 37° + 37°
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max_ H(r, y)dx
1. . § In+yl<c IQREC .. . . maXyiy« H(r,y) 2°C
Hy = = liminf = liminf ==
-0+ e ag -0 e ap
1 S Co\Evn ag 28C
Ha = ﬁo(l ‘AD(Z(QO%) ))=55¢(1 ‘3%—0)-

1=1

Thus, forall g € [0, ua[ and A € 2 =]}, 54[, with this condition % < 2. ThenforeveryAela=4 =1b=

2°C

#Z‘h)[ and y € [0, [ the following system:

4
_Kl(‘%(wl))((_mlg‘%m W + bé‘(‘;”—:‘l);ll)) = 6A02(1 + sin(In(1 + |ws))))

—pwse 2 sin(jw1l) in §,

Ko S2(@2))((=); +1og(1 + lwzP)|wnw) = A “1 (n(1 + wal))
2(-72w2 log(1+.p) Y2 T 108 Wa|")|wz| w2 | = To, cos(In W3

+wye™2(6 — wy)(1 + cos(lwn)) in §,
w;=w; =0 on R3\Q,

admits a sequence of pairwise distinct weak solutions which strongly converges to zero in W{lLa, (§2) X
WilLa, (§2)-
0 2
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