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Abstract. Let Z2 = {0, 1}, R1 = Z2 + uZ2, where u2 = 0 and R2=Z2 + uZ2 + vZ2, where u2=v2 = 0=uv=vu.
In this article, we studyZ2R1R2-additive cyclic, additive constacyclic and additive dual codes and find the
structural properties of these codes. The additive cyclic codes are characterized as R2[y]-submodules of a
ring

Sβ1 ,β2 ,β3 = Z2[y]/⟨yβ1 − 1⟩ ×R1[y]/⟨yβ2 − 1⟩ ×R2[y]/⟨yβ3 − 1⟩.

The extended Gray map is represented by

Ψ1 : Zβ1
2 ×R

β2
1 ×R

β3
2 −→ Z

β1+2β2+4β3
2

and is utilized to construct the binary codes with good parameters. The minimal generating polynomials
and smallest spanning sets of the above specified codes are obtained. We also establish the relationship
between the minimal polynomials of additive cyclic codes and their duals. Further, we provide some
examples that support our main results. Finally, the optimal binary codes are determined in Table.

1. Introduction

In the early history of the art of error-correcting codes, the codes had been studied over finite fields, but
with the time, more general structures have been considered and implemented. The study of codes over
rings has attracted many researchers.

In 1973, additive codes were first defined by Delsarte [13, 14] in terms of association schemes. Generally,
an additive code is defined as a subgroup of the underlying abelian group. In the special case of a binary
Hamming scheme, when the underlying abelian group is of order 2n, the structure for the abelian groups
are those which are of the form Zβ1

2 ×Z
β2

4 with β1 + 2β2 = n. Therefore, the subgroup C of Zβ1

2 ×Z
β2

4 is the
only additive code in a binary Hamming scheme.

In 2015, Z2Z2[u]-additive codes were another generalization of Z2Z4-additive codes which was intro-
duced by Aydogdu et al. [4]. In this article, they determined theZ2Z2[u]-additive cyclic codes and defined
a mixed code consisting of the binary part and non-binary part from the ring Z2 + uZ2, where u2 = 0. The
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Z2Z4-additive codes were further generalized to Z2Z2s -additive codes by Aydogdu et al. [7]. Later on,
Aydogdu et al. [8] generalizedZ2Z4-additive codes andZ2Z2s -additive codes toZprZps -additive codes. In
2016, ZprZps -additive cyclic codes were studied in[10].

Note that in Z2Z4-additive codes and Z2Z2s -additive codes, Z2 is considered as Z4-algebra and Z2s -
algebra respectively. Also inZ2Z2[u]-additive code,Z2 is known as aZ2[u]-algebra andZpr is aZps -algebra
inZprZps -additive codes. In 2018, J. Gao et al. [15] gave the structural properties of additive cyclic codes over
ZpZp[u], where u2 = 0. They also found the minimal generating sets of additive cyclic codes. Moreover,
they determined the relationship of generators between the additive codes and its dual code.

In 2019, Minjia Shi et al.[22] described Z2Z2[u, v]-additive cyclic codes, where u2 = v2 = 0, uv = vu,
which was the generalization of previously introduced Z2Z4-additive cyclic codes. Recently, Mahmoudi
et al.[21] gave the structures of Z2(Z2 + uZ2 + u2Z2), (Z2 + uZ2)(Z2 + uZ2 + u2Z2), where u3 = 0, Z2(Z2 +
uZ2+vZ2) and(Z2+uZ2)(Z2+uZ2+u2Z2), where u2 = v2 = uv = uv = 0. They determined additive codes,
dual additive codes and found singleton bound.

Inspired by aforementioned work, we consider two rings R1 = Z2 + uZ2, where u2 = 0 and R2 = Z2 +
uZ2+vZ2, where u2 = v2 = 0 = uv = vu with characteristic 2. In this article, we determineZ2R1R2-additive
cyclic codes, constacyclic codes and dual of additive cyclic codes. We also find the optimal binary images
fromZ2R1R2-additive codes. It is to be noted that the additive code of length (β1, β2, β3) is the subgroup of
the commutative groupZβ1

2 ×R
β2

1 ×R
β3

2 .TheZ2R1R2-additive code is a linear code overZ2 if β2 = 0 and β3 = 0,
over R1 if β1 = 0 and β3 = 0 and over R2 if β1 = 0 and β2 = 0. Clearly, we observe that it is the generalization
of linear code overZ2,R1 andR2. Furthermore, we obtain the generator polynomials and minimal spanning
sets for Z2R1R2-additive cyclic, additive constacyclic and additive dual codes. These codes are classified
as R2[y]-submodules of the ring Sβ1,β2,β3 = Z2[y]/⟨yβ1 − 1⟩ ×R1[y]/⟨yβ2 − 1⟩ ×R2[y]/⟨yβ3 − 1⟩.

This paper is organized as follows: In Section 2, we present some basic notions and define some Gray
maps and their extensions. Section 3 contains the cyclic structures of the rings R1 = Z2 + uZ2, where u2 = 0
andR2 = Z2+uZ2+vZ2, where u2 = v2 = 0 = uv = vu. In Section 4, we studyZ2R1R2-additive cyclic codes
and find the minimal generating sets when β2 is odd and β3 is even(or odd). In Section 5, we define the
duality ofZ2R1R2-additive cyclic codes and their results . In Section 6, we determine the minimal spanning
sets ofZ2R1R2-additive constacyclic codes. In section 7, we give some examples and form a table of optimal
binary images from Z2R1R2-additive cyclic codes by MAGMA. Last section contains the conclusion and
the suggestion for future work.

2. Preliminaries

Let R1 = Z2 + uZ2, u2 = 0 and R2 = Z2 + uZ2 + vZ2, where u2 = 0, v2 = 0 = uv = vu be two rings
with characteristic 2. Any element z ∈ R2 can be written as z = a + ub + vc for all a, b, c ∈ Z2. An element
z = a+ub+vc ∈ R2 is a unit if a is unit. The total number of ideals inR2 are listed as I1 = {0}, I2 = ⟨u⟩, I3 = ⟨v⟩,
I4 = ⟨u + v⟩ and I5 = ⟨u, v⟩. Since I5 = ⟨u, v⟩ is the unique maximal ideal in R2, the finite commutative ring
R2 is a local ring. Let

Z2R1R2 = {(c, c
′

, c
′′

) | c ∈ Z2, c
′

∈ R1, c
′′

∈ R2}.

Define three maps θ1 : R2 −→ Z2, θ2 : R2 −→ R1 and θ3 : R1 −→ Z2 such that θ1(a + ub + vc) = a,
θ2(a + ub + vc) = a + ub and θ3(a + ub) = a, respectively. Clearly, θ1, θ2 and θ3 are well-defined onto ring
homomorphisms. Let Zβ1

2 be a β1-tuples of Z2, Rβ2

1 be a β2-tuples of R1 and Rβ3

2 be a β3-tuples of R2, where
β1, β2 and β3 are positive integers. Let y = (y, y′ , y”) ∈ Zβ1

2 ×R
β2

1 ×R
β3

2 be a vector, where y = (y0, y1, . . . , yβ1−1),
y′ = (y′0, y

′

1, . . . , y
′

β2−1) and y” = (y”
0, y

”
1, . . . , y

”
β3−1). For any z = a + ub + vc ∈ R2, the R2-scalar multiplication

on Zβ1

2 ×R
β2

1 ×R
β3

2 is defined as follows:

zy = (θ1(z)y0, . . . , θ1(z)yβ1−1|θ2(z)y
′

0, . . . , θ2(z)y
′

β2−1|zy”
0, . . . , zy”

β3−1) ∈ Zβ1

2 ×R
β2

1 ×R
β3

2 , (1)

where θ1(z)yi, θ2(z)y′j and zy”
k are performed mod2 for all 0≤i ≤ β1 − 1, 0 ≤ j ≤ β2 − 1 and 0 ≤ k ≤ β3 − 1. The

structure Zβ1

2 ×R
β2

1 ×R
β3

2 forms a R2-module under usual addition and multiplication defined in (2.1).
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Let Sβ1,β2,β3 = Z2[y]/⟨yβ1 − 1⟩ ×R1[y]/⟨yβ2 − 1⟩ ×R2[y]/⟨yβ3 − 1⟩. Define a map

