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Abstract. In the current paper, we mainly investigate a novel class of nonlinear Hilfer fuzzy fractional
differential equations (NHFFDEs) with time-delays. Firstly, using Laplace transform, we convert the
system under consideration into an analogous integral system. Secondly, using Schauder’s and Banach’s
fixed point theorems, the existence and uniqueness results of solutions for NHFFDEs are then established.
Additionally, we explore the finite-time stability result of solution for the system under consideration.

1. Introduction

Nonlinear Hilfer fuzzy fractional differential equations with time-delays are a type of differential equa-
tion that combines several mathematical concepts, including fractional calculus, fuzzy logic [24] and time
delays. Fractional calculus deals with derivatives and integrals of non-integer orders, while fuzzy logic is a
type of logic that deals with uncertainty and imprecision. Time delays are also an important factor in many
real-world systems, as they can cause oscillations and instability.
The Hilfer derivative [15] is a particular type of fractional derivative that has been shown to be a more
accurate representation of many physical phenomena than the traditional Riemann-Liouville derivative.
It has been widely used in modeling anomalous diffusion, viscoelasticity and other systems that exhibit
power-law behavior. NHFFDEs with time-delays can be used to model a wide range of physical and
engineering systems, including biological systems, chemical reactors, electrical circuits and many others.
The solutions to these equations can provide insights into the behavior of these systems and can be used
to make predictions and design control strategies. On the other hand, stability analysis is a fundamental
aspect of mathematical analysis that is a crucial in avariety of engineering and science fields. Following that,
many authors investigated various types of stability problems for different kinds of fractional differential
equation and fuzzy differential equations using different methods (see [1]-[3],[14],[20],[17],[18],[21],[22],
[6]-[12], [4]). Also, nany scholars have recently looked more into and explored the topic of existence and
uniqueness for the solutions to linear and nonlinear fuzzy fractional differential equations in various aspects
(see [5],[13],[16],[19]).
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Overall, the study of NHFFDEs is an important area of research that has the potential to impact many fields
and applications. The novelties and main contributions of this manuscript are:

•We introduce a new kind of nonlinear Hilfer fuzzy fractional differential equations with time-delays.

• Existence result for the considered system is investigated by applying Schauder’s fixed point theorem
under the weaker non-Lipschitz condition.

• Uniqueness result is established by applying the Banach’s contraction mapping.

•The finite-time stability is obtained which firstly promotes the further development of this type stability
in fuzzy space, and secondly fills the gap of finite-time stability theory in the field of NHFFDEs.
The rest of the paper is organized as follows. In Section 2, We introduce some essential definitions and
lemmas. The existence and uniqueness results for the NHFFDEs are given in Section 3. Afterwards, finite-
time stability result for the considered system is established in Section 4. The last section is where you come
to a conclusion.

2. Preliminaries

The definitions and lemmas that are utilized throughout this papeer will be introduced in this part.

Definition 2.1. [22] The set of fuzzy subsets of Rn is denoted by En := {Υ : Rn
−→ [0, 1]} which satisfies:

(i) Υ is upper semicontinous on Rn,

(ii) Υ is fuzzy convex, i.e, for 0 ≤ λ ≤ 1

Υ
(
λz1 + (1 − λ)z2

)
≥ min {Υ(z1),Υ(z2)} , ∀z1, z2 ∈ R

n,

(iii) [Υ]0 = {z ∈ Rn : Υ(z) > 0} is compact,

(iv) Υ is normal, i.e, ∃z0 ∈ Rn such that Υ(z0) = 1.

Remark 2.2. En is called the space of fuzzy number.

Definition 2.3. [22] The p-level set of Υ ∈ En is defined by:
For p ∈ (0, 1], we have [Υ]p = {z ∈ Rn

|Υ(z) ≥ q} and for p = 0 we have [Υ]0 = {z ∈ Rn|Υ(z) > 0}.

Remark 2.4. From Definition 2.1, it follows that the p-level set [Υ]p of Υ, is a nonempty compact interval and
[Υ]p = [Υ(p),Υ(p)]. Moreover, len([Υ]p) = Υ(p) − Υ(p).

