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Abstract. The existence and multiplicity of solutions for a class of nonlocal elliptic systems are investigated
in this paper. We show that there are precise intervals of positives parameters that the energy functional
associated with the Kirchhoff system problem admit three critical points which are exactly the weak solutions
to our problem, and another intervals of positives parameters that admit many solutions to the Kirchhoff
system problem without the boundedness condition of the Kirchhoff function. Our strategy is focused on
the use of variational approaches.

1. Introduction

In this paper, we focus on the existence of multiple solutions for the following Kirchhof-type systems
involving two positives parameters in fractional Orlicz-Sobolev spaces

−K1

(
S1(ω1)

)(
(−∆)s

a1(.)ω1 + a1(|ω1|)ω1

)
= λFω1 (z, ω1, ω2, . . . , ωn) in �,

+µHω1 (z, ω1, ω2, . . . , ωn)
...

...
...

−Kn

(
Sn(ωn)

)(
(−∆)s

an(.)ωn + an(|ωn|)ωn

)
= λFωn (z, ω1, ω2, . . . , ωn) in �,

+µHωn (z, ω1, ω2, . . . , ωn)
ω1 = ω2 = ... = ωn = 0 on Rn

\�,

(1.1)

where � is a bounded open domain in Rn (n ≥ 3) with lipchitz boundary ∂�, Kı : R → R, are increasing
continuous functions with ı = 1, 2, . . . ,n, and satisfying:

(M1) there exists positives numbers αı > 0, such that : αı ≤ Kı(γ), f or allγ ≥ 0,

(M2) ∃θı > 0, such that : K̂ı(γ) ≥ θıKı(γ)γ, K̂ı(γ) :=
∫ γ

0
Kı(r)dr, f or allγ ≥ 0,
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and Sı(ωı) :=
∫
�×�

Aı(|Dsωı|)dµ +
∫
�

Aı(|ωı|)dx, for all x ∈ �, ωı ∈ WsLAı (�), dµ = dxdy
|x−y|n . Also, F, H :

�×Rn
→ R are functions such that F(., z), H(., z) are measurable in respect to x ∈ � for all z = (z1, . . . , zn) ∈ Rn

and is C1 in respect to z for all x ∈ � and satisfies the following assumption
(G0): for each (z1, . . . , zn) ∈ Rn, S > 0 and 1 ≤ ı ≤ n,

sup
(z1,...,zn)≤S

|Gzı (x, z1, . . . , zn)| ∈ L1(�).

Fzı (resp. Hzı ) designates the partial derivative of F (resp. H) in respect to zı. s ∈ (0, 1), λ, µ are two positives
parameters, (−∆)s

aı(.)
is the nonlocal fractional aı(.)-Laplacian operator which debuted in [9] as follows

(−∆)s
aı(.)
ωı(x) = P.V

∫
RN

aı
(
|Dsωı|

)
Dsωı

dy
|x − y|n

,

for all x ∈ Rn, Dsωı =
ωı(x) − ωı(y)
|x − y|s

, is the s-Hölder quotient and the functions aı : R+ → R+ are non-

decreasing and right continuous functions, with

aı(0) = 0, aı(γ) > 0 for γ > 0 and lim
γ→∞

aı(γ) = ∞, (1.2)

which partnered with the function φı : R→ R defined by

φı(γ) =

aı(|γ|)γ f orγ , 0,
0 f or γ = 0,

(1.3)

is such that is an odd, increasing homeomorphism from R onto itself.
Throughout this paper we assume that,

1 <
n
s′
< lı := inf

γ>0

γφı(γ)
Aı(γ)

≤ mı := sup
γ>0

γφı(γ)
Aı(γ)

< ∞, γ > 0, s′ ∈ (0, s). (1.4)

In this study, we use appropriate variational methods in the fractional Orlicz-Sobolev space WsLA(�)
to solve our problem. Bonder et al [9] was the first to introduce such space. Currently, WsLA(�) is an
extension of the traditional fractional Sobolev space Ws,p(�) [12]. As a result, Azroul [4] and El-houari [13]
have extended a number of features of fractional Sobolev spaces to WsLA(�). The applicability of these
spaces in many branches of mathematics has piqued people’s interest (see e.g. recent results contained in
[10, 18, 25] and reference therein). It has been the topic of research in a variety of directions. It’s impossible
to cover every aspect of the subject, so we’ll only present few instances for those who are interested. For
instance, consider physics of plasmas and biophysics [21],

A(ω) =
1
p
|ω|p +

1
q
|ω|q, 1 < p < n, q ∈ (p, p∗).

In nonlinear elasticity [15],

A(ω) = (1 + ω2)p
− 1, p ∈

(
1,

n
n − 2

)
, n ≥ 3.

Non-local elliptic problems with fractional a(.)-Laplacian operators and Dirichlet-type boundary con-
ditions became more prevalent in recent years, see [6, 11, 13, 14, 19] and reference therein. For example.
In [20], by using the mountain pass theorem, we proved the existence of non trivial weak solutions to the
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non-local Kirchhoff problem:
K1

( ∫
�×�

A1(|Dsω1|)dµ
)
(−∆)s

a1(.)ω1 = Fω1 (x, ω1, ω2) in�,

K2

( ∫
�×�

A2(|Dsω2|)dµ
)
(−∆)s

a1(.)ω2 = Fω2 (x, ω1, ω2) in�,

ω1 = ω2 = 0 on Rn
\�.

(1.5)

Also, Heidarkhani et al. in [22] have studiend the following non-homogeneous Neumann problems
involving two parameters−K

( ∫
�

[
A(|∇ω|) + A(|ω|)

]
dx

)(
(−∆)φu + φ(|ω|)

)
= λFω(x, ω) + µHω(x, ω) in�,

∂ω
∂ν = 0 on ∂�.

(1.6)

If φ(γ) = p|γ|p−2γ, then the problem (1.6) becomes widely known p-Kirchhoff-type problem−K
( ∫
�

[
|∇ω|p + |ω|p

]
dx

)(
(−∆)pω + |ω|

p−2ω
)
= λFω(x, ω) + µHω(x, ω) in �,

∂ω
∂ν = 0 on ∂�,

(1.7)

which is associated with the stationary version of the Kirchhoff problem.

