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The minimum number of chains in a noncrossing partition of a poset

Ricky X. F. Chena

aSchool of Mathematics, Hefei University of Technology, Hefei, Anhui 230601, P. R. China

Abstract. The notion of noncrossing partitions of a partially ordered set (poset) is introduced here.
When the poset in question is [n] = {1, 2, . . . ,n} with the complete order of natural numbers, conventional
noncrossing partitions arise. The minimum possible number of chains contained in a noncrossing partition
of a poset clearly reflects the structural complexity of the poset. For the poset [n], this number is just one.
However, for a generic poset, it is a challenging task to determine the minimum number. Our main result
in the paper is some characterization of this quantity.

1. Introduction

Partially ordered sets are well studied objects in discrete mathematics and we will basically follow the
notation in Stanley [9]. A partially ordered set (poset) is a set P with a binary relation ‘≤’ among the
elements in P, where the binary relation satisfies reflexivity, antisymmetry and transitivity. The poset will
be denoted by (P,≤) or P for short. For simplicity, all posets discussed in this paper are assumed to be finite.

If two elements x and y in P satisfy x ≤ y, we say x and y are comparable. We write x < y if x ≤ y
but x , y. A chain of P is a subset of elements such that any two elements there are comparable, while
an antichain is a subset where any two elements are not comparable. A chain decomposition of P is a
family of disjoint chains {C1,C2, . . . ,Ck} such that

⋃k
i=1 Ci = P. Let Min(P) denote the minimum number of

chains that are contained in a chain decomposition of P, and let Anti(P) denote the maximum number of
elements that can be contained in an antichain of P. These quantities reflect the structural complexity of
the posets in question. For instance, if there is a complete order in P, then Min(P) = 1, and if there is no
order at all, Min(P) = |P| (i.e., the number of elements in P). The celebrated Dilworth’s theorem [4] states
that Min(P) = Anti(P) for all finite P.

Chain decompositions with various constraints have been studied, e.g., symmetric chain decompo-
sition [5], canonical symmetric chain decomposition [6], etc., which reflect the structural properties and
complexity of posets from different angles. Here we introduce a new chain decomposition which can be
viewed as a generalization of the ubiquitous object in combinatorics, i.e., noncrossing partitions (e.g., see
Armstrong [1] and Simion [8]). As such, we call the new decompositions noncrossing partitions of posets.
Specifically, a noncrossing partition of the set [n] = {1, 2, . . . ,n} is merely a noncrossing partition of the
poset [n] with the natural order. Note that [n] itself is a noncrossing partition of [n]. That is, the minimum
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number of chains contained in a noncrossing partition is simply one in this case. However, determining
the minimum number of chains in a noncrossing partition for a general poset is a challenging task.

Our main goal of this note is to provide some characterization of the minimum possible number of
chains contained in a noncrossing partition of a generic poset.

2. Noncrossing partitions of posets

Recall a noncrossing partition (see [1, 8]) of the set [n] is a partition of [n] into k ≥ 1 blocks B1,B2, . . . ,Bk
such that there do not exist elements a, b ∈ Bi and c, d ∈ B j (i , j) such that a < c < b < d. For example, for
n = 5, B1 = {1, 5} and B2 = {2, 3, 4} give a noncrossing partition of [5] into two blocks, while B1 = {1, 3, 5}
and B2 = {2, 4} do not give a noncrossing partition. Evidently, the definition depends on the natural order
on [n]. Regarding [n] as a poset, Bi is just a chain and a partition is just a chain decomposition. What if we
replace [n] with an arbitrary poset?

Before we proceed, it will be convenient to represent a poset by introducing its Hasse diagram. For two
elements x and y in a poset P, if x < y and there does not exist z such that x < z < y, then we say y covers x.
The Hasse diagram of P is the graph with the elements of P as the vertices, and with the covering relation
giving the edges, and if y covers x then y is drawn “above” x (with an edge between x and y). Note the
whole partial relation can be derived by applying the transitivity based on the Hasse diagram.