Definition 2.5. [22] For addition and scalar multiplication in fuzzy set space En, we have

[Υ1 + Υ2]p = [Υ1]p + [Υ2]p = {z1 + z2 | z1 ∈ [Υ1]p, z2 ∈ [Υ2]p
},

and
[αΥ]p = α[Υ]p = {αz | z ∈ [Υ]p

},

for all p ∈ [0, 1].
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Definition 2.6. [22] The Hausdorff distance is given by

D∞
(
Υ1,Υ2

)
= sup

0≤p≤1

{
|Υ1(p) − Υ2(p)|, |Υ1(p) − Υ2(p)|

}
,

= sup
0≤p≤1

DH

(
[Υ1]p, [Υ2]p

)
.

Remark 2.7. En is complet metric space with the above definition (see [22]) and we have the following properties of
D∞:

D∞
(
Υ1 + Υ3,Υ2 + Υ3

)
= D∞

(
Υ1,Υ2

)
,

D∞
(
λΥ1, λΥ2

)
= |λ|D∞

(
Υ1,Υ2

)
,

D∞
(
Υ1,Υ2

)
≤ D∞

(
Υ1,Υ3

)
+D∞

(
Υ3,Υ2

)
,

for all Υ1,Υ2,Υ3 ∈ En and λ ∈ Rn.

Definition 2.8. [22] LetΥ1,Υ2 ∈ En, if there existsΥ3 ∈ En such thatΥ1 = Υ2+Υ3, thenΥ3 is called the Hukuhara
difference of Υ1 and Υ2 noted by Υ1 ⊖ Υ2.

Definition 2.9. [5] The generalized Hukuhara difference (gH-difference) of Υ1,Υ2 ∈ En is defined as follows:

Υ1 ⊖1H Υ2 = Υ3 ⇔


(i) Υ1 = Υ2 + Υ3, if len([Υ1]p) ≥ len([Υ2]p).

(ii) Υ2 = Υ1 + (−1)Υ3, if len([Υ2]p) ≥ len([Υ1]p).

Definition 2.10. [22] Let a fuzzy function Υ : [a, b] −→ En. If for every p ∈ [0, 1], the function u 7−→ len[Υ(u)]p is
increasing (decreasing) on [a, b], then Υ is called increasing (decreasing) on [a, b].

Remark 2.11. If Υ is increasing or decreasing, then we say that Υ is monotone on [a, b].

Notation:
• C
(
[a, b],En

)
denote the set of all continuous fuzzy functions.

• AC
(
[a, b],En

)
denote the set of all absolutely continuous fuzzy functions on [a, b] with value in En.

• AC1
(
[a, b],En

)
the set of all absolutely continuously differentiable fuzzy functions on [a, b] with value in

En.
• For ζ ∈ (0, 1), let Cζ

(
[a, b],En

)
denote the space of continuous functions defined by

Cδ
(
[a, b],En

)
:=
{
z ∈ (a, b] −→ En : (u − a)1−δz(u) ∈ C[a, b]

}
.

• Denote by L
(
[a, b],En

)
the set of all fuzzy functions z : [a, b] −→ En such that u 7→ D∞[z(u), 0̂] belong to

L1[a, b].

Definition 2.12. [5] The Riemann–Liouville fractional integral of order γ > 0 of a continuous function is defined by

I
γ
a+z(u) =

1
Γ(γ)

∫ u

a
(u − s)γ−1z(s)ds.

Definition 2.13. [5] The Riemann–Liouville fractional derivative of order γ > 0 of a continuous function z is given
by

RL
D
γ
a+z(u) : = Dn

I
n−γ
a+ z(u),

=
1

Γ(n − γ)

( d
du

)n ∫ u

a
(u − s)n−γ−1z(s)ds,

where n = [γ] + 1.
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For z ∈ L
(
[a, b],En

)
, we define the Riemann–Liouville fractional integral of order γ of the fuzzy function z:

zγ(u) := Iγa+z(u) =
1
Γ(γ)

∫ u

a
(u − s)γ−1z(s)ds, u ≥ a.