Φ : Zβ1

2 ×R
β2

1 ×R
β3

2 −→ Sβ1,β2,β3

d = ( f |1|h) 7−→ d(y) = ( f (y)|1(y)|h(y)),

where ( f |1|h) = ( f0, f1, . . . , fβ1−1|10, 11, . . . , 1β2−1|h0, h1, . . . , hβ3−1),
f (y) = f0 + f1y + · · · + fβ1−1yβ1−1, 1(y)=10 + 11y + · · · + 1β2−1yβ2−1 and
h(y)=h0+h1y+ · · ·+hβ3−1yβ3−1. For any ℓ(y) = ℓ0+ ℓ1y+ · · ·+ ℓryr

∈ R2[y] and d(y) = ( f (y)|1(y)|h(y)) ∈ Sβ1,β2,β3 ,
define the R2[y]-scalar multiplication

ℓ(y) · d(y) = (θ1(ℓ(y)) f (y)|θ2(ℓ(y))1(y)|ℓ(y)h(y)), (2)

where θ1(ℓ(y)) = θ1(ℓ0) + θ1(ℓ1)y + · · · + θ1(ℓr)yr and
θ2(ℓ(y)) = θ2(ℓ0) + θ2(ℓ1)y + · · · + θ2(ℓr)yr. Then Sβ1,β2,β3 forms a R2[y]-module under usual addition and
scalar multiplication of polynomials defined in (2.2).

Definition 2.1. A non-empty subset C of Zβ1

2 × R
β2

1 × R
β3

2 is called a Z2R1R2-additive code if C is a subgroup
of Zβ1

2 × R
β2

1 × R
β3

2 , that is, C is isomorphic to Zn1
2 × Z

2n2
2 × Zn3

2 × Z
3n4
2 × Z2n5

2 × Zn6
2 , for some positive integers

n1,n2,n3,n4, n5 and n6.

If C is a Z2R1R2-additive code, then C is of the type (β1, β2, β3,n1,n2,n3,n4,n5,n6). Let for any z1 =
(a0, a1, . . . , aβ1−1|b0, b1, . . . , bβ2−1|c0, c1, . . . , cβ3−1) and
z2 = (a′0, a

′

1, . . . , a
′

β1−1|b
′

0, b
′

1, . . . , b
′

β2−1|c
′

0, c
′

1, . . . , c
′

β3−1), the inner product is defined as

z1 · z2 = (v
β1−1∑
i=0

aia
′

i + u
β2−1∑
j=0

b jb
′

j +

β3−1∑
k=0

ckc
′

k)(mod2).

Definition 2.2. A non-empty subset C of Zβ1

2 ×R
β2

1 ×R
β3

2 is called a Z2R1R2-additive cyclic code if

(i) C is additive code.

(ii) For any codeword z = (a0, a1, . . . , aβ1−1|b0, b1, . . . , bβ2−1|c0, c1, . . . , cβ3−1) ∈ C its cyclic shift
T(z)=(aβ1−1, a0, . . . , aβ1−2|bβ2−1, b0, . . . , bβ2−2|cβ3−1, c0, . . . , cβ3−2) ∈ C.

Definition 2.3. Let C be anyZ2R1R2-additive cyclic code. Then the dual code of C with respect to the inner product
is defined as

C⊥ = {z2 ∈ Z
β1

2 ×R
β2

1 ×R
β3

2 | z1 · z2 = 0 for all z1 ∈ C}.

Let us define Gray maps as follows:

ϕ1 : R1 −→ Z
2
2 (3)

such that ϕ1(e + u f ) = ( f , e + f ) for all e, f ∈ Z2 and

ϕ2 : R2 −→ Z
4
2 (4)

such that ϕ2(a+ ub+ vc) = (a+ b+ c, a+ c, b+ c, c) for all a, b, c,∈ Z2. Using (2.3) and (2.4), we can define the
another Gray map

Ψ : Z2 ×R1 ×R2 :−→ Z2 ×Z
2
2 ×Z

4
2 (5)

asΨ(c|c′ |c′′ ) = (c, ϕ1(c′ ), ϕ2(c′′ )). An extension of the mapΨ in (2.5) is defined by

Ψ1 : Zβ1

2 ×R
β2

1 ×R
β3

2 :−→ Zβ1+2β2+4β3

2 (6)

such thatΨ1(y=(y|y′ |y”))=(y, ϕ1(y′ ), ϕ2(y”)),where
y=(y0, y1, . . . , yβ1−1|y

′

0, y
′

1, . . . , y
′

β2−1|y
”
0, y

”
1, . . . , y

”
β3−1) ∈ Zβ1

2 ×R
β2

1 ×R
β3

2 .
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Definition 2.4. Let y=(y|y′ |y”) ∈ Zβ1

2 × R
β2

1 × R
β3

2 , where y ∈ Zβ1

2 , y′∈ Rβ2

1 and y”
∈ R

β3

2 . Then the Gray weight of
y is defined as

wG(y) = wH(y) + wH(ϕ1(y
′

)) + wH(ϕ2(y”)),

where wH denotes the Hamming weight.

Definition 2.5. Let y, z ∈ Zβ1

2 ×R
β2

1 ×R
β2

2 . Then the Gray distance between y and z is defined as

dG(y, z) = wG(y − z) = dH((y|ϕ1(y
′

)|ϕ2(y”)), (z|ϕ1(z
′

)|ϕ2(z”))).

3. Cyclic structure of codes over R1 and R2

In this section, we study the generating sets of cyclic codes over R1 and R2.We will use these structures
to construct the composition Z2R1R2.

Lemma 3.1. A code C of length β2 overR1 is cyclic code if and only if C is anR1-submodule ofR1β2 = R1[y]/⟨yβ2−1⟩.

Definition 3.2. (Division Algorithm) If for any f (y), 1(y) ∈ R1, where 1(y) has unit as its leading coefficient, then

f (y) = q(y)1(y) + r(y),

for some q(y), r(y) ∈ R1, where r(y) = 0 or de1(r(y)) < de1(1(y)).

Let C1 be a cyclic code in R1β2 . We can define a map θ3 : R1 −→ Z2 by θ3(a + ub) = a. Clearly, θ3 is a ring
homomorphism in R1. The extension of θ3 can be expressed by

η1 : C1 −→ R1[y]/⟨yβ2 − 1⟩

such that η1(a0 + a1y+ · · ·+ aβ2−1yβ2−1) = θ3(a0)+ θ3(a1)y+ · · ·+ θ3(aβ2−1)yβ2−1.Now, we can easily obtain the
kernel of η1 as

ker(η1) = {ub(y) | b(y) ∈ Z2[y]/⟨yβ2 − 1⟩} = ⟨ub1(y)⟩,

where b1(y)|(yβ2 − 1)(mod2). Since the image of η1 is also an ideal in Z2[y]/⟨yβ2 − 1⟩}, a binary cyclic code
is generated by f (y) with f (y)|yβ2 − 1. So C1 = ⟨ f (y) + up(y),ub1(y)⟩, for some binary polynomial p(y) and

b1(y)|p(y) yβ2−1
f (y) . Obviously, u f (y) ∈ ker(η1). This implies that b1(y)| f (y).

Lemma 3.3. Let C1 be a cyclic code in R1β2 = R1[y]/⟨yβ2 − 1⟩.

(1) If β2 is odd, then R1β2 is principal ideal ring and

C1 = ⟨ f (y),ub1(y)⟩ = ⟨ f (y) + ub1(y)⟩,

where f (y), b1(y) ∈ Z2[y]/(yβ2 − 1) and b1(y)| f (y)|(yβ2 − 1).

(2) If β2 is not odd, then

(i) C1 = ⟨ f (y) + up(y)⟩, where f (y)|(yβ2 − 1)(mod2) and f (y) + up(y)|(yβ2 − 1) in R1.