Definition 2.1. A chain decomposition of a poset P, {C1,C2, . . . ,Ck}, is called a noncrossing partition of P, if there
do not exist elements a, b ∈ Ci and c, d ∈ C j (i , j) such that a < c < b < d in P.

a

b

cd

ef

g

Figure 1: A poset of 7 elements represented by its Hasse diagram.

For example, for the poset in Figure 1, the partition {{a, b, c, e}, {d, f , 1}} is a noncrossing partition, while
{{a, c, e}, {b, d, f , 1}} is not since a < b < c < 1. We denote by Minnc(P) the minimum number of chains
contained in a noncrossing partition of P. For P in Figure 1, Minnc(P) = 2. Clearly, Minnc(P) = 1 if and only
if P ∼ [n]. However, it is not easy to exactly determine this number for a generic poset. Nevertheless, by
relating noncrossing partitions to other notion, we are able to prove some bounds.

Definition 2.2. Let (P,≤) be a poset. A homogeneous chain decomposition (HCD) C of P is a collection of mutually
disjoint chains C1,C2, . . . ,Cn such that

⋃
i Ci = P, and if si ∈ Ci and s j ∈ C j are comparable, then all elements in Ci

and C j are pairwise comparable.

In the example of Figure 1, {{a, b, 1}, {c, e}, {d, f }} gives an HCD. When all elements in two chains Ci and C j
are pairwise comparable, i.e., Ci

⋃
C j is a chain, we say Ci and C j are comparable for short. We also write

C = (ξ1 < ξ2 < · · · < ξs) as a shorthand of that C is the chain {ξ1, ξ2, . . . , ξs} and ξ1 < ξ2 < · · · < ξs.
Denote by |C| the number of chains contained in C. Let Minh(P) = minC |C|, where the minimization

is over all HCDs of P. An HCD of P containing exactly Minh(P) chains is called a minimal homogeneous
chain decomposition (MHCD) of P. It turns out there is only one such a decomposition. For instance, for P
in Figure 1, Minh(P) = 3 and {{a, b, 1}, {c, e}, {d, f }} is actually the only MHCD.
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Proposition 2.3. For any poset P, there exists a unique MHCD of P.

Proof. Let C = {C1,C2, . . . ,Cm} be a MHCD of P. If |Ci| = 1 for all 1 ≤ i ≤ m, there is nothing to prove. Thus,
we assume that there exists at least one i such that |Ci| > 1. Let C′ = {C′1,C

′

2, . . . ,C
′
m} be a different MHCD of

P. First, there exists k and sk1, sk2 ∈ Ck such that sk1 ∈ C′j1, sk2 ∈ C′j2 and C′j1 , C′j2. Otherwise, it is not hard
to argue C = C′. Next, since sk1 and sk2 are comparable, C′j1 and C′j2 are comparable. Thus, C∗ = C′j1

⋃
C′j2 is

a chain of P.
We claim (C′ \ {C′j1,C

′

j2})
⋃
{C∗} is an HCD of P. For any j < { j1, j2}, C′j is either comparable to C′j1 or not

comparable to C′j1. For the former case, there exists s j ∈ C′j comparable to sk1. Since sk1 and sk2 come from
the same chain Ck, regardless of whether s j ∈ Ck, sk2 must be comparable to s j as well. Hence, C′j is also
comparable to C′j2 so that C′j is comparable to C∗. For the latter case, we can analogously show C′j is not
comparable to C∗. Thus, the claim holds. However, this contradicts the assumption that C′ is minimum.
Hence, C is the unique MHCD of P.

HCDs were first introduced in Chen and Reidys [3] in the context of studying the interaction between
incidence algebras of posets and linear sequential dynamical systems, where in particular, it was shown
that the Möbius function of any poset can be efficiently computed via a sequential dynamical system and a
cut theorem concerning HCDs of posets holds.

Another notion that we need is a generalization of 132-avoiding permutations, another ubiquitous object
in combinatorics and computer science.

Definition 2.4. A permutation π = π1π2 · · ·πn of the elements of P is called 132-avoiding if no three-element
subsequence πi1πi2πi3 in π satisfies i1 < i2 < i3 while πi1 < πi3 < πi2 in P.