ϱ
∂2ω

∂γ2 −

(P0

h
+

E
2L

∫ L

0

∣∣∣∣∣∂om
∂x

∣∣∣∣∣2)∂2ω

∂x2 = 0, (1.8)

presented by Kirchhoff in 1883 [23]. This study is a natural extension of previous work on Kirchhoff type
problems in (classical) Sobolev spaces and in Orlicz–Sobolev spaces based on Young functions in a broad
family of functional spaces known as fractional Orlicz–Sobolev space. Although the strategy used in this
study isn’t new, the results are. We remember the following three critical points theorem, obtained by G.
Bonanno and S.A. Marano in [8].

Theorem 1.1. Let X be a reflexive real Banach space, I : X→ R be a function such that:
i) I is continuous and I (0) = 0.
ii) I is Gâteaux differentiable and its Gâteaux derivative is compact.
Let L : X→ R be a function such that:
i) L is sequential weak lower semicontinuous and L (0) = 0.
ii) L is Gâteaux differentiable and its derivative is bounded on bounded subsets of X.
iii) The Gâteaux derivative of L admits a continuous inverse on X∗.
If there exist τ > 0 and ṽ ∈ X, with τ < L (ṽ) such that:

(τ1)
supw∈L −1(−∞,τ) I (ω)

τ
<

I (ṽ)
L (ṽ)

,

(τ2) for each λ ∈ Uτ :=
]I (ṽ)
L (ṽ)

,
τ

supw∈L −1(−∞,τ) I (ω)

[
the functional L –λI is coercive.

Then, for every compact interval [a, b] ⊆ Ur, there exists ϱ > 0 with the property:
for every λ ∈ [a, b], the equation J ′(ω)–λI ′(ω) = 0 has at least three solutions in X whose norms are less than ϱ.

We apply the following multiple critical point theorem, which is established in [7], to achieve the result of
problem (1.1).

Theorem 1.2. Let L , I : X → R be two Gâteaux differentiable functionals in reflexive (real Banach) space X,
such that I is sequentially (weakly) upper semicontinuous, L is continuous, coercive and sequential weak lower
semicontinuous. For each τ > infXL , let

ϖ(τ) := inf
w∈L −1(−∞,τ)

supw∈L −1(−∞,τ) I (v) −I (ω)

τ −L (w)
,
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and
δ := lim

τ→(infXL )+
infϖ(τ).

If δ < ∞, then for every λ ∈ (0, 1
δ ), one of this holds:

(i) A global minimum of L exists, as well as, a local minimum of hλ := L − λI .
(ii) A sequence {wn} of pairwise distinct critical points (local minima) of hλ exists, that converges (weakly) to a global
minimum of L with limn→+∞L (wn) = infXL .

This work is motived by [22] and paper above. The following is a breakdown of how this work is organized.
We quickly review certain Orlicz and fractional Orlicz-Sobolev space features in Sect.2. Sect. 3 is concerned
with defining the data assumptions and present the existing solutions to the problems (1.1) as well as their
proofs. In Sect. 4, we give some examples of functions φ, A, K H and F for which the results of this paper
can be applied.

2. Some preliminary results

The reader is refered to [1, 2, 5, 9, 24] to learn more about Orlicz and fractional Orlicz-Sobolev space.

We take notice of N the set of all N-functions. Let a be as in (1.2). We’ll use the notation A(z) =
∫ z

0 φ(r) dr,
for every z ∈ R, then, A ∈ N and its complementary A given by this relationship A(z) := supr≥0{zr−A(r)}, is
also in N. We point out that A ∈ ∆2. if for a certain constant k > 0,

A(2z) ≤ k A(z), for every z > 0. (2.1)

We observe that A and A satisfies the following Young’s inequality:

rz ≤ A(r) + A(z) for all z, r ≥ 0 and x ∈ �. (2.2)

Recall that A∗ ∈ N is defined by

(A∗)−1(z) =
∫ z

0

A−1(r)
r

n+s
n

dr f or z ≥ 0,

where we mention that

(H0)
∫ 1

0

A−1(zγ)

z1+ s
n

dz < ∞ and (H∞)
∫ +∞

1

A−1(zγ)

z1+ s
n

dz = +∞, for s ∈(0,1).

Let (M,A) ∈ N. The notation M ≺≺ A means that, for each ε > 0,

M(εz)
A(z)

→ 0 as z→∞. (2.3)

The Orlicz space LA(ω) is defined as the mesurable functions z : � → R such that
∫
�

A
(
d|z(x)|)

)
dx < +∞

for some d > 0. The usual norm on LA(�) is ∥z∥A = inf
{
d > 0 /

∫
�

A
( |z(x)|

d

)
dx ≤ 1

}
.

Recall that, the Hölder inequality holds∫
�
|z(x)v(x)|dx ≤ ||z||A||v||A for all z ∈ LA(�) and v ∈ LA(�).

One major inequality in LA(�) is:∫
�

A
( |z(x)|
||z||A

)
dx ≤ 1, for all z ∈ LA(�) \ {0}. (2.4)

After this, we list a few inequalities that will be used for our proofs. The proof is provided in [16].
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Lemma 2.1. Let A ∈ N, then these assertions are equivalent:
1)

1 < l := inf
z>0

φ(z)
A(z)

≤ sup
z>0

φ(z)
A(z)

:= m < +∞. (2.5)

2)

min{zl, zm
}A(ϱ) ≤ A(ϱz) ≤ max{zl, zm

}A(ϱ), ∀z, ϱ ≥ 0. (2.6)

3) A ∈ ∆2.

Lemma 2.2. If A ∈ N satisfies (2.5) then we have

min{||z||lA, ||z||
m
A} ≤

∫
�

A(|z|)dx ≤ max{||z||lA, ||z||
m
A}, ∀z ∈ LA(�). (2.7)

Lemma 2.3. we have A ≺≺ A∗, i.e, lim
γ→∞

A(kz)
A∗(z)

= 0, ∀k > 0.

We now look at the definition of WsLA(�), which defined as the mesurable functions z ∈ LA(�) such that∫
�×�

A
(
d|Dsz|

)
dµ < ∞ f or some d > 0,

equipped with the norm,

||z||s,A = ||z||A + [z]s,A, (2.8)

where [.]s,A, is the Gagliardo semi-norm, given by

[z]s,A = inf
{
d > 0 :

∫
�×�

A
(
|Dsz|

d

)
dµ ≤ 1

}
.