Since [z(u)]p =
[
z(u, p), z(u, p)

]
, we can define the fuzzy Riemann–Liouville fractional integral of fuzzy

function z based on lower and upper functions

[Iγa+z(u)]p =
[
I
γ
a+z(u, p),Iγa+z(u, p)

]
, u ≥ a.

Where

I
γ
a+z(u, p) =

1
Γ(γ)

∫ u

a
(u − s)γ−1z(s, p)ds,

and

I
γ
a+z(u, p) =

1
Γ(γ)

∫ u

a
(u − s)γ−1z(s, p)ds.

It follows that the operator zγ(u) is linear and bounded from C
(
[a, b],En

)
to C
(
[a, b],En

)
.

Definition 2.14. [17] The fuzzy Hilfer fractional derivative of order γ and parameter β of a function z ∈ C1−δ[a, b]
is defined by

H
D
γ,β
a+ z(u) = Iβ(n−γ)

a+

( d
du

)n
I

(1−β)(n−γ)
a+ z(u),

if the gH-derivative z′1−δ(u) exists, where n − 1 < γ < n, and 0 ≤ β ≤ 1.

Definition 2.15. [17] Mittag-Leffler function with two parameter is defined as

Mγ,β(u) =
∞∑
j=0

u j

Γ(γ j + β)
, γ, β > 0.

Particularly, when β = 1, two parameter will degenerate into one parameter function, i.eMγ,1(u) =Mγ(u).

Let C
(
I,En
)

be the Banach space of all continuous process from I := [0,T] into En such that D∞(ζ1, ζ2) < ∞.

Lemma 2.16. Let γ ∈ (0, 1) and 0 ≤ s < u, we get

uγ − sγ ≤ (u − s)γ.

Proof. We have

uγ − sγ = γ
∫ u

s
zγ−1dz,

and

(u − s)γ = γ
∫ u

s
(z − s)γ−1dz.

Since s ≤ z ≤ u and −1 < γ − 1 < 0, we have zγ−1
≤ (z − s)γ−1. Then, uγ − sγ ≤ (u − s)γ.
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3. Existence and uniqueness results

The following nonlinear Hilfer fuzzy fractional differential equations with time-delays are discussed in
this section.

H
D
γ,β
0+ z(u) = Az(u) + H

(
u, z(u), z(u − τ)

)
, u ∈ I,

z(u) = ϕ(u), u ∈ [−τ, 0],

I1−µ
0+ z(0) = ϕ(0), µ = γ + β − γβ.

(1)

where H
D
γ,β
0+ is the Hilfer fractional derivative with 0 ≤ γ ≤ 1, 1

2 < β < 1, A is an n-dimensional matrix
and H : I × En

× En
−→ En is continuous function, z(t) is fuzzy variable, τ ∈ R+ represents the delay and

ϕ : [−τ, 0] −→ En is a continuous function satisfying D∞[ϕ(0), 0̂] < ∞.

Lemma 3.1. System (1) is equivalent to the following integral equation:

z(u) =


ϕ(u), −τ ≤ u ≤ 0,

Mβ,γ(1−β)(Au)ϕ(0) +
∫ u

0

Mβ,β

(
A(u − s)β

)
(u − s)1−β H

(
s, z(s), z(s − τ)

)
ds, u ∈ I.

(2)

Proof. Following the Laplace transform on (1), we obtain

L

[H
D
γ,β
0+ z(u)

]p
= AL

[
z(u)
]p
+L
[
H
(
u, z(u), z(u − τ)

)]p
,

then [
sγẑ(s) − sβ(γ−1)ϕ(0)

]p
= A
[
ẑ(u)
]p
+
[
Ĥ
(
u, z(u), z(u − τ)

)]p
,

where ẑ(s) and Ĥ
(
u, z(u), z(u−τ)

)
denote the Laplace transformation of z(s) andH

(
u, z(u), z(u−τ)

)
respectively.