(ii) C1 = ⟨ f (y)+up(y),ub1(y)⟩, where f (y), b1(y) and p(y) are binary polynomials such that b1(y)| f (y)|(yβ2 −

1)(mod2), b1(y)|p(y) yβ2−1
f (y) and de1(b1(y)) > de1(p(y)).

Proof. The proof directly follows from [1, Lemma 2].
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Let C2 be a cyclic code in R2β3 = R2[y]/⟨yβ3 − 1⟩. We can define a map
θ2 : R2 −→ Z2 + uZ2 such that θ2(a + ub + vc) = a + ub. Clearly, θ2 is a ring homomorphism in R2. The
extension of θ2 can be expressed by

σ1 : C2 −→ (Z2 + uZ2)[y]/⟨yβ3 − 1⟩

such that σ1(ℓ0 + ℓ1y + · · · + ℓβ3−1yβ3−1) = θ2(ℓ0) + θ2(ℓ1)y + · · · + θ2(ℓβ3−1)yβ3−1, where ℓi = ai + ubi + vci, for
i = 0, 1, . . . , β3 − 1 and ai, bi, ci ∈ Z2. It is easy to obtain the kernel of σ1 as ker(σ1) = {v(a(y)) | a(y),∈
(Z2 + uZ2)[y]/⟨yβ3 − 1⟩}=vZ2. Since the image of σ1 is also an ideal in (Z2 + uZ2)[y]/⟨yβ3 − 1⟩}, a cyclic code
is generated by 1(y) with 1(y)|yβ3 − 1. Hence, C2 = ⟨1(y) + up1(y) + vq1(y),ua1(y) + vq2(y), va2(y)⟩, where
ai | 1 | (yβ3 − 1) for 1 ≤ i ≤ 2.

Lemma 3.4. [17, Theorem 2] Let C2 be a cyclic code in R2β3 = R2[y]/(yβ3 − 1).

(1) If β3 is odd, then C2 = ⟨1(y) + ua1(y) + va2(y)⟩, where a2(y)|a1(y)|1(y)|(yβ3 − 1).

(2) If β3 is not odd, then
C2 = ⟨1(y) + up1(y) + vq1(y),ua1(y) + vq2(y), va2(y)⟩,

where ai | 1 | (yβ3 − 1) for i = 1, 2 and a1(y)|p1(y) yβ3−1
1(y) and a2(y)|q2(y) yβ3−1

a1(y) .

4. Z2R1R2-additive cyclic codes

In this section, we obtain a set of generators for Z2R1R2-additive cyclic codes as R2[y]-submodules
of Sβ1,β2,β3 . Here, C will always denote a Z2R1R2-additive cyclic code. Since C and R2[y]/⟨yβ3 − 1⟩ are
R2[y]-submodules of Sβ1,β2,β3 , we define a map

η : C −→ R2[y]/⟨yβ3 − 1⟩,

by η( f (y)|1(y)|h(y)) = h(y). Clearly, η is a module homomorphism whose image is R2[y]-submodule in
R2[y]/⟨yβ3 − 1⟩ and ker(η) is a submodule of C. Further, η(C) can easily be identified as an ideal in the ring
R2[y]/⟨yβ3 − 1⟩. Since η(C) is an ideal in R2[y]/⟨yβ3 − 1⟩, η(C) = ⟨h(y)+ up1(y)+ vq1(y),ua1(y)+ vq2(y), va2(y)⟩
with ai | 1i | (yβ3 − 1)(mod2), for i = 1, 2. Let us define

ker(η) = {( f (y)|1(y)|0) ∈ C| f (y) ∈ Z2[y]/⟨yβ1 − 1⟩, 1(y) ∈ R1[y]/⟨yβ2 − 1⟩},

J = {( f (y), 1(y)) ∈ Z2[y]/⟨yβ1 − 1⟩ ×R1[y]/⟨yβ2 − 1⟩|( f (y)|1(y)|0) ∈ ker(η)}.

It is clear that J is an ideal in the ring Z2[y]/⟨yβ1 − 1⟩ × R1[y]/(yβ2 − 1) and hence a cyclic code. There-
fore, by the well-known result on generators of binary cyclic codes, we have J = ⟨ f (y), 1(y)⟩. Now,
for any element ( f1(y)|11(y)|0) ∈ ker(η), we get ( f1(y), 11(y)) ∈ J = ⟨ f (y), 1(y)⟩ and it can be written as
( f1(y), 11(y)) = m1(y)( f (y), 1(y)) for some polynomial m1(y) ∈ R1[y]/(yβ2 − 1). Thus, ( f1(y), 11(y), 0) =
(θ3(m1(y)) f (y),m1(y)1(y), 0). This implies that ker(η) is a submodule of C generated by an element of
the form ( f (y), 1(y), 0), where f (y)|(yβ1 − 1)mod2 and 1(y)|(yβ2 − 1)mod2. By the first isomorphism theorem
for rings, we have

C
ker(η)

� ⟨h(y) + up1(y) + vq1(y),ua1(y) + vq2(y), va2(y)⟩.

This implies that any Z2R1R2-additive cyclic code can be generated as a R2[y]-submodule of Sβ1,β2,β3 by
( f1(y)|0|0), ( f2(y)|1(y)+up1(y)|0), ( f3(y)|ℓ1(y)|h(y)+up1(y)+vq1(y)), ( f4(y)|ℓ2(y)|ua1(y)+vq2(y)) and ( f5|ℓ3(y)|va2(y)).
Hence, any element in C can be expressed as

d1(y) × ( f1(y)|0|0) + d2(y) × ( f2(y)|1(y) + up1(y)|0) + d3(y) × ( f3(y)|ℓ1(y)|h(y)+
up2(y) + vq1(y)) + d4(y) × ( f4(y)|ℓ2(y)|ua1(y) + vq2(y)) + d5(y) × ( f5|ℓ3(y)|va2(y)),

where d1(y), d2(y), d3(y), d4(y) and d5(y) are polynomials in the ring R2[y].
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Theorem 4.1. Let C be any Z2R1R2-additive cyclic code. Then C⊥ is also cyclic.

Proof. Let C be any Z2R1R2-additive cyclic code and

z2=(a
′

0, a
′

1, . . . , a
′

β1−1|b
′

0, b
′

1, . . . , b
′

β2−1|c
′

0, c
′

1, . . . , c
′

β3−1) ∈ C⊥.

We have to prove that z1 · T(z2) = 0. Since C is cyclic, we have Tℓ(z1) also in C, where ℓ = lcm(β1, β2, β3).
Now, we can write

0 = Tℓ−1(z1) · z2

= (a1, . . . , aβ1−1, a0|b1, . . . , bβ2−1, b0|c1, . . . , cβ3−1, c0) · (a
′

0, a
′

1, . . . , a
′

β1−1|b
′

0, b
′

1, . . . , b
′

β2−1|

(c
′

0, c
′

1, . . . , c
′

β3−1)

= u(a1a
′

0 + a2a
′

1 + · · · + a0a
′

β1−1) + v(b1b
′

0 + b2b
′

1 + · · · + b0b
′

β2−1) + (c1c
′

0 + c2c
′

1

+ · · · + c0c
′

β3−1)

= u(a0a
′

β1−1 + a1a
′

0 + · · · + aβ1−1a
′

β1−2) + v(b0b
′

β2−1 + b1b
′

0 + · · · + bβ2−1b
′

β2−2) +

(c0c
′

β3−1 + c1c
′

0 + · · · + cβ3−1c
′

β3−2)

0 = z1 · T(z2).

This implies that T(z2) ∈ C⊥. Hence, C⊥ is Z2R1R2-additive cyclic code.