We set
Ws

0LA(�) :=
{
z ∈WsLA(Rn) : z = 0 a.e RN

\�
}
.

In these spaces the generalized Poincaré inequality reads as follows (see [4])

||z||A ≤ CA[z]s,A, ∀z ∈Ws
0LA(�), (2.9)

where CA is a positive constant. Then (Ws
0LA(�), [.]s,A) is a real Banach space (with [.]s,A ∼ ||.||s,A when � is

bounded). Also is a separable (resp. reflexive) space if and only if A ∈ ∆2 (resp. A ∈ ∆2 and A ∈ ∆2). In
addition, if A ∈ ∆2 and A(√.) is convex, then Ws

0LA(�) is uniformly convex, see [9].
The following embedding, will be used in this paper [4]:

Ws
0LA(�)

cpt
↪→ LB(�), i f B ≺≺ A∗.

In particular, by Lemma 2.3, we have, A ≺≺ A∗. Then

Ws
0LA(�)

cpt
↪→ LA(�), (2.10)

Moreover, if s′l > N. Then
Ws

0LA(�)
cpt
↪→ L∞(�),
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i.e, there exists c > 0, such that

|z|∞ ≤ c||z||s,A u ∈Ws
0LA(�), (2.11)

where |z|∞ := sup
x∈�

|z(x)| and 0 < s′ < s < 1.

The fractional a(.)-Laplacian operator specified in (??) is defined between Ws
0LA(�) and its dual space

(Ws
0LA(�))∗ and the following expression is found ([9], Theorem 6.12)

⟨G ′(z), v⟩ =
∫
�×�

a
(
|Dsz|

)
DszDsvdµ = ⟨(−∆)s

a(.)z, v⟩, (2.12)

for all z, v ∈Ws
0LA(�), where G (z) :=

∫
�×�

A(|Dsz|)dµ.

Proposition 2.4. [6] Suppose that A(√.) is convex, zk ⇀ z in Ws
0LA(�) and

lim sup⟨G ′(zk), zk − z⟩ ≤ 0. Then zk → z ∈Ws
0LA(�).

Lastly, the next Lemmas, will be useful in what follows.

Lemma 2.5. [5] The following properties are true:
1)

G
( z

[z]s,A

)
≤ 1, f or all z ∈Ws

0LA(�) \ {0}.

2)
min{[z]l

s,A, [z]m
s,A} ≤ G (z) ≤ max{[z]l

s,A, [z]m
s,A}, f or all z ∈Ws

0LA(�).

Lemma 2.6. Let z ∈Ws
0LA(�). Then∫

�×�
A(|Dsz|)dµ +

∫
�

A(|z|)dx ≥ ||z||ls,A, i f ||z||s,A < 1.

∫
�×�

A(|Dsz|)dµ +
∫
�

A(|z|)dx ≥ ||z||ms,A, i f ||z||s,A > 1.

Proof. By similar argument in [22], we prove this Lemma. Let β ∈ (1, ||z||s,A) with ||z||s,A > 1. By (2.6) we have∫
�×�

A(|Dsz|)dµ +
∫
�

A(|z|)dx ≥ βl
∫
�×�

A
( |Dsz|
β

)
dµ +

∫
�

A
( |z|
β

)
dx

Since β < ||z||s,A we find∫
�×�

A
( |Dsz|
β

)
dµ +

∫
�

A
( |z|
β

)
dx > 1.

Thus,∫
�×�

A(|Dsz|)dµ +
∫
�

A(|z|)dx ≥ βl.

Letting β↗ ||z||s,A in the inequality above, we get∫
�×�

A(|Dsz|)dµ +
∫
�

A(|z|)dx ≥ ||z||ls,A. (2.13)



H. El-Houari et al. / Filomat 38:8 (2024), 2857–2875 2863

Next, Assume that ||z||s,A < 1. Let ζ ∈ (0, ||z||s,A). By (2.6) we have∫
�×�

A(|Dsz|)dµ +
∫
�

A(|z|)dx ≥ ζm
∫
�×�

A
( |Dsz|
ζ

)
dµ +

∫
�

A
( |z|
ζ

)
dx.

Set v(x) = z(x)
ζ . Then we have ||v||s,A =

||z||s,A
ζ > 1. By (2.13), we infer that∫

�×�
A(|Dsv|)dµ +

∫
�

A(|v|)dx ≥ ||v||ls,A > 1. (2.14)

Observe that,

A(γ) ≥ τmA(
γ

τ
), f or all γ > 0, τ ∈ (0, 1). (2.15)

From (2.14) and (2.15), we infer that∫
�×�

A(|Dsz|)dµ +
∫
�

A(|z|)dx ≥ ζm.

Letting ζ↗ ||z||s,A in the inequality above, we obtain∫
�×�

A(|Dsz|)dµ +
∫
�

A(|z|)dx ≥ ||z||ms,A.

Proposition 2.7. Let z ∈Ws
0LA(�) and assume that S (z) ≤ τ, for 0 < τ < 1. Then, ||z||s,A < 1.

Proof. Let z ∈ Ws
0LA(�). By (2.16), if S (z) ≤ τ holds, then ||z||s,A ≤ 1. Now, claim that ||z||s,A , 1. Arguing

by contradiction, assume that there exists z ∈ Ws
0LA(�) with ||z||s,A = 1 and S (z) ≤ τ holds. Let us take

β ∈ (0, 1), for all x ∈ �. By similar argument in Lemma 2.6 we obtain that,∫
�×�

A
(
|Dsz|

)
dµ +

∫
�

A
(
|z|

)
dx ≥ βm.

Letting β↗ 1 in the above inequality we obtain∫
�×�

A
(
|Dsz|

)
dµ +

∫
�

A
(
|z|

)
dx ≥ 1.

that contradicts condition S (z) ≤ τ. The proof is complete.

Remark 2.8. Using Lemma 2.1 and Lemma 2.5, we can see that

||z||s,A ∼ ||z|| = inf{λ > 0 : S
( z
λ

)
≤ 1}, (2.16)

for all z in Ws
0LA(�).