Therefore [
ẑ(s)
]p
=

sβ(γ−1)
[
ϕ(0)
]p

sγI − A
+

[
Ĥ
(
u, z(u), z(u − τ)

)]p
sγI − A

,

where I denotes the identity matrix. Next, using the inverse Laplace transform, we get

L
−1
[
ẑ(s)
]p
= L−1

{ sβ(γ−1)

sγI − A

}[
ϕ(0)
]p
+L−1

{ 1
sγI − A

}
∗ L
−1
[
Ĥ
(
u, z(u), z(u − τ)

)]p
.

We derive the fuzzy Laplace transformation replacement in terms of the Mittag Leffler function, we get

[
z(s)
]p
=Mβ,γ(1−β)(Au)

[
ϕ(0)
]p
+

∫ u

0

Mβ,β

(
A(u − s)β

)
(u − s)1−β

[
H
(
s, z(s), z(s − τ)

)]p
ds,

then, we get z(s) =
[
z(s)
]p

, ϕ(0) =
[
ϕ(0)
]p

and H
(
s, z(s), z(s − τ)

)
=
[
H
(
s, z(s), z(s − τ)

)]p
. Therefore, we obtain

(2).

We make the following hypotheses concerning the coefficients of the system under consideration:

(H1) For all φ1, φ2, ψ1, ψ2 ∈ En and for all u ∈ I, we have

D∞
[
H(u, φ1, ψ1),H(u, φ2, ψ2)

]
≤ H
(
u,D∞[φ1, φ2],D∞[ψ1, ψ2]

)
,
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where H : I× En
× En

−→ En is a monotone increasing, continuous and concave function with H(u, 0, 0) = 0
and H(u, z(u), z(u)) = kH(u, z(u)), k is a constant.

(H2) For all u ≥ 0, ∃λ > 0 such that

D∞[H(u, 0̂, 0̂), 0̂] ≤ λ.

(H3) For any φ,ψ ∈ En, we suppose that there exists a function h ∈ C(I,En) such that

H
(
u,D∞[φ,ψ]

)
≤ h(u)D∞[φ,ψ].

We will now use Schauder’s fixed point theorem to demonstrate our result.

Theorem 3.2. Suppose that H : I × En
× En

−→ En is continuous and satisfying the hypotheses (H1)-(H3). Then,
there exist at least a solution to the system (1).

Proof. Consider the operator L on Bh defined as follows

L(z(u)) =


ϕ(u), u ∈ [−τ, 0],

Mβ,γ(1−β)(Au)ϕ(0) +
∫ u

0

Mβ,β

(
A(u − s)β

)
(u − s)1−β H(s, z(s), z(s − τ))ds, u ∈ I.

(3)

To prove this result, we divide the subsequent proof into two steps.
Step 1: L is completely continuous. For this, let us prove that:
aO- L is continuous. Indeed, for any integer n ≥ 1, define zn(u) = ϕ(0) for all u ∈ [−τ, 0]. For all u ∈ I

zn(u) =Mβ,γ(1−β)(Au)ϕ(0) +
∫ u

0
(u − s)β−1Mβ,β

(
A(u − s)β

)
H(s, z(s), z(s − τ))ds. (4)

LetM1 = sup
0≤u≤T

Mβ,γ(1−β)(Au), with the aid of the hypotheses (H1)-(H3), we get

D∞
[
L(zn(u)),L(z(u))

]
= D∞

[
Mβ,γ(1−β)(Au)ϕ(0) +

∫ u

0
(u − s)β−1Mβ,β

(
A(u − s)β

)
H(s, zn(s), zn(s − τ))ds,

Mβ,γ(1−β)(Au)ϕ(0) +
∫ u

0
(u − s)β−1Mβ,β

(
A(u − s)β

)
H(s, z(s), z(s − τ))ds

]
,

= D∞
[ ∫ u

0

Mβ,β

(
A(u − s)β

)
(u − s)1−β H(s, zn(s), zn(s − τ))ds,

∫ u

0

Mβ,β

(
A(u − s)β

)
(u − s)1−β H(s, z(s), z(s − τ))ds

]
,

≤

∫ u

0

Mβ,β

(
A(u − s)β

)
(u − s)1−β D∞

[
H(s, zn(s), zn(s − τ)),H(s, z(s), z(s − τ))