Definition 4.2. A subset C ⊆ Sβ1,β2,β3 is called a Z2R1R2-additive cyclic code if and only if C is a subgroup of
Sβ1,β2,β3 and for all

d(y) = ( f (y)|1(y)|h(y))
= ( f0 + f1y + · · · + fβ1−1yβ1−1

|10 + 11y + · · · + 1β2−1yβ2−1
|h0 + h1y

+ · · · + hβ3−1yβ3−1) ∈ C,

we have

y · d(y) = ( fβ1−1 + f0y + · · · + fβ1−2yβ1−1
|1β2−1 + 10y + · · · + 1β2−2yβ2−1

|hβ3−1

+h0y + · · · + hβ3−2yβ3−1) ∈ C.

Theorem 4.3. A code C is a Z2R1R2-additive cyclic code if and only if C is a R2[y]-submodule of Sβ1,β2,β3 .

Proof. Let C be aZ2R1R2-additive cyclic code. Then we have to show that for any d(y) ∈ C and ℓ(y) ∈ R2[y],
ℓ(y)d(y) ∈ C. Assume that d(y) = ( f (y)|1(y)|h(y)) ∈ C, where f (y) = ( f0 + f1y + · · · + fβ1−1yβ1−1), 1(y) =
(10 + 11y + · · · + 1β2−1yβ2−1) and h(y) = (h0 + h1y + · · · + hβ3−1yβ3−1). The multiplication

y · d(y) = ( fβ1−1 + f0y + · · · + fβ1−2yβ1−1
|1β2−1 + 10y + · · · + 1β2−2yβ2−1

|hβ3−1

+h0y + · · · + hβ3−2yβ3−1)

represents the cyclic shift T(d(y)) of d(y). Since C is Z2R1R2- additive cyclic code, yid(y) ∈ C for all i ∈ N.
It follows that l(y) · d(y) ∈ C. This implies that C is R2[y]- submodule of Sβ1,β2,β3 . Converse part is directly
followed by the Definition 4.1.

Theorem 4.4. Let

C =

〈 ( f1(y)|0|0), ( f2(y)|1(y) + up1(y)|0),
( f3(y)|ℓ1(y)|h(y) + up1(y) + vq1(y)), ( f4(y)|ℓ2(y)|ua1(y) + vq2(y)),

( f5(y)|ℓ3(y)|va2(y))

〉
be a Z2R1R2-additive cyclic code. Then de1( fi(y)) < de1( f1), where 2 ≤ i ≤ 5 and de1(ℓ j(y)) < de1(ℓ1(y)), where
j = 2, 3.
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Proof. Let de1( fi(y)) ≥ de1( f (y)) for 2 ≤ i ≤ 5. Then we can assume that de1( fi(y))−de1( f (y)) = t. In particular
i = 2, we define a code with generators of the form

C
′

=

〈 ( f1(y)|0|0), ( f2(y)|1(y) + up1(y)|0) + yt
· ( f1(y)|0|0),

( f3(y)|ℓ1(y)|h(y) + up1(y) + vq1(y)), ( f4(y)|ℓ2(y)|ua1(y) + vq2(y)),
( f5(y)|ℓ3(y)|va2(y))

〉

=

〈 ( f1(y)|0|0), ( f2(y) + yt f1(y)|1(y) + up1(y)|0),
( f3(y)|ℓ1(y)|h(y) + up1(y) + vq1(y)), ( f4(y)|ℓ2(y)|ua1(y) + vq2(y)),

( f5(y)|ℓ3(y)|va2(y))

〉
.

This implies that C′ ⊆ C. Now, suppose that ( f2(y)|1(y) + up1(y)|0) ∈ C. Then it can be written as

( f2(y)|1(y) + up1(y)|0) = ( f2(y) + yt f1(y)|1(y) + up1(y)|0) − yt
· ( f1(y)|0|0).

This shows that C ⊆ C′ . Hence C = C′ . Similarly, other cases can be easily proved.

Theorem 4.5. Assume that

C = ⟨( f1(y)|0|0), ( f2(y)|1(y) + ub1(y)|0), ( f3(y)|l1(y)|h(y) + ua1(y) + va2(y))⟩

be a Z2R1R2-additive cyclic code of length (β1, β2, β3), where β2 and β3 are odd integers. If m1(y) = (yβ2−1)
1(y)+ub1(y) and

mh(y) = (yβ3−1)
h(y)+ua1(y)+va2(y) , then f1(y) | m1(y) f2(y) and

1(y) + ub1(y) | mh(y)ℓ1(y).

Proof. Let η(m1(y)( f2(y)|1(y) + ub1(y)|0)) = η(m1(y) f2(y)|0|0). It gives that
(m1(y) f2(y)|0|0) ∈ ker(η) and hence f1(y) | m1(y) f2(y). Similarly, we consider that
η(mh(y)( f3(y)|ℓ1(y)|h(y) + ua1(y) + va2(y))) = η(mh(y) f3(y)|mh(y)ℓ1(y)|0)),we get
(mh(y) f3(y)|mh(y)ℓ1(y)|0)) ∈ ker(η). Therefore, 1(y) + ub1(y) | mh(y)ℓ1(y).

Theorem 4.6. Let

C =

〈
( f1(y)|0|0), ( f2(y)|1(y) + ub1(y)|0), ( f3(y)|ℓ1(y)|h(y) + up1(y) + vq1(y)),

( f4(y)|ℓ2(y)|ua1(y) + vq2(y)), ( f5|ℓ3(y)|va2(y))

〉
be a Z2R1R2-additive cyclic code of length (β1, β2, β3), where β2 is an odd integer and β3 is an even integer and
b1(y)|1(y)|(yβ2 −1), ai(y) | h(y) | (yβ3 −1) for i = 1, 2. If mh(y) = (yβ3−1)

h , m1(y) = gcd(mh(y)p1(y),mh(y)q1(y), (yβ3 −

1)), m2(y) = (yβ3−1)
m1(y) , ma1 (y) = (yβ3−1)

a1(y) ,

s1(y) = gcd(ma1 (y)q2(y), (yβ3 − 1)), s2(y) = (yβ3−1)
s1(y) , ha2 (y) = (yβ3−1)

a2(y) , then

(i) f1(y)|m2(y)mh(y) f3(y), 1(y) + ub1(y) | m2(y)mh(y)ℓ1(y),

(ii) f1(y)|s2(y)ma1 (y) f4(y), 1(y) + ub1(y) | s2(y)ma1 (y)ℓ2(y),

(iii) f1(y)|ma2 (y) f5(y), 1(y) + ub1(y) | ma2 (y)ℓ3(y).

Proof. (i) Since m1(y) | mh(y)p1(y) and m1(y) | mh(y)q1(y), mh(y)p1(y) = r1(y)m1(y) and mh(y)q1(y) = r2(y)m1(y)
for some polynomials r1(y), r2(y) ∈ R2[y], we have

η(m2(y)mh(y)( f3(y)|ℓ1(y)|h(y) + vp1(y) + vq1(y))
= η(m2(y)mh(y) f3(y)|m2(y)mh(y)ℓ1(y)|m2(y)mh(y)(h(y) + vp1(y) + vq1(y)))
= η(m2(y)mh(y) f3(y)|m2(y)mh(y)ℓ1(y)|0)
= 0.