We define the space X :=
∏n

ı=1 Ws
0LAı (�) for problem (1.1), which is a reflexive Banach space, with

respect to the norm

||z|| :=
n∑
ı=1

||zı||s,Aı , z = (z1, z2, . . . , zn) ∈ X.
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Hence X ↪→ L∞(�) × ... × L∞(�) is compact. We set C > 0, such that

C := max
{

sup
zı∈Ws

0LAı \{0}

max
x∈�
|zı(x)|

||zı||s,Aı

: f or 1 ≤ ı ≤ n
}
< +∞. (2.17)

Put

Fı(z) :=
∫
�

F(x, z)dx,

Lemma 2.9. ([3] Lemma 3, [17] Lemma 3.4) The functions ,Sı,Fı : WsLAı (�) → R are well defined and its the
C1(WsLAı (�),R) and we have

⟨S ′
ı (zı), zı⟩ =

∫
�×�

aı
(
|Dszı|

)
DszıDszıdµ +

∫
�

aı
(
|zı|

)
zızıdx, (2.18)

⟨F ′

ı (zı), zı⟩ =
∫
�

Fzı (x, zı)zıdx,

for all zı ∈WsLAı (�).

At this point, we set the definition of our weak solution, we say that z = (z1, . . . , zn) ∈ X is a weak
solution for problem (1.1) if

n∑
ı=1

Kı
(
Sı(zı)

)
⟨S ′

ı (zı), zı⟩ − λ
∫
�

n∑
ı=1

Fzı (x, z1, . . . , zn)zıdx = 0,

for all z = (z1, . . . , zn) ∈ X.

Proposition 2.10. Let T : X→ X∗ be the operator defined by

T(ω)(w) =

n∑
ı=1

Kı
(
Sı(ωı)

)
⟨S ′

ı (ωı),wı⟩

for each ω = (ω1, . . . , ωn), w = (w1, . . . ,wn) ∈ X. Then T has a continuous inverse on the dual space X∗ of X.

Proof. Due to Minty–Browder theorem [26]. It is enough to check that T is hemicontinuous, coercive, and
uniformly monotone. For every ω ∈ X, with ||ωı||s,Aı > 1, we have

T(ω1, . . . , ωn)(ω1, . . . , ωn) =

n∑
ı=1

Kı
(
Sı(ωı)

)
×

( ∫
�×�

aı
(
|Dsωı|

)
|Dsωı|

2dµ +
∫
�

aı
(
|ωı|

)
|ωı|

2dx
)
.

Appliying (1.4),

T(ω1, . . . , ω2)(ω1, . . . , ωn) ≥ lı
n∑
ı=1

Kı
(
Sı(ωı)

)
Sı(ωı).

Using Lemma 2.6 and (M1), then

T(ω1, . . . , ω2)(ω1, . . . , ωn) ≥ lıα0

n∑
ı=1

||ωı||
2lı
s,Aı
.
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where α0 = minαı. So T is coercive. From the continuity of the function Kı and Lemma 2.9 we can verified
that T is hemicontinuous. Now let u,w ∈ X such that u , w. Since aı(|γ|)γ, Kı(γ) are increasing and from
(M1) we have

⟨T(ω) − T(w), ω − w⟩ = ⟨T(ω), ω − w⟩ − ⟨T(w), ω − w⟩

=

n∑
ı=1

Kı
(
Sı(ωı)

)[ ∫
�×�

[(
aı(|Dsωı|)Dsωı

(
Dsωı −Dswı

)
dµ

+

∫
�

(
aı(|ωı|)ωı

(
ωı − wı

)
dx

)]
−

n∑
ı=1

Kı
(
Sı(wı)

)[ ∫
�×�

[(
aı(|Dswı|)Dswı

(
Dsωı −Dswı

)
dµ

+

∫
�

(
aı(|wı|)wı

(
ωı − wı

)
dx

)]
≥ α0

[ ∫
�×�

(
aı(|Dsωı|)Dsωı

(
Dsωı −Dswı

)
dµ +

∫
�

(
aı(|ωı|)ωı

(
ωı − wı

)
dx

)]
− α0

[ ∫
�×�

(
aı(|Dswı|)Dswı

(
Dsωı −Dswı

)
dµ +

∫
�

(
aı(|wı|)wı

(
ωı − wı

)
dx

)]
= α0

[ ∫
�×�

(
aı(|Dsωı|)Dsωı − aı(|Dswı|)Dswı

)(
Dsωı −Dswı

)
dµ

+

∫
�

(
aı(|ωı|)ωı − aı(|wı|)wı

)(
ωı − wı

)
dx

]
> 0.

So, T : X → X∗ is strictly monotone. Thus, from Minty-Browder theorem, T−1 : X∗ → X exists and it is
bounded. By demonstrating that T−1 is sequentially continuous, we can prove that it is continuous. Let
ωn → ω inX∗, let wn = T

−1(ωn) and w = T−1(ω). Then wn is bounded inX, so, wn ⇀ w0 inX. Since ωn → ω,
we have

lim
n→∞
⟨T(wn),wn − w0⟩ = lim

n→∞
⟨ωn,wn − w0⟩ = 0

that is,

n∑
ı=1

Kı
(
Sı(wn)

) ( ∫
�×�

aı(|Dswn|)Dswn(Dswn −Dsw0)dµ

+

∫
�

aı(|wn|)wn

(
wn − w0

)
dx

)
= 0.

(2.19)

From the continuity of the functions Kı, Proposition 2.4 and the last equation, the fact that wn ⇀ w0 in X,
we conclude that wn → w0 in X.

Now we define the problem’s energy functional 1λ : X→ R by:

1λ(ω) = Ψ(ω) − λF (ω),

for all ω = (ω1, . . . , ωn) ∈ X, where

Ψ(ω) =
n∑
ı=1

K̂ı
(
Sı(ωı)

)
.