In the case of P = [n], conventional 132-avoiding permutations arise. For example, when P = [5], 53241 is
a 132-avoiding permutation, while 21453 is not. Because in the latter, we realized that the subsequences 243,
253, 143, 153 all violate the definition. A linear extension of P is a permutation e = e1e2 · · · en of P-elements
such that ei < e j implies i < j. For example, for the poset P in Figure 1, abcde f1 and abced f1 are linear
extensions. There are more than one linear extension unless P ∼ [n].

Definition 2.5. Let e = e1e2 · · · en be a linear extension of P. A permutation π = π1π2 · · ·πn of the elements of P
is called 132e-avoiding (i.e., 132-avoiding with respect to e) if there does not exist a subsequence πi1πi2πi3 = e j1 e j2 e j3
such that i1 < i2 < i3 and j1 < j3 < j2.

For example, 1ed f bac is 132-avoiding w.r.t. the linear extension abcde f1 of P in Figure 1, while abced f1
is not due to the appearance of the subsequence ced. It is easily seen that a 132e-avoiding permutation is
a 132-avoiding permutation of P. Given a permutation π = π1π2 · · ·πn of P, i is called a p-descent of π if
πi > πi+1 or πi is not comparable with πi+1 in P or i = n. The number of p-descents in π is denoted by dP(π).
For P in Figure 1 and π = 1ed f bac, it can be checked that dP(π) = 5, i.e., i = 1, 2, 4, 5, 7. Let

Mind(P) = min{dP(π) : π is a 132-avoiding permutation of P},
Mine

d(P) = min{dP(π) : π is a 132e-avoiding permutation of P}.

Now we are in a position to present our main result.

Theorem 2.6 (Main theorem). For any poset P, there exists a linear extension e of P such that

Minnc(P) ≤Mind(P) ≤Mine
d(P) ≤Minh(P). (1)

Moreover, all inequalities are sharp.

We remark that the rightmost inequality is not necessarily true for an arbitrary linear extension. For
example, for the poset P in Figure 2, it is easy to see Minh(P) = 2. However, for its linear extension
e = abxy, there are 14 132e-avoiding permutations all of which have at least three p-descents. In Figure 2,
the number of descents of a 132e-avoiding permutation is written right after the 132e-avoiding permutation.
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For instance, “baxy : 3” means that baxy has three p-descents. Moreover, the reason that we are interested
in Mine

d(P) is as follows: while it may be hard to generate all 132-avoiding permutations of P to compute
Mind(P), it is easy to generate all 132e-avoiding permutations for any linear extension e of P as we shall see
it is essentially generating all plane trees. A proof of the above theorem follows from a series of properties
that we are about to present.
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Figure 2: A poset P with a linear extension e such that Mine
d(P) >Minh(P).

Assumeπ = π1π2 · · ·πn is a permutation of a poset P. Readπ from left to right and collect these elements
between two consecutive p-descents, excluding the first one and including the second. By definition of
p-descents, these elements comprise a chain. In this way, all p-descents of π induce a chain decomposition
of P.

Proposition 2.7. Let π be a 132-avoiding permutation of a poset P. Then, the induced chain decomposition by the
p-descents of π is a noncrossing partition of P.

Proof. If not, without loss of generality, suppose π1, π2 from the first induced chain and π3, π4 from the
second induced chain cross, i.e., π1 < π3 < π2 < π4 or π3 < π1 < π4 < π2. Obviously, either case implies a
132 pattern in π, a contradiction whence the proposition.

As a result, we immediately have Minnc(P) ≤ Mind(P) ≤ Mine
d(P) for any linear extension e of P. If oth-

erwise explicitly stated, we assume the following notation in the rest of the section. Let C = {C1,C2, . . . ,Ck}

be the MHCD of P, where

Ci = (si1 < si2 < · · · < simi ),
k∑

i=1

mi = n.

Lemma 2.8. If Ci and C j are comparable, then there exists 0 ≤ l ≤ mi such that

si1 < si2 < · · · < sil < s j1 < s j2 < · · · < s jm j < si(l+1) < si(l+2) < · · · < simi .