This implies that (m2(y)mh(y) f3(y)|m2(y)mh(y)ℓ1(y)|0) ∈ ker(η)=⟨( f1(y)|1(y) + ub1(y), 0)⟩. Therefore,
f1(y)|m2(y)mh(y) f3(y) and 1(y) + ub1(y) | m2(y)mh(y)l1(y).We can analogously prove other cases also.
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Theorem 4.7. Let

C =

〈
( f1(y)|0|0), ( f2(y)|1(y) + ub1(y)|0), ( f3(y)|ℓ1(y)|h(y) + up1(y) + vq1(y)),

( f4(y)|ℓ2(y)|ua1(y) + vq2(y)), ( f5|ℓ3(y)|va2(y))

〉
be a Z2R1R2-additive cyclic code of length (β1, β2, β3), where β2 is an odd integer and β3 is an even integer and
b1(y)|1(y)|(yβ2 − 1), ai(y) | h(y) | (yβ3 − 1) for i = 1, 2. If m1(y)= (yβ2−1)

1(y) , t1 = gcd(m1(y)b1(y), (yβ2 − 1)) ,

t2(y) = (yβ2−1)
t1(y) , mh(y)= (yβ3−1)

h , m1(y)=gcd(mh(y)p1(y),mh(y)q1(y), (yβ3 − 1)), m2(y) = (yβ3−1)
m1(y) , ma1 (y) = (yβ3−1)

a1(y) ,

ma2 (y) = (yβ3−1)
a2(y) , s1(y) = gcd(ma1 (y)q2(y), (yβ3 − 1)), s2(y) = (yβ3−1)

s1(y) ,

S1 =

β1−de1( f1(y))−1⋃
i=0

{yi
· ( f1(y)|0|0)};

S2 =

β2−de1(1(y))−1⋃
i=0

{yi
· ( f2(y)|1(y) + ub1(y)|0)};

S3 =

de1(1(y))−de1(b1(y))−1⋃
i=0

{yi
· (m1(y) f2(y)|um1(y)b1(y)|0)};

S4 =

β3−de1(h(y))−1⋃
i=0

{yi
· ( f3(y)|ℓ1(y)|h(y) + up1(y) + vq1(y))};

S5 =

β3−de1(m1(y))−1⋃
i=0

{yi
· (mh(y) f3(y)|mh(y)ℓ1(y)|umh(y)p1(y) + vmh(y)q1(y)};

S6 =

de1(h)−de1(a1)−1⋃
i=0

{yi
· ( f4(y)|ℓ2(y)|ua1(y) + vq2(y)};

S7 =

β3−de1(s1(y))−1⋃
i=0

{yi
· (ma1 f4(y)|ma1 (y)ℓ2(y)|vma1 (y)q2(y)};

S8 =

de1(a1(y))−de1(a2(y))−1⋃
i=0

{yi
· ( f5(y)|ℓ3(y)|va2(y)},

then S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 ∪ S7 ∪ S8 is a minimal generating set for the code C and

|C| = 2(β1−de1( f1))22β2−de1(1)−de1(b1)26β3−de1(h)−2de1(m1)−de1(a1)−de1(a2)−de1(s1).

Proof. Let c ∈ C be a codeword and ci ∈ R2[y], 1 ≤ i ≤ 5. Then

c = c1 · ( f1(y)|0|0) + c2 · ( f2(y)|1(y) + ub1(y)|0) + c3 · ( f3(y)|l1(y)|h(y) + up1(y) +
vq1(y)) + c4 · ( f4(y)|l2(y)|ua1(y) + vq2(y)) + c5 · ( f5(y)|l3(y)|va2(y))

= (θ1(c1) f1(y)|0|0) + c2 · ( f2(y)|1(y) + ub1(y)|0) + c3 · ( f3(y)|l1(y)|h(y) +
up1(y) + vq1(y)) + c4 · ( f4(y)|l2(y)|ua1(y) + vq2(y)) + c5 · ( f5|l3(y)|va2(y)).

If de1(θ(c1)) ≤ β1 − de1( f1) − 1, then ( f1(y)|0|0) ∈ span(S1). Otherwise, by division algorithm, we have

de1(θ(c1))=
(yβ1 − 1)

f1(y)
d1 + e1,
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where de1(e1) ≤ β1 − de1( f1) − 1. Therefore,

(θ(c1)( f1(y)|0|0) = ((
(yβ1 − 1)

f1(y)
d1 + e1)( f1(y))|0|0)

= (e1( f1(y))|0|0) = e1( f1(y)|0|0).

This implies that (θ(c1)( f1(y)), 0) ∈ span(S1). Now, we have to show that

c2 · ( f2(y)|1(y) + ub1|0) ∈ span(S1 ∪ S2 ∪ S3) ⊂ span(S).

Suppose that m1 divides c2, that is, c2 = d2m1 + e2, where e2 = 0 or de1(e2)≤de1(m1) − 1, we get

c2 · ( f2(y)|1(y) + ub1(y)|0) = (d2m1 + e2) · ( f2(y)|1(y) + ub1(y)|0)
= d2(m1 f2|um1b1(y)|0) + e2( f2|1(y) + ub1(y)|0).

Cleraly, e2( f2|1(y) + ub1(y)|0) ∈ span(S2). It remains to show that d2(m1 f2,um1b1(y)|0) ∈ span(S1 ∪ S3). Since
t1 | m1b1, we obtain m1b1 = r1t1. Hence, m1b1t2 = 0. By division algorithm, we have d2 = d′2t2 + e′2, where
e′2 = 0 or de1(e′2) ≤ de1(t2) − 1. The expression d2(m1 f2|um1b1(y)|0) can be written as

d2(m1 f2|um1b1(y)|0) = (d
′

2t2 + e
′

2)(m1 f2|um1b1(y)|0)

= d
′

2(t2m1 f2,ut2m1b1(y)|0) + e
′

2(m1 f2,um1b1(y)|0).

= d
′

2(t2m1 f2|0|0) + e
′

2(m1 f2,um1b1(y)|0).

By Theorem 4.4, f1|t2m1 f2 and d′2(t2m1 f2|0|0) ∈ span(S1). Since (m1 f2,um1b1(y)|0) ∈ span(S3), c2 · ( f2(y)|1(y) +
ub1|0) ∈ span(S1 ∪ S2 ∪ S3). Next, we need to show
c3 · ( f3(y)|ℓ1(y)|h(y) + up1(y) + vq1(y)) ∈ span(S2 ∪ S4 ∪ S5) ⊂ span(S). Let us assume that c3 is divisible by mh.
This means that c3 = d3mh + e3, where e3 = 0 or de1(e3) ≤ de1(mh) − 1. Therefore,

c3 · ( f3(y)|ℓ1(y)|h(y) + up1(y) + vq1(y))
= (d3mh + e3) · ( f3(y)|ℓ1(y)|h(y) + up1(y) + vq1(y))
= d3(mh(y) f3(y)|mh(y)ℓ1(y)|umh(y)p1(y) + vmh(y)q1(y))
+e3( f3(y)|ℓ1(y)|h(y) + up1(y) + vq1(y)).

Obviously, e3( f3(y)|ℓ1(y)|h(y) + up1(y) + vq1(y)) ∈ span(S4). Further, we prove that

d3(mh(y) f3(y)|mh(y)ℓ1(y)|umh(y)p1(y) + vmh(y)q2(y)) ∈ span(S2 ∪ S5).

Since m1 | mhp1 and m1 | mhq1, so mh(y)p1(y) = r2m1, mh(y)q1(y) = r3m1. Hence, mh(y)p1(y)m2 = mh(y)q1(y)m2 =
0. Again, by division algorithm, we have d3 = d4m2 + e4, where d4 = 0 or de1(d4) ≤ de1(m2) − 1. Now,

d3(mh(y) f3(y)|mh(y)l1(y)|umh(y)p1(y) + vmh(y)q1(y))
= (d4m2 + e4)(mh(y) f3(y)|mh(y)ℓ1(y)|umh(y)p1(y) + vmh(y)q1(y))
= d4(m2(y)mh(y) f3(y)|m2(y)mh(y)ℓ1(y)|0) + e4(mh(y) f3(y)|mh(y)ℓ1(y)|umh(y)p1(y)
+vmh(y)q1(y)).

Again by Theorem 4.4, d4(m2(y)mh(y) f3(y)|m2(y)mh(y)ℓ1(y)|0) ∈ span(S2). Also,
e4(mh(y) f3(y)|mh(y)ℓ1(y)|umh(y)p1(y) + vmh(y)q1(y)) ∈ span(S5). Hence

c3 · ( f3,ua1(y) + vq2(y) + uvr2(y)) ∈ span(S2 ∪ S4 ∪ S5).