]
ds,

≤
TβM1

β
D∞
[
H(s, zn(s), zn(s − τ)),H(s, z(s), z(s − τ))

]
ds,

≤
TβM1

β
H
(
s,D∞

[
zn(s), z(s)

]
,D∞
[
zn(s − τ), z(s − τ)

])
,
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or, by using the definition of D∞, we have

D∞[zn(s − τ), z(s − τ)] = sup
0≤r≤1

max
0≤s≤u
{| zn(s − τ, r) − z(s − τ, r) |, | zn(s − τ, r) − z(s − τ, r) |},

= sup
0≤r≤1

max
−τ≤µ≤u−τ

{| zn(µ, r) − z(µ, r) |, | zn(µ, r) − z(µ, r) |},

≤ sup
0≤r≤1

max
−τ≤µ≤0

{| zn(µ, r) − z(µ, r) |, | zn(µ, r) − z(µ, r) |}

+ sup
0≤r≤1

max
0≤µ≤u−τ

{| zn(µ, r) − z(µ, r) |, | zn(µ, r) − z(µ, r) |},

≤ sup
0≤r≤1

max
0≤s≤τ
{| zn(s, r) − z(s, r) |, | zn(s, r) − z(s, r) |}

+ sup
0≤r≤1

max
τ≤s≤u
{| zn(s, r) − z(s, r) |, | zn(s, r) − z(s, r) |},

≤ sup
0≤r≤1

max
0≤s≤u
{| zn(s, r) − z(s, r) |, | zn(s, r) − z(s, r) |} = D∞[zn(s), z(s)].

Then, using the hypothesis (H1), we have

D∞
[
L(zn(u)),L(z(u))

]
≤

TβM1

β
H
(
s,D∞

[
zn(s), z(s)

]
,D∞
[
zn(s), z(s)

])
,

≤
TβM1k
β

H
(
s,D∞

[
zn(s), z(s)

])
,

≤
TβM1k
β

H
(
u,D∞

[
zn(u), z(u)

])
.

Since H is continuous, we can conclude that D∞
[
L(zn(u)),L(z(u))

]
−→ 0 as n −→ ∞. Hence, L is continuous.

bO- We prove that there exists a positive constant ξ1 and for all ς1 > 0 satisfying for all z(u) ∈ Bς1 :=
{
z(u) ∈

C
(
[−τ,T],En

)
|D∞[z(u), 0̂] ≤ ς1

}
one has D∞

[
L
(
z(u)
)
, 0̂
]
≤ ξ1. So, let M2 = sup

0≤u≤T
Mβ,β(A(u − s)β) and for all

u ∈ I and z(u) ∈ Bς1 , we have

D∞
[
L
(
z(u)
)
, 0̂
]
= D∞

[
Mβ,γ(1−β)(Au)ϕ(0) +

∫ u

0
(u − s)β−1Mβ,β

(
A(u − s)β

)
H(s, z(s), z(s − τ))ds, 0̂

]
,

≤ D∞
[
Mβ,γ(1−β)(Au)ϕ(0), 0̂

]
+D∞

[ ∫ u

0

Mβ,β

(
A(u − s)β

)
(u − s)1−β H(s, z(s), z(s − τ))ds, 0̂

]
,

≤M1D∞
[
ϕ(0), 0̂

]
+

∫ u

0

Mβ,β

(
A(u − s)β

)
(u − s)1−β D∞

[
H(s, z(s), z(s − τ)), 0̂

]
ds,

≤M1D∞
[
ϕ(0), 0̂

]
+

TβM2

β
D∞
[
H(s, z(s), z(s − τ)), 0̂

]
.