Note that, the weak solutions of (1.1) are exactly the critical points of 1λ. It is well known that Ψ and
F are two continuous, Gâteaux differentiable functions and whose Gâteaux differentials at the point
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ω = (ω1, . . . , ωn) ∈ X are the functionalsΨ′ and F ′ given by

Ψ′(ω)(v) =
n∑
ı=1

Kı
(
Sı(ω)

)( ∫
�×�

aı(|Dsωı|)DsωıDsvıdµ +
∫
�

aı(|ωı|)ωıvıdx
)
, (2.20)

and

F ′(ω)(v) =
∫
�

n∑
ı=1

Fωı (x, ω1, . . . , ωn)vı(x)dx,

also F ′ : X→ (X)∗ is a compact operator.

Lemma 2.11. Ψ is sequential weak lower semicontinuous and coercive.

Proof. For γ ≥ 0, using (M1), we have

Ψ(ω) =
n∑
ı=1

K̂ı
(
Sı(ωı)

)
≥

n∑
ı=1

θıαıSı(ωı) ≥ θ0α0

n∑
ı=1

Sı(ωı),

where θ0 = minθı and by Lemma 2.6, for all u ∈ Xwith ||ωı||s,Aı > 1, we have

Ψ(ω) ≥ θ0α0

n∑
ı=1

||ωı||
lı
s,Aı
,

from which it follows thatΨ is coercive. Moreover, because of Aı are convex, thenΨ is also convex function,
thus, it is sequentially weakly lower semicontinuous.

3. Main results.

Our main results are stated below

Theorem 3.1. Assume that conditions (M1), (M2) hold, (1.4), Aı(
√
.) are convex and

(F0): F : � ×Rn
→ R satisfying condition (G0) and F(x, 0, . . . , 0) = 0 for each x ∈ �,

(F1): there exist h ∈ L1(�) and positive constants dı, with dı < lı for 1 ≤ ı ≤ n, such that

0 ≤ F(x, γ1, . . . , γn) ≤ h(x)
n∑
ı=1

|γı|
dı ,

for each x ∈ � and every (γ1, . . . , γn) ∈ Rn,
(F2) : there exist 0 < cı < ψ := C

θ0α0
and ξı ∈ R for 1 ≤ ı ≤ n, with

θ0α0|ω|
n∑
ı=1

Aı(|zı|) > min
{( cı
ψ

)m
: 1 ≤ ı ≤ n

}
,

such that∫
�

sup
|γ1 |≤c1,...,|γn |≤cn

F(x, γ1, . . . , γn)dx <
min

{(
cı
ψ

)m
: 1 ≤ ı ≤ n

}
K̂(1)|�|

1
θ0

∑n
ı=1(Aı(ξı))

1
θı

∫
�

F(x, ξ1, . . . , ξn)dx, (3.1)

where K̂(1) = max K̂ı(1) and θ0 = minθı. Then, setting

Ur :=
(

K̂(1)|�|
1
θ0

∑n
ı=1(Aı(ξı))

1
θ0∫

�
F(x, ξ1, . . . , ξn)dx

,
min

{(
cı
ψ

)m
: 1 ≤ ı ≤ n

}
∫
�

sup
|γ1 |≤c1,...,|γn |≤cn

F(x, γ1, . . . , γn)dx

)
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for each compact interval [a, b] ⊂ Ur, there exists ϱ > 0 with the property: For each function H : � × Rn
→ R

satisfying condition (G0), for all λ ∈ [a, b], there exists δ > 0 such that, for each µ ∈ [0, δ], the system (1.1) has at
least three weak solutions in X whose norms are less than ϱ.

We set

B := lim inf
ζ→0+

∫
�

sup
(γ1,...,γn)∈R(ζ)

F(x, γ1, . . . , γn)dx

ζm̄

and

D := lim sup
(ζ1,...,ζn)→(0+,...,0+)

∫
�

F(x, ζ1, . . . , ζn)dx∑n
ı=1 K̂ı(|�|ϱζmı

ı )
,

where R(ζ) :=
{
(γ1, . . . , γn) ∈ Rn :

∑n
ı=1 |γı| < ζ

}
for all ζ > 0.

Theorem 3.2. Assume that conditions (M1), (M2) and (1.4) hold and consider the following:
(F3): H(x, γ1, . . . , γn) ≥ 0 for all (x, γ1, . . . , γn) ∈ � ×Rn

+

let ϱ > 0 such that

lim
γ→0+

Aı(γ)
γmı

< ϱ. (3.2)

Further, assume that

lim inf
ζ→0+

∫
�

sup
(γ1,...,γn)∈R(ζ)

F(x, γ1, . . . , γn)dx

ζm̄ < L lim sup
(ζ1,...,ζn)→(0+,...,0+)

∫
�

F(x, ζ1, . . . , ζn)dx∑n
ı=1 K̂ı(|�|ϱζmı

ı )
, (3.3)

where m̄ = max mı and

L = min
{

Lmı =
1(∑n

ı=1

(
C

θ0α0

) 1
mı
)m̄

: f or 0 ≤ ı ≤ n
}
. (3.4)

If,

H0 :=
( n∑
ı=1

( C
θ0α0

) 1
mı
)m̄

lim
ζ→0+

inf

∫
�

sup
(γ1,...,γn)∈R(ζ)

H(x, γ1, . . . , γn)dx

ζm̄ < ∞. (3.5)

Then, for every

λ ∈ D :=
1(∑n

ı=1

(
C

θ0α0

) 1
mı
)m̄

] 1
LD

,
1
B

[
,

and for every µ ≥ 0 with,

µ < µλ :=
1

H0

(
1 − λD

( n∑
ı=1

( C
θ0α0

) 1
mı
)m̄)
,

problem (1.1) has a sequence of pairwise distinct weak solutions, which converges (strongly) to zero in X.



H. El-Houari et al. / Filomat 38:8 (2024), 2857–2875 2868

Proof of Theorem 3.1

Proof. From the definitions ofΨ, from condition (F0), we have

Ψ(0) = F (0) = 0.

Notice that

|w(x) − w(y)| ≤ |x − y|||∇w||L∞(Rn). (3.6)

Set w(x) := (ξ1, . . . , ξn) for any x ∈ Rn and ξı ∈ R, by (3.6), we deduce w(y) = w(x) = (ξ1, . . . , ξn) for any
x, y ∈ R2n. Clearly, w ∈ X, and from (M2) we have

Ψ(w) =
n∑
ı=1

K̂ı
(
Sı(wı)

)
≥

n∑
ı=1

θıαıSı(wı) ≥ θ0α0

n∑
ı=1

Sı(wı)

= θ0α0|�|

n∑
ı=1

Aı(ξı) > min
{( cı
ψ

)m
: 1 ≤ ı ≤ n

}
:= τ.