Similarly, we can prove that

c4 · ( f4(y)|ℓ2(y)|ua1(y) + vq2(y)) ∈ span(S2 ∪ S6 ∪ S7)
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and c5 · ( f5(y)|ℓ3(y)|va2(y)) ∈ span(S2 ∪ S8). Finally, we conclude that c ∈ span(S). Thus, S is the minimal
spanning set for C because none of the element of S is a linear combination of the other and

|C| = 2(β1−de1( f1))22β2−de1(1)−de1(b1)26β3−de1(h)−2de1(m1)−de1(a1)−de1(a2)−de1(s1).

From Theorem 4.6, the following results follow immediately.

Corollary 4.8. Let C = ⟨( f1(y)|0|0), ( f2|1(y) + ub1(y)|0)⟩ be a Z2R1R2-additive cyclic code of length (β1, β2, β3),
where β2 is an odd integer and 1(y) + ub1(y)) | yβ2 − 1. If

S1 =

β1−de1( f1(y))−1⋃
i=0

{yi
· ( f1(y)|0|0)};

S2 =

β2−de1(1(y))−1⋃
i=0

{yi
· ( f2(y)|1(y) + ub1(y)|0)};

S3 =

de1(1(y))−de1(b1(y))−1⋃
i=0

{yi
· (m1(y) f2(y)|um1(y)b1(y)|0)},

then S1 ∪ S2 ∪ S3 forms a basis for C with |C| = 2(β1−de1( f1))2(2β2−de1(11)−de1(b1)).

Corollary 4.9. Let C = ⟨( f1(y)(y)|0|0)⟩ be aZ2R1R2-additive cyclic code of length (β1, β2, β3) and f1(y) | yβ1 − 1. If

S1 =

β1−de1( f1)−1⋃
i=0

{yi
· ( f1(y)|0|0)},

then S1 forms a basis for C with |C| = 2(β1−de1( f1)).

Theorem 4.10. Let

C = ⟨( f3(y)|ℓ1(y)|h(y) + up1(y) + vq1(y)), ( f4(y)|ℓ2(y)|ua1(y) + vq2(y)), ( f5|ℓ3(y)|va2(y))⟩

be a Z2R1R2-additive cyclic code of length (β1, β2, β3), where β3 is an even integer and a2(y)|a1(y)|h(y)|(yβ3−1). If
mh(y)= (yβ3−1)

h , m1(y)=gcd(mh(y)p1(y),mh(y)q1(y), (yβ3−1)), m2(y) = (yβ3−1)
m1(y) , ma1 (y) = (yβ3−1)

a1(y) ,

s1(y) = gcd(ma1 (y)q2(y), (yβ3 − 1)), s2(y) = (yβ3−1)
s1(y) , ma2 (y) = (yβ3−1)

a2(y) ,

S1 =

β3−de1(h(y))−1⋃
i=0

{yi
· ( f3(y)|ℓ1(y)|h(y) + up1(y) + vq1(y))};

S2 =

β3−de1(m1(y))−1⋃
i=0

{yi
· (mh(y) f3(y)|mh(y)ℓ1(y)|umh(y)p1(y) + vmh(y)q1(y)};

S3 =

de1(h)−de1(a1)−1⋃
i=0

{yi
· ( f4(y)|ℓ2(y)|ua1(y) + vq2(y)};

S4 =

β3−de1(s1(y))−1⋃
i=0

{yi
· (ma1 f4(y)|ma1 (y)ℓ2(y)|vma1 (y)q2(y)};

S5 =

de1(a1(y))−de1(a2(y))−1⋃
i=0

{yi
· ( f5(y)|ℓ3(y)|va2(y)},
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then S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 is a minimal generating set for the code C and

|C| = 26β3−de1(h)−2de1(m1)−de1(a1)−de1(a2)−de1(s1).

5. Duality of Z2R1R2-additive cyclic codes

In this section, we give the relationship between the generator polynomial of C and its dual code.
Let f (y) ∈ R2[y] and de1( f (y)) = t. Then its reciprocal polynomial can be defined as f ∗(y) = yde1( f (y)) f ( 1

y ).

Assume thatωm(y) =
∑m−1

i=0 yi is a polynomial. Now, let m = lcm{β1, β2, β3} and f(y) = ( f (y)| f ′ (y)| f ′′ (y)),g(y) =
(1(y)|1

′

(y)|1
′′

(y) ∈ Sβ1,β2,β3 . Define a map

ζ : Sβ1,β2,β3 × Sβ1,β2,β3 −→
R2[y]
⟨ym − 1⟩

such that

ζ(f(y),g(y)) = v f (y)ω m
β1

(yβ1 )ym−1−de1(1(y))1∗(y)

+u f
′

(y)ω m
β2

(yβ2 )ym−1−de1(1′ (y))1
′
∗(y)

+ f
′′

(y)ω m
β3

(yβ3 )ym−1−de1(1′′ (y))1
′′
∗(y)

Now, we state the relevant lemmas that will be used to demonstrate the continuing results.

Lemma 5.1. Let n1,n2 ∈N. Then
yn1n2 − 1 = (yn1 − 1)ωn2 (yn1 ).

Proof. Let xn2 −1=(x−1)(xn2−1+xn2−2+ · · ·+x+1)=(x−1)ωn2 (x). Putting x=yn1 , we get the desired result.

Lemma 5.2. [16, Lemma 6.5] Let f, g ∈ Zβ1

2 ×R
β2

1 ×R
β3

2 with associated polynomials
f(y) = ( f (y)| f ′ (y)| f ′′ (y)), g(y) = (1(y)|1

′

(y)|1
′′

(y)) ∈ Sβ1,β2,β3 . Then f is orthogonal to g and all its shifts if and only if

ζ(f(y), g(y)) = 0.

Theorem 5.3. Let f(y)=( f (y)| f ′ (y)| f ′′ (y)), g(y)=(1(y)|1
′

(y)|1
′′

(y)) ∈ Sβ1,β2,β3 such that ζ(f(y), g(y))=0.

(i) If f ′ (y)=0 or 1′ (y)=0 and f ”(y)=0 or 1”(y)=0, then f (y)1∗(y) = 0 mod(yβ1 − 1).

(ii) If f (y)=0 or 1(y)=0 and f ”(y)=0 or 1”(y)=0, then f ′ (y)1
′
∗(y) = 0 mod(yβ2 − 1).

(iii) If f (y)=0 or 1(y)=0 and f ′ (y)=0 or 1′ (y)=0, then f ”(y)1”∗(y) = 0 mod(yβ3 − 1).

Proof. (i) Suppose that either f ′ (y)=0 or 1
′

(y)=0 and f ”(y)=0 or 1”(y)=0 . Then we need to show that
f (y)1∗(y) = 0 mod(yβ2 − 1). By Lemma 5.2, we have

0 = ζ(f(y),g(y))

= f (y)ω m
β1

(yβ1 )ym−1−de1(1(y))1∗(y)mod(ym
− 1).

We find that there exists a polynomial h(y) ∈ Z2[y] such that

f (y)ω m
β1

(yβ1 )ym−1−de1(1(y))1∗(y) = h(y)mod(ym
− 1)

= h(y)(ym
− 1).

By Lemma 5.1, ymβ1 − 1 = (yβ1 − 1)ωm(yβ1 ),we get

f (y)ym1∗(y) = h
′

(y)(yβ1 − 1)
f (y)1∗(y) = 0 mod(yβ1 − 1).

Similarly, we can prove other cases.
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Theorem 5.4. Let

C = ⟨( f1(y)|0|0), ( f2(y)|1(y) + ub1(y)|0), ( f3(y)|ℓ1(y)|h(y) + up1(y) + vq1(y))⟩

be a Z2R1R2-additive cyclic code of length (β1, β2, β3). If C⊥ = ⟨( f̄1(y)|0|0), ( f̄2|1̄(y) + ub̄1(y)|0), ( f̄3|ℓ̄1(y)|h̄(y) +
up̄1(y) + vq̄1(y))⟩ is the dual of C, then

(i) f̄1
∗(y) gcd( f1(y), f2(y), f3(y)) = h1(y)(yβ1 − 1),

(ii) u f1(y)ℓ1(y)( f3(y)1(y)+ f2(y)ℓ1(y))
gcd( f1(y), f2(y), f3(y),ℓ1(y)) · (1̄(y) + ub̄1(y))∗ = h2(y)(yβ2 − 1).