Since the function H is continuous, there is a constant NH > 0 such that D∞
[
H(u, φ, ψ), 0̂

]
≤ NH. Then,

D∞
[
L
(
z(u)
)
, 0̂
]
≤M1D∞

[
ϕ(0), 0̂

]
+

TβM2

β
:= ξ1.

Therefore, for every z(u) ∈ Bς1 , we have D∞
[
L
(
z(u)
)
, 0̂
]
≤ ξ1, this implies that L(Bς1 ) ⊆ Bξ1 .

cO- L maps bounded set into equi-continuous set. Indeed, for each z(u) ∈ Bς2 and u1,u2 ∈ I such that
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0 ≤ u1 < u2 ≤ T and using Lemma 2.16 we have

D∞
[
L
(
z(u1)

)
,L
(
z(u2)

)]
= D∞

[
Mβ,γ(1−β)(Au1)ϕ(0) +

∫ u1

0

Mβ,β

(
A(u1 − s)β

)
(u1 − s)1−β H(s, z(s), z(s − τ))ds

,Mβ,γ(1−β)(Au2)ϕ(0) +
∫ u2

0

Mβ,β

(
A(u2 − s)β

)
(u2 − s)1−β H(s, z(s), z(s − τ))ds

]
,

≤ D∞
[ ∫ u1

0

Mβ,β

(
A(u1 − s)β

)
(u1 − s)1−β H(s, z(s), z(s − τ))ds,

∫ u2

0

Mβ,β

(
A(u2 − s)β

)
(u2 − s)1−β H(s, z(s), z(s − τ))ds

]
,

≤ D∞
[ ∫ u1

0

Mβ,β

(
A(u1 − s)β

)
(u1 − s)1−β H(s, z(s), z(s − τ))ds,

∫ u1

0

Mβ,β

(
A(u2 − s)β

)
(u2 − s)1−β H(s, z(s), z(s − τ))ds

+

∫ u2

u1

Mβ,β

(
A(u2 − s)β

)
(u2 − s)1−β H(s, z(s), z(s − τ))ds

]
,

≤ D∞
[ ∫ u1

0

Mβ,β

(
A(u1 − s)β

)
(u1 − s)1−β H(s, z(s), z(s − τ))ds,

∫ u1

0

Mβ,β

(
A(u2 − s)β

)
(u2 − s)1−β H(s, z(s), z(s − τ))ds

]
+D∞

[ ∫ u2

u1

Mβ,β

(
A(u2 − s)β

)
(u2 − s)1−β H(s, z(s), z(s − τ))ds, 0̂

]
,

≤

∫ u1

0
D∞
[Mβ,β

(
A(u1 − s)β

)
(u1 − s)1−β H(s, z(s), z(s − τ)),

Mβ,β

(
A(u2 − s)β

)
(u2 − s)1−β H(s, z(s), z(s − τ))

]
ds

+

∫ u2

u1

Mβ,β

(
A(u2 − s)β

)
(u2 − s)1−β D∞

[
H(s, z(s), z(s − τ)), 0̂

]
ds,

≤M2

∫ u1

0
| (u1 − s)β−1

− (u2 − s)β−1
| D∞

[
H(s, z(s), z(s − τ)), 0̂

]
ds

+
M2(u2 − u1)β

β
D∞
[
H(s, z(s), z(s − τ)), 0̂

]
,

≤M2

( (u2 − u1)β

β
+

uβ2 − uβ1
β

)
D∞
[
H(s, z(s), z(s − τ)), 0̂

]
+
M2(u2 − u1)β

β
D∞
[
H(s, z(s), z(s − τ)), 0̂

]
.

Therefore, we get

D∞
[
L
(
z(u1)

)
,L
(
z(u2)

)]
≤

3M2(u2 − u1)β

β
D∞
[
H(s, z(s), z(s − τ)), 0̂

]
.

We have 3M2(u2−u1)β

β is independent of z(u) and 3M2(u2−u1)β

β −→ 0 as u2 −→ u1. Then, we obtain

D∞
[
L
(
z(u1)

)
,L
(
z(u2)

)]
−→ 0.