Proof. In order to prove the lemma, it suffices to show that there does not exist 0 < l1 < mi and 0 < l2 < m j
such that

sil2 < s jl1 < si(l2+1) < s j(l1+1).

Assume by contradiction that such l1 and l2 exist. For any other chain Ck, if Ck is comparable to Ci and
x ∈ Ck, then either x < si(l2+1) or x > si(l2+1). In any case, we conclude that an element in C j is comparable to x
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whence C j and Ck are comparable. By similar analysis, we can conclude that if Ck is not comparable to Ci,
then Ck is not comparable to C j either. Therefore, (C \ {Ci,C j})

⋃
{Ci ∪ C j} is an HCD of P. This contradicts

the assumption that C is the minimum and the lemma follows.
Consider the relation ≤b on C that Ci ≤b C j if there exist elements x, z ∈ C j and y ∈ Ci such that x < y < z

or min(Ci) > max(C j). As for the first case, we say C j wrap around Ci or Ci can be wrapped around by C j.
In view of Lemma 2.8, we leave it to the reader to verify that (C,≤b) is a well-defined poset.

Proposition 2.9. Suppose C1C2 · · ·Ck is a linear extension of (C,≤b). Then the following permutation π is 132-
avoiding and has k p-descents:

π = s11s12 · · · s1m1 s21 · · · s2m2 · · · sk1 · · · skmk .

Proof. By definition, it is easy to see there are exactly k p-descents in π. We prove the rest by contradiction.
Suppose πl1πl2πl3 is a 132 pattern in π. Since each Ci appears as an increasing chain in π, we have only two
possible cases:

• πl1 , πl2 ∈ Ci, πl3 ∈ C j, and i < j;

• πl1 ∈ Ci, πl2 ∈ C j, πl3 ∈ Ck, and i < j < k.

The first case cannot happen because the condition implies that C j <b Ci in the light of Lemma 2.8,
contradicting the assumption of the proposition. Next suppose the second case occurs. First, πl1 < πl2 and
Ci <b C j imply that πl1 > x j for some x j ∈ C j, i.e., C j wrap around Ci. Analogously, Ck wrap around Ci.
Secondly, πl2 > πl3 and C j <b Ck imply that either min(C j) > max(Ck) or Ck wrap around C j. Since both C j
and Ck can wrap around Ci, the former is absurd. On the other hand, that Ck wrap around C j while C j wrap
around Ci makes it impossible to have a 132 pattern πl1πl2πl3 such that πl1 ∈ Ci, πl2 ∈ C j, πl3 ∈ Ck. Hence, no
132 patterns exist in π, completing the proof.

From Lemma 2.8 and Proposition 2.9, we conclude

Minnc(P) ≤Mind(P) ≤Minh(P).

But we cannot conclude Mine
d(P) ≤Minh(P) for an arbitrary linear extension e.

We proceed with further analysis below, where on the way we need to make use of plane trees. A plane
tree T can be recursively defined as an unlabeled tree with one distinguished vertex called the root of T,
where the unlabeled trees obtained by deleting the root as well as its adjacent edges from T are linearly
ordered, and they are plane trees with the vertices adjacent to the root of T in T as their respective roots.
These subtrees are pictured as locating below the root and appearing left to right. A non-root vertex without
any child is called a leaf, and an internal vertex otherwise. The root is always treated as internal. A labelled
plane tree is a plane tree where vertices carry mutually distinct labels from a certain set of labels. The
preorder of the vertices in a labelled plane tree T is the sequence obtained by travelling T in a left-to-right
depth-first manner and recording the label of a vertex when it is first visited. See Figure 3 for an example.

r

6

5

4

3 2

1
preorder: r,6,5,4,3,2,1

Figure 3: A labelled plane tree and the preorder of its vertices.

There is a bijection between plane trees and conventional 132-avoiding permutations given by Jani and
Rieper [7]. The following is how it works. Let T be a plane tree of n edges. We use a preorder traversal
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of T to label the non-root vertices with the integers n,n − 1, . . . , 1. As such, the first vertex visited gets the
label n and the last receives 1. A permutation written as a word is next obtained by reading the labelled
tree in postorder, that