Proof. (i) Since ( f1(y)|0|0), ( f2(y)|1(y)+ ub1(y)|0), ( f3(y)|ℓ1(y)|h(y)+ up1(y)+ vq1(y)) ∈ C and ( f̄1(y), 0) ∈ C⊥, by
Lemma 5.2, we get

ζ(( f1(y), 0), ( f̄1(y), 0)) = 0,

ζ(( f2(y)|1(y) + ub1(y)|0), ( f̄1(y), 0)) = 0

and
ζ(( f3(y)|ℓ1(y)|h(y) + up1(y) + vq1(y), ( f̄1(y), 0)) = 0.

Using Theorem 5.1, we obtain f1(y) f̄ ∗1 (y) = 0, f2(y) f̄ ∗1 (y) = 0 and f3(y) f̄ ∗1 (y) = 0. It is obvious that
f̄ ∗1 (y) gcd( f1(y), f2(y), f3(y)) = 0 mod(yβ1 − 1). This implies that there exits a polynomial h1(y) ∈ Z2[y] such
that

f̄ ∗1 (y) gcd( f1(y), f2(y), f2(y)) = h1(y)(yβ1 − 1).

(ii) We know that

( f1(y)|0|0), ( f2(y)|1(y) + ub1(y)|0), ( f3(y)|ℓ1(y)|h(y) + up1(y) + vq1(y)) ∈ C.

Then any element c(y) ∈ C can be expressed as

c(y) =
f2(y) f3(y)ℓ1(y)

gcd( f1(y), f2(y), f3(y), ℓ1(y))
× ( f1(y)|0|0)

+u
f1(y) f3(y)ℓ1(y)

gcd( f1(y), f2(y), f3(y), ℓ1(y))
× ( f2(y)|1(y) + ub1(y)|0)

+u
f1(y) f2(y)ℓ1(y)

gcd( f1(y), f2(y), f3(y), ℓ1(y))
× ( f3(y)|ℓ1(y)|h(y) + up1(y) + vq1(y))

= (0|u
f1(y) f3(y)ℓ1(y)

gcd( f1(y), f2(y), f3(y), ℓ1(y))
1(y)|0)

+(0|u
f1(y) f2(y)ℓ21(y)

gcd( f1(y), f2(y), f3(y), ℓ1(y))
|u

f1(y) f2(y)ℓ1(y)
gcd( f1(y), f2(y), f3(y), ℓ1(y))

h(y))

= (0|u
f1(y)ℓ1(y)( f3(y)1(y) + f2(y)ℓ1(y))

gcd( f1(y), f2(y), f3(y), ℓ1(y))
|u

f1(y) f2(y)ℓ1(y)
gcd( f1(y), f2(y), f3(y), ℓ1(y))

h(y)).

This implies that ζ
(
(0|u f1(y)ℓ1(y)( f3(y)1(y)+ f2(y)ℓ1(y))

gcd( f1(y), f2(y), f3(y),ℓ1(y)) |u
f1(y) f2(y)ℓ1(y)

gcd( f1(y), f2(y), f3(y),ℓ1(y)) h(y)), ( f̄2, 1̄(y)+ub̄1(y)|0) = 0
)
. By Theorem

5.1, we get

u
f1(y)ℓ1(y)( f3(y)1(y) + f2(y)ℓ1(y))

gcd( f1(y), f2(y), f3(y), ℓ1(y))
· (1̄(y) + ub̄1(y))∗ = 0.

This means that there exists a polynomial h2(y) ∈ R1[y] such that

f1(y)ℓ1(y)( f3(y)1(y) + f2(y)ℓ1(y))
gcd( f1(y), f2(y), f3(y), ℓ1(y))

· (1̄(y) + ub̄1(y))∗ = h2(y)(yβ2 − 1).
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6. Z2R1R2-additive constacyclic codes

Definition 6.1. Let λ be a unit in R2. A non-empty subset C of Zβ1

2 × R
β2

1 × R
β3

2 is called a Z2R1R2-additive
λ-constacyclic code of length (β1, β2, β3) if

(i) C is additive code;

(ii) For any codeword z = (a0, a1, . . . , aβ1−1|b0, b1, . . . , bβ2−1|c0, c1, . . . , cβ3−1) ∈ C its cyclic shift

Tλ(z) = (aβ1−1, a0, . . . , aβ1−2|bβ2−1, b0, . . . , bβ2−2|λcβ3−1, c0, . . . , cβ3−2) ∈ C.

Let Sβ1,β2,β3,λ = Z2[y]/⟨yβ1 − 1⟩ × R1[y]/⟨yβ2 − λ⟩ × R2[y]/⟨yβ3 − λ⟩. Then Sβ1,β2,β3,λ forms a R2[y]-module
under usual addition and scalar multiplication defined in (2.1).

Theorem 6.2. A code C is a Z2R1R2-additive constacyclic code of length (β1, β2, β3) if and only if C is a R2[y]-
submodule of Sβ1,β2,β3,λ.

Proof. Proof directly follows the from Theorem 4.2

Let β3 be any odd number. Let C be anyZ2R1R2-additive constacyclic code. Both C and R2[y]/⟨yβ3 −λ⟩ are
R2[y]-submodules of Sβ1,β2,β3,λ, we define a mapping

η2 : C −→ R2[y]/⟨yβ3 − λ⟩,

where η2( f (y)|1(y)|h(y)) = h(y). Clearly, η2 is a module homomorphism whose image isR2[y]-submodule of
R2[y]/⟨yβ3 −λ⟩ and ker(η2) is a submodule of C. Further, η2(C) can easily be identified as an ideal in the ring
R2[y]/⟨yβ3 − λ⟩ . Since η2(C) is an ideal in R2[y]/⟨yβ3 − λ⟩, η2(C) is an additive λ-constacyclic code over R2
of length β3. Now, we give a map Ψ2 which gives the relationship between cyclic codes and constacyclic
codes over R2 as follows:

Ψ2 : R2[y]/⟨yβ3 − 1⟩ −→ R2[y]/⟨yβ3 − λ⟩

h(y) 7−→ h(λy).

Since β3 is odd integer, Ψ2 is ring isomorphism. Also, J is an ideal in R2[y]/⟨yβ3 − 1⟩ if and only if Ψ2(J) is
an ideal R2[y]/⟨yβ3 − 1⟩ (see for reference [20]). Using the above assumption , we have the following result.

Theorem 6.3. Let

C=⟨( f1(y)|0|0), ( f2(y)|1(y) + ub1(y)|0), ( f3(y)|ℓ1(y)|h(y) + ua1(y) + va2(y)⟩

be aZ2R1R2-additive constacyclic code of length (β1, β2, β3), where β2 and β3 are odd integers and b1(y)|1(y)|(yβ2 −1),
ai(y) | h(y) | (yβ3 − λ) for i = 1, 2. If m1(y)= (yβ2−1)

1(y) ,

t1 = gcd(m1(y)b1(y), (yβ2 − 1)) , t2(y) = (yβ2−1)
m1(y) , mh(y)= (yβ3−λ)

h , m1(y)=gcd(mh(y)a1(y),
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mh(y)a2(y), (yβ3 − λ)), m2(y) = (yβ3−λ)
m1(y) , ma1 (y) = (yβ3−λ)

a1(y) , ma2 (y) = (yβ3−λ)
a2(y) . If

S1 =

β1−de1( f1(y))−1⋃
i=0

{yi
· ( f1(y)|0|0)};

S2 =

β2−de1(1(y))−1⋃
i=0

{yi
· ( f2(y)|1(y) + ub1(y)|0)};

S3 =

de1(1(y))−de1(b1(y))−1⋃
i=0

{yi
· (m1(y) f2(y)|um1(y)b1(y)|0)};

S4 =

β3−de1(h(y))−1⋃
i=0

{yi
· ( f3(y)|ℓ1(y)|h(y) + ua1(y) + va2(y))};

S5 =

de1(h(y))−de1(a1(y))⋃
i=0

{yi
· (mh(y) f3(y)|mh(y)ℓ1(y)|umh(y)a1(y) + vmh(y)a2(y)};

S6 =

de1(a1(y))−de1(a2(y))⋃
i=0

{yi
· ( f5(y)|l3(y)|va2(y)},

then S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 is a minimal generating set for the code C and

|C| = 2β1−de1( f )22β2−de1(1)−de1(b1)23β3−de1(h)−de1(a1)−de1(a2).