It means that L(Bς2 ) is equi-continuous. Then, according to Arzela-Ascoli Theorem, L is completely
continuous.
Step 2: In this step, we will demonstrate that there is a closed, convex and bounded subset Bξ =

{
z(u) ∈

C
(
[−τ,T],En

)
|D∞[z(u), 0̂] ≤ ξ

}
such that L(Bξ) ⊆ Bξ. We know that Bξ is a closed, convex and bounded

subset of C
(
[−τ,T],En

)
for all ξ > 0. Suppose that for all ξ > 0, ∃zξ(u) ∈ Bξ such that L(zξ(u)) < Bξ, that is
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D∞
[
L(zξ(u)), 0̂

]
> ξ. Then

ξ < D∞
[
L(zξ(u)), 0̂

]
= D∞

[
Mβ,γ(1−β)(Au)ϕ(0) +

∫ u

0

Mβ,β

(
A(u − s)β

)
(u − s)1−β H(s, zξ(s), zξ(s − τ))ds, 0̂

]
,

≤M1D∞
[
ϕ(t), 0̂

]
+

∫ u

0

Mβ,β

(
A(u − s)β

)
(u − s)1−β D∞

[
H(s, zξ(s), zξ(s − τ)), 0̂

]
ds,

≤M1D∞
[
ϕ(t), 0̂

]
+

TβM2

β
NH.

Taking limit as ξ −→ +∞, we obtain that M1D∞
[
ϕ(t), 0̂

]
+ TβM2

β NH −→ +∞ which is in contradiction with

M1D∞
[
ϕ(t), 0̂

]
+ TβM2

β NH is bounded. Therefore, for every positive constant ξ, we obtain L(Bξ) ⊆ Bξ. By
means of Schauder’s fixed point Theorem implying that there is at least one solution to the system (1).

For the uniqueness result, we have the following theorem:

Theorem 3.3. Assume that the hypotheses (H1)-(H3) holds. Then, if

sup
0≤u≤T

h(u) ≤
β

TβM2k
,

then the solution of system (1) is unique.

Proof. We know that z(u) is a solution of system (1) if

z(u) =Mβ,γ(1−β)(Au)ϕ(0) +
∫ u

0

Mβ,β

(
A(u − s)β

)
(u − s)1−β H(s, z(s), z(s − τ))ds,

hold. If z(u) ∈ C
(
[−τ,T],En

)
is a fixed point ofLwhich define as in Theorem 3.2, therefore z(u) is the solution

of system (1). Let z1(u), z2(u) ∈ C
(
[−τ,T],En

)
and for u ∈ [−τ, 0], z1(u) = z2(u) = ϕ(u). For all u ∈ I, we have

D∞
[
L(z1(u)),L(z2(u))

]
= D∞

[
Mβ,γ(1−β)(Au)ϕ(0) +

∫ u

0

Mβ,β

(
A(u − s)β

)
(u − s)1−β H(s, z1(s), z1(s − τ))ds,

Mβ,γ(1−β)(Au)ϕ(0) +
∫ u

0

Mβ,β

(
A(u − s)β

)
(u − s)1−β H(s, z2(s), z2(s − τ))ds

]
,

≤

∫ u

0

Mβ,β

(
A(u − s)β

)
(u − s)1−β D∞

[
H(s, z1(s), z1(s − τ)),H(s, z2(s), z2(s − τ))

]
ds,

≤
TβM2

β
H
(
u,D∞

[
z1(u), z2(u)

]
,D∞
[
z1(u − τ), z2(u − τ)

])
,

≤
TβM2k
β

sup
0≤u≤T

H
(
u,D∞

[
z1(u), z2(u)

])
,

≤
TβM2k
β

sup
0≤u≤T

h(u)D∞
[
z1(u), z2(u)

]
,

since sup
0≤u≤T

h(u) ≤ β

TβM2k
, we have

D∞
[
L(z1(u)),L(z2(u))

]
≤ D∞

[
z1(u), z2(u)

]
.