Moreover, (M2) implies that, K̂ı(γ) ≤ K̂ı(1)γ
1
θı , then we have,

Ψ(w) =
n∑
ı=1

K̂ı
(
Sı(wı)

)
≤

n∑
ı=1

K̂ı(1)(Sı(wı))
1
θı ≤ K̂(1)|�|

1
θ0

n∑
ı=1

(Aı(ξı))
1
θı .

Moreover, whenΨ(ω) ≤ τ for ω = (ω1, . . . , ωn) ∈ X, by (M2) and Lemma 2.6, we have

θ0α0||ωı||s,Aı ≤ max{τ
1
lı , τ

1
mı }.

Then, by (2.17) we obtain

|ωı|∞ ≤
Cr

1
mı

α0θ0
= cı.

Therfore, for every ω ∈ X,

sup
ω∈Ψ−1((−∞,τ))

F (ω) = sup
ω∈Ψ−1((−∞,τ))

∫
�

F(x, ω1(x), . . . , ωn(x))dx

≤

∫
�

sup
|γ1 |≤c1,...,|γn |≤cn

F(x, γ1, . . . , γn)dx.

Condition (F2) implies

supω∈Ψ−1((−∞,τ)) F (ω)

τ
≤

∫
�

sup
|γ1 |≤c1,...,|γn |≤cn

F(x, γ1, . . . , γn)dx

min
{(

cı
ψ

)m
: 1 ≤ ı ≤ n

}

≤

∫
�

F(x, ξ1, . . . , ξn)dx

K̂(1)|�|
1
θ0

∑n
ı=1(Aı(ξı))

1
θı

≤
F (w)
Ψ(w)

.
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Thus, assumption (τ1) of Theorem 1.1 is satisfied. From (τ2), as a result, for every positive parameter λ, the
functionΨ − λF is coercive, in particular for every

λ ∈ Uτ ⊆

(
Ψ(w)
F (w)

,
τ

supΨ(ω)≤τ F (ω)

)
,

Indeed, from (F1) we have∫
�

F(x, ω1, . . . , ωn)dx ≤
∫
�

h(x)
n∑
ı=1

|ωı|
dı ≤ |h|∞

n∑
ı=1

||ωı||
dı
Ldı (�)

≤ C|h|∞
n∑
ı=1

||ωı||
dı
s,Aı
,

then, from Lemma 2.11 we deduce that

Ψ(ω) − λF (ω) ≥ θ0α0

n∑
ı=1

||ωı||
lı
s,Aı
− λC|h|∞

n∑
ı=1

||ωı||
dı
s,Aı

=

n∑
ı=1

||ωı||
lı
s,Aı

(
θ0α0 − λC|h|∞

n∑
ı=1

||ωı||
dı−lı
s,Aı

)
.

Since dı < lı, hence, condition (τ2) of Theorem 1.1 holds. Then all the assumptions of Theorem 1.1 are then
satisfied. In addition, for every function H : � ×Rn

→ R satisfiying (G0) the function:

Γ(ω) :=
∫
�

H(x, ω1, . . . , ωn)dx,

is well defined, continuously Gateaux differentiable on X, with a compact derivative provided by

Γ′(ω)(v) =
∫
�

n∑
ı=1

Hωı (x, ω1, . . . , ωn)vı(x)dx.

Thus, all the conditions of Theorem 1.1 are satisfied. Also, the solution of the following equation

Ψ′(ω) − λF ′(ω) − µΓ′(ω) = 0 (3.7)

are exactly the weak solutions of (1.1). As a result, Theorem1.1 leads to the conclusion.

Proof of Theorem 3.2
First, let fix λ̄ ∈ D and for all µ ≥ 0, assume that µ < µλ. Since λ̄ < 1(∑n

ı=1

(
C

θ0α0

) 1
mı )m̄

B

, one has µλ > 0. Fix

µ̄ ∈ [0, µλ[. Therefore, from (3.4) we infer that

1
L
≥

( n∑
ı=1

( C
θ0α0

) 1
mı
)m̄

, for all 1 ≤ ı ≤ n. (3.8)

Put a := 1
D and b := 1

µ̄
λ̄

H0+B
(∑n

ı=1

(
C

θ0α0

) 1
mı )m̄

. If H0 = 0, clearly, a = 1
D , b = 1(∑n

ı=1

(
C

θ0α0

) 1
mı )m̄

B

.

Since, the fact that λ̄ ∈ D and (3.8) we obtain,

λ̄ >
1

LD
( n∑
ı=1

( C
θ0α0

) 1
mı
)m̄
>

1
D
.
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Then, λ̄ ∈]a, b[. If H0 , 0, since µ̄ < µλ, which implies that

µ̄H0 + λ̄B
( n∑
ı=1

( C
θ0α0

) 1
mı
)m̄
< 1,

then
λ̄ <

1
µ̄
λ̄

H0 + B
(∑n

ı=1

(
C

θ0α0

) 1
mı
)m̄
.

Then λ̄ < b. Since λ̄ > 1
D , then one has λ̄ ∈]a, b[.

On the other hand, put Q(w) = F(x,w) +
µ̄

λ̄
H(x,w), for all x ∈ �, w ∈ Rn and we introduce the functional

Q : X→ R for each u ∈ X, as follows

Q(ω) =
∫
�

F(x, ω)dx +
µ̄

λ̄

∫
�

H(x, ω)dx.

It is generally known that Q is a Gâteaux differentiable functional and sequentially weakly upper semicon-
tinuous, with a Gâteaux derivative at the point u ∈ X, is the functional Q′(ω) ∈ X∗ given by

Q′(ω)(v) =
∫
�

n∑
ı=1

Fωı (x, ω1, . . . , ωn)vı(x)dx +
µ̄

λ̄

∫
�

n∑
ı=1

Hωı (x, ω1, . . . , ωn)vı(x)dx.

Put hλ̄(ω) := Ψ(ω) − λ̄Q(ω).In view of (3.7), we can easily see that the weak solutions of the problem (1.1)
are also weak solutions to the equation h′

λ̄
(ω) = 0. Now, we want to show that δ < +∞. We can seek for

weak solutions of problem (1.1) by applying Theorem 1.2. For that let {ζk} be a real sequence such that
limn→∞ ζk = 0. Then,

lim
k→+∞

∫
�

sup
(γ1,...,γn)∈R(ζk)

F(x, γ1, . . . , γn)dx

ζm̄
k

= lim
ζ→0+

∫
�

sup
(γ1,...,γn)∈R(ζ)

F(x, γ1, . . . , γn)dx

ζm̄

= B < +∞.

(3.9)

Put τk =
ζm̄

k(∑n
ı=1

(
C

θ0α0

) 1
mı
)m̄

for all k ∈N. Then, by Lemmas 2.6 and Proposition 2.7, we can deduce that

Ψ−1(] −∞, τk[) :=
{
u = (ω1, . . . , ωk) ∈ X : Ψ(ω) < τk

}
⊆

{
u ∈ X :

n∑
ı=1

K̂ı
(
Sı(ωı)

)
< τk

}
.

By (M2) and Lemma 2.6, we have, for k large enough (0 < τk < 1),

θ0α0||ωı||
mı

s,Aı
< τk,

and from (2.17) we have maxx∈ω |ωı(x)| ≤ C||ωı||s;Aı . Then for all x ∈ �

|ωı(x)| ≤
( Cτk

θ0α0

) 1
mı .

Thus,
n∑
ı=1

|ωı(x)| ≤
n∑
ı=1

( Cτk

θ0α0

) 1
mı
≤ τ

1
m̃
k

n∑
ı=1

( C
θ0α0

) 1
mı
= ζk.
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Then we have

Ψ−1(] −∞, τk[) :=
{
u ∈ X :

n∑
ı=1

|ωı(x)| < ζk

}
,

Consequently,

sup
u∈Ψ−1(]−∞,τk[)

Q(ω) ≤
∫
�

sup
(γ1,...,γn)∈R(ζk)

Q(x, γ1, . . . , γn)dx.

Considering thatΨ(0) = 0 and Q(0) = 0, for all x ∈ �, for all n ∈N one has

ϖ(τk) = inf
u∈Ψ−1(]−∞,τk[)

sup
v∈Ψ−1(]−∞,τk[)

Q(v) −Q(ω)

τk −Ψ(ω)
≤

sup
v∈Ψ−1(]−∞,τk[)

Q(v)

τk

≤

( n∑
ı=1

( C
θ0α0

) 1
mı
)m̄

∫
�

sup
(γ1,...,γn)∈R(ζk)

Q(x, γ1, . . . , γn)dx

ζm̄
k

=
( n∑
ı=1

( C
θ0α0

) 1
mı
)m̄

∫
�

sup
(γ1,...,γn)∈R(ζk)

F(x, γ1, . . . , γn)dx

ζm̄
k

+
µ̄

λ̄

( n∑
ı=1

( C
θ0α0

) 1
mı
)m̄

∫
�

sup
(γ1,...,γn)∈R(ζk)

H(x, γ1, . . . , γn)dx

ζm̄
k

.

hence, by (3.3), (3.5), (3.8) and (3.9) , we infer that

δ := lim inf
τ→0+

ϖ(τ) ≤ lim inf
k→∞

ϖ(τk)

≤

( n∑
ı=1

( C
θ0α0

) 1
mı
)m̄

lim
k→∞

∫
�

sup
(γ1,...,γn)∈R(ζk)

F(x, γ1, . . . , γn)dx

ζm̄
k

+
µ̄
λ̄

( n∑
ı=1

( C
θ0α0

) 1
mı
)m̄

lim
k→∞

∫
�

sup
(γ1,...,γn)∈R(ζk)

H(x, γ1, . . . , γn)dx

ζm̄
k

≤
1
L

lim
k→∞

∫
�

sup
(γ1,...,γn)∈R(ζk)

F(x, γ1, . . . , γn)dx

ζm̄
k

+
µ̄

λ̄
H0

< lim sup
(ζ1,...,ζn)→(0+,...,0+)

∫
�

F(x, ζ1, . . . , ζn)dx∑n
ı=1 K̂ı(|�|ϱζmı

ı )
+
µ̄

λ̄
H0 = D +

µ̄

λ̄
H0 < +∞.

(3.10)

Moreover, since H is nonnegative we have

lim sup
(ζ1,...,ζn)→(0+,...,0+)

∫
�

Q(x, ζ1, . . . , ζn)dx∑n
ı=1 K̂ı(|�|ϱζmı

ı )
≥ lim sup

(ζ1,...,ζn)→(0+,...,0+)

∫
�

F(x, ζ1, . . . , ζn)dx∑n
ı=1 K̂ı(|�|ϱζmı

ı )
, (3.11)

Therefore, from assumption (3.3), (3.10) and (3.11), we observe that

λ̄ ⊆
]
a, b

[
⊆

]
λ1, λ2

[
⊆

]
0,

1
δ

[
,
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where
λ1 =

1

lim sup
(ζ1,...,ζn)→(0+,...,0+)

∫
�

Q(x, ζ1, . . . , ζn)dx∑n
ı=1 K̂ı(|�|ϱζmı

ı )

and
λ2 =

1

( n∑
ı=1

( C
θ0α0

) 1
mı
)m̄

lim inf
ζ→0+

∫
(γ1,...,γn)∈R(ζ)

Q(x, γ1, . . . , γn)dx

ζm̄

.

So D ⊆ ]0, 1
δ [. For a fixed λ̄ ∈ D , the functional hλ̄ is unbounded from below. Indeed, since

1
λ̄
< D,

consider n positive real sequences {ζı,k} and η > 0 such that ζı,k → 0 as k→ +∞ and

1
λ̄
< η <

∫
�

F(x, ζ1,k, . . . , ζn,k)dx∑n
ı=1 K̂ı(|�|ϱζmı

ı,k )
. (3.12)

Let {ωk(x) = (ζ1,k, . . . , ζn,k)} ⊆ X be a sequence for all x ∈ �. From (3.6), we have

Ψ(ωk(x)) =
n∑
ı=1

K̂ı
(
Sı(ζı,k)

)
=

n∑
ı=1

K̂ı
(
|�|Aı(ζı,k)

)
.

Moreover, from (3.2) and since limk→+∞ ζı,k = 0, there exist ξ > 0 and nı ∈N such that ζı,k ∈ (0, ξ) and

Aı(ζı,k) < ϱζmı

ı,k f or all n ≥ nı.

Since K̂ is increasing, it follows that, for all n ≥ max{n1, . . . ,n2}, we have

Ψ(ωk(x)) =
n∑
ı=1

K̂ı
(
|�|Aı(ζı,k)

)
≤

n∑
ı=1

K̂ı
(
ϱ|�|ζmı

ı,k

)
. (3.13)

Moreover, since H is nonnegative we have

Q(ωk(x)) ≥
∫
�

F(x, ζ1,k, . . . , ζn,k)dx (3.14)

By (3.12), (3.13) and (3.14), we have

hλ̄(ωk(x)) = Ψ(ωk(x)) − λ̄Q(ωk(x))

≤

n∑
ı=1

K̂ı
(
ϱ|�|ζmı

ı,k

)
− λ̄

∫
�

F(x, ζ1,k, . . . , ζn,k)dx

< (1 − λη)
n∑
ı=1

K̂ı
(
ϱ|�|ζmı

ı,k

)
.

Since 1
λ < η, then 1 − λη < 0 which infer that hλ̄(ωk(x)) < 0 = hλ̄(0, . . . , 0). Then (0, . . . , 0) isn’t a local

minimum of hλ̄. Thus, owing to the fact that (0, . . . , 0) is the unique global minimum of Ψ, there exists a
sequence {ωk} of pairwise distinct critical points of hλ̄ such that limk→∞ ||ωk|||s,Aı = 0, and this completes the
proof.
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4. Example

In this section, we point out certain examples of functions φ, A(γ), K, H and F for which the results of
this paper can be applied.

Let � ∈ R3 be a bounded domain with |�| = 1 and ı = 1, 2. We can take K, due to Kirchhoff, as

Kı(γ) = aı + bıγβı−1, aı, bı ≥ 0, aı + bı > 0, γ ≥ 0, βı ≥ 1. (4.1)

and βı ∈ (1,+∞), i f bı > 0,
βı = 1, i f bı = 0

(4.2)

So we can see that,

K̂ı(γ) = aıγ +
bı
βı
γβı

Further, it is clear that
Kı(γ) = aı + bıγβı−1

≥ aı > 0 ∀γ ≥ 0

and

K̂ı(γ) =
∫ γ

0
Kı(r)dr ≥

1
βı

Kı(γ)γ ∀γ ≥ 0.

Hence, (M1) and (M2) holds true (choose θı = 1
βı

). At this point, we take a1 = b1 = 1, β1 = β2 = 1 and
b1 = b2 = 0. Now take

φ1(γ) =

 |γ|4γ
log(1+|γ|) i f γ , 0,

0 i f γ = 0,
and φ2(γ) = log(1 + |γ|2)|γ|2γ, γ ∈ R,

Similar to Remark 3.6 in [22], we have l1 = 5 < m1 = 6 and l2 = 4 < m2 = 6. Thus, the condition (1.4) is
satisfied. Also we deduce that m̄ = max mı = 6. Moreover, owing to

lim
γ→0+

1
γ5

∫ γ

0

|r|4r
log(1 + |r|)

dr =
1
5
, and lim

γ→0+

1
γ4

∫ t

0
log(1 + |r|2)|r|2r = 0,

the condition (3.2) is also fulfilled (choose ϱ = 1
n =

1
3 ). Also we deduce that L =

α0

28C
.

Let F : R2
→ [0,∞) be a continuous function defined by

F(r, γ) =

r6(1 + sin(ln(1 + |γ|))) i f (r, γ) , (0, 0),
0 i f (r, γ) = (0, 0),

and

H(r, γ) =

(1 + cos(|r|)))γ6e−t i f (r, γ) , (0, 0),
0 i f (r, γ) = (0, 0).

Then,

B = lim inf
ζ→0+

∫
�

max
|r|+|γ|≤ζ

F(r, γ)dx

ζ6 = |�| lim inf
ζ→0+

max|r|+|γ|≤ζ F(r, γ)
ζ6 = 2,

D = lim sup
(r,γ)→(0+,0+)

∫
�

F(x, r, γ)dx

K̂1( 1
3 r6) + K̂2( 1

3γ
6)
= |�| lim sup

(r,γ)→(0+,0+)

F(r, γ)
1
3 r6 + 1

3γ
6
= 3.
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H0 =
1
L

lim inf
ζ→0+

∫
�

max
|r|+|γ|≤ζ

H(r, γ)dx

ζ6 =
|�|28C
α0

lim inf
ζ→0+

max|r|+|γ|≤ζ H(r, γ)
ζ6 =

29C
α0

,

µλ =
1

H0

(
1 − λD

( n∑
ı=1

( C
θ0α0

) 1
mı
)m̄)
=
α0

29C

(
1 − 3λ

28C
α0

)
.

Thus, for all µ̄ ∈ [0, µλ[ and λ̄ ∈ D =] 1
3 ,

α0
29C [ , with this condition 28

3 <
α0
C . Then for every λ ∈]a = 1

D =
1
3 , b =

λ̄α0
29C(µ̄+λ̄) [ and µ ∈ [0, µh,λ[ the following system:

−K1

(
S1(ω1)

)(
(−∆)s

|.|4
log(1+|.|)

ω1 +
|ω1|

4ω1

log(1 + |ω1|)

)
= 6λω5

1(1 + sin(ln(1 + |ω2|)))

−µω6
2e−ω2 sin(|ω1|) in�,

−K2

(
S2(ω2)

)(
(−∆)s

log(1+|.|2)|.|2ω2 + log(1 + |ω2|
2)|ω2|

2ω2

)
= λ

ω6
1

1 + ω2
cos(ln(1 + |ω2|))

+µω5
2e−ω2 (6 − ω2)(1 + cos(|ω1|)) in�,

ω1 = ω2 = 0 on R3
\�,

admits a sequence of pairwise distinct weak solutions which strongly converges to zero in Ws
0LA1 (�) ×

Ws
0LA2 (�).
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