Proof. Proof directly follows from Theorem 4.6

7. Examples & Table

Example 7.1. Let C be a Z2R1R2-additive cyclic code of length (2, 3, 4). Then C is a R2-submodule of
S2,3,4 = Z2[y]/⟨y2

− 1⟩ ×R1[y]/⟨y3
− 1⟩ ×R2[y]/⟨y4

− 1⟩ generated by

⟨( f3(y)|ℓ1(y)|h(y) + up1(y) + vq1(y)), ( f4(y)|ℓ2(y)|ua1(y) + vq2(y)), ( f5|ℓ3(y)|va2(y))⟩

as in Theorem 4.8. Suppose that f3(y) = f4 = f5 = y+ 1, ℓ1(y) = ℓ2(y) = ℓ3(y) = y2 + y+ 1, h(y) = y2 + 1 = a1(y) =
a2(y), p1(y) = q1(y) = q2(y) = 0. Then Z2R1R2-additive cyclic code C with parameters [24, 8, 7] is near-optimal
code.

Example 7.2. Let C be a Z2R1R2-additive cyclic code of length (2, 3, 6). Then C is a R2-submodule of
S2,3,6 = Z2[y]/⟨y2

− 1⟩ ×R1[y]/⟨y3
− 1⟩ ×R2[y]/⟨y6

− 1⟩ generated by

⟨( f3(y)|ℓ1(y)|h(y) + up1(y) + vq1(y)), ( f4(y)|ℓ2(y)|ua1(y) + vq2(y)), ( f5|ℓ3(y)|va2(y))⟩

as in Theorem 4.8. Suppose that f3(y) = f4 = f5 = y + 1, ℓ1(y) = ℓ2(y) = ℓ3(y) = y2 + y + 1, h(y) = y6
− 1 = a1(y),

a2(y) = y4 + y2 + y + 1, p1(y) = q1(y) = q2(y) = 0. Then Z2R1R2-additive cyclic code C with parameters [32, 2, 21]
is optimal code.
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Table: Optimal binary images from Z2R1R2-additive cyclic codes.

(β1, β2, β3) Generators Binary Image
(1, 1, 3) f1(y) = y − 1, f2(y) = 0, 1(y) = b1(y) = y − 1, [15, 2, 10]

f3(y)=ℓ1(y) = 1, h(y)=y3
− 1 = a1(y), a2(y) = y − 1

(1, 1, 3) f1(y) = y − 1, f2(y) = 0, 1(y) = b1(y) = y − 1, [15, 5, 7]
f3(y) = 0, ℓ1(y)=a2(y) = 1, h(y)=a1(y) = y2 + y + 1,

(1, 3, 3) f1(y) = y − 1, f2(y) = 0, 1(y) = b1(y) = y3
− 1, [19, 5, 8]

f3(y) = 1, ℓ1(y) = 1, h(y) = y2 + y + 1,
a1(y) = y2 + y + 1, a2(y) = 1

(1, 1, 6) f1(y) = y − 1, f2(y) = 0, 1(y) = b1(y) = y − 1, [27, 8, 10]
f3(y) = 0, ℓ1(y) = 0, ℓ2(y) = 1, h(y) = y6

− 1,
a1(y) = y4 + y3 + y + 1, a2(y) = y2 + 1

f4(y) = 1, f5(y) = 1, ℓ3(y) = 1
(1, 1, 7) f1(y) = y − 1, f2(y) = 0, 1(y) = b1(y) = y − 1, [31, 4, 16]

f3(y) = 1, ℓ1(y) = 1, h(y) = y7
− 1,

a1(y) = y4 + y2 + y + 1, a2(y) = y3 + y2 + 1
(2, 1, 7) f1(y) = y2

− 1, f2(y) = 0, 1(y) = b1(y) = y − 1, [32, 3, 18]
f3(y) = 1, ℓ1(y) = 1, h(y) = a1(y) = y7

− 1,
a2(y) = y4 + y2 + y + 1

(2, 1, 7) f1(y) = y2
− 1, f2(y) = 0, 1(y) = b1(y) = y − 1, [32, 4, 16]

f3(y) = 1, ℓ1(y) = 1, h(y) = y7
− 1,

a1(y) = y4 + y2 + y + 1, a2(y) = y3 + y2 + 1
(1, 5, 6) f1(y) = y − 1, f2(y) = 0, 1(y) = y5

− 1 = b1(y), [35, 8, 14]
f3(y) = 0, ℓ1(y) = 0, h(y) = y6

− 1,
f4(y) = 1, ℓ2(y) = y4 + y3 + y2 + y + 1
a1(y) = y3 + y2 + y + 1, a2(y) = y2 + 1
f5(y) = 1, ℓ3(y) = y4 + y3 + y2 + y + 1

(1, 7, 6) f1(y) = y − 1, f2(y) = 0, 1(y) = y7
− 1 = b1(y), [39, 8, 16]

f3(y) = 0, ℓ1(y) = 0, h(y) = y6
− 1,

f4(y) = 1, ℓ2(y) = y6 + y5 + y4 + y3 + y2 + y + 1
a1(y) = y3 + y2 + y + 1, a2(y) = y2 + 1

f5(y) = 1, ℓ3(y) = y6 + y5 + y4 + y3 + y2 + y + 1
(1, 1, 9) f1(y) = y − 1, f2(y) = 0, 1(y) = b1(y) = y − 1, [39, 2, 26]

f3(y) = 1, ℓ1(y) = 1, h(y) = y9
− 1,

a1(y) = y9
− 1, a2(y) = y7 + y6 + y4 + y3 + y + 1

(9, 1, 9) f1(y) = y − 1, f2(y) = 0, 1(y) = b1(y) = y − 1, [45, 2, 30]
f3(y) = y7 + y6 + y4 + y3 + y + 1, ℓ1(y) = 1, h(y) = y9

− 1,
a1(y) = y9

− 1, a2(y) = y7 + y6 + y4 + y3 + y + 1
(9, 5, 6) f1(y) = y9

− 1, f2(y) = 0, 1(y) = y5
− 1 = b1(y), [43, 8, 20]

f3(y) = 0, ℓ1(y) = 0, h(y) = y6
− 1,

f4(y) = y7 + y6 + y4 + y3 + y + 1, ℓ2(y) = y4 + y3 + y2 + y + 1
a1(y) = y3 + y2 + y + 1, a2(y) = y2 + 1

f5(y) = y7 + y6 + y4 + y3 + y + 1, ℓ3(y) = y4 + y3 + y2 + y + 1

8. Conclusion

In this article, we have described the structures R1 = Z2 + uZ2, where u2 = 0 and R2 = Z2 + uZ2 + vZ2,
where u2 = v2 = 0 = uv = vu with characteristic 2. The characterization of Z2R1R2-additive cyclic codes,
additive constacyclic codes and the duality of additive cyclic codes are discussed . The structural attributes
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of Z2R1R2-additive codes have been given. Also, we establish the relationships between the minimal
generating polynomials of additive cyclic codes and their duals. Furthermore, the minimal generating sets
for even and odd length of Z2R1R2-additive cyclic codes are determined. We have also obtained optimal
binary images from Z2R1R2-additive cyclic codes that have a number of advantages over linear codes,
including the fact that they are more efficient. In future work, it will be an interesting problem to generalize
this over Z2Z2[u]Z2[u1, . . . ,uk], where u2 = 0 and u2

i = 0 = uiu j = u jui for all i, j ∈ {1, 2, . . . , k}.
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