Based on the Banach contraction principle, L has an unique fixed point z(u).
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4. Finite-time stability result

In this section, finite-time stability result for the system (1) is provided. First, we recall the definition of
this type of stability.

Definition 4.1. [25] We say that the system (1) is finite-time stable with respect to {ϱ, ρ,T}, 0 < ϱ < ρ, if
D∞
[
ϕ(0), 0̂

]
≤ ϱ implies sup

0≤u≤T
D∞
[
z(u), 0̂

]
≤ ρ, for u ∈ I.

Theorem 4.2. Assume that the hypotheses (H1)-(H3) holds and there exist two positive constants ϱ, ρ such that
ϱ < ρ and D∞

[
ϕ(0), 0̂

]
≤ ϱ, then system (1) is finite-time stable on [−τ,T] provided that

M1βϱ ≤ ρ
(
β − TβM2kδ

)
− TβM2λ.

Proof. Using the Definition 4.1, we have for all u ∈ I

D∞
[
z(u), 0̂

]
= D∞

[
Mβ,γ(1−β)(Au)ϕ(0) +

∫ u

0

Mβ,β

(
A(u − s)β

)
(u − s)1−β H(s, z(s), z(s − τ))ds, 0̂

]
,

≤M1D∞
[
ϕ(0), 0̂

]
+D∞

[ ∫ u

0
(u − s)β−1Mβ,β

(
A(u − s)β

)
H(s, z(s), z(s − τ))ds, 0̂

]
,

≤M1D∞
[
ϕ(0), 0̂

]
+

∫ u

0
(u − s)β−1Mβ,β

(
A(u − s)β

)
D∞
[
H(s, z(s), z(s − τ)), 0̂

]
ds,

≤M1D∞
[
ϕ(0), 0̂

]
+

∫ u

0
(u − s)β−1Mβ,β

(
A(u − s)β

)
D∞
[
H(s, z(s), z(s − τ)),H(s, 0̂, 0̂)

]
ds

+

∫ u

0
(u − s)β−1Mβ,β

(
A(u − s)β

)
D∞
[
H(s, 0̂, 0̂), 0̂

]
ds,

≤M1D∞
[
ϕ(t), 0̂

]
+

TβM2

β
D∞
[
H(s, z(s), z(s − τ)),H(s, 0̂, 0̂)

]
+

TβM2

β
D∞
[
H(s, 0̂, 0̂), 0̂

]
,

≤M1D∞
[
ϕ(t), 0̂

]
+

TβM2

β
H
(
s,D∞

[
z(s), 0̂

]
,D∞
[
z(s − τ), 0̂

])
+

TβM2λ
β

,

≤M1D∞
[
ϕ(t), 0̂

]
+

TβM2k
β

sup
0≤u≤T

h(u)D∞
[
z(u), 0̂

]
+

TβM2λ
β

,

then,

sup
0≤u≤T

D∞
[
z(u), 0̂

]
≤M1D∞

[
ϕ(t), 0̂

]
+

TβM2kδ
β

sup
0≤u≤T

D∞
[
z(u), 0̂

]
+

TβM2λ
β

,

where δ = sup
0≤u≤T

h(u). Hence,

sup
0≤u≤T

D∞
[
z(u), 0̂

]
≤

M1βD∞
[
ϕ(t), 0̂

]
+ TβM2λ

β − TβM2kδ
.

Therefore, if D∞
[
ϕ(0), 0̂

]
≤ ϱ, we have sup

0≤u≤T
D∞
[
z(u), 0̂

]
≤ ρ. Which means that system (1) is finite-time

stable on [−τ,T].
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5. Conclusion

This research has examined a class of nonlinear Hilfer fuzzy fractional differential equations with
time-delays. Schauder and Banach fixed point theorems are employed under non-Lipschitz conditions to
demonstrate the existence and uniqueness of solution results. In addition, finite-time stability result for the
main system is provided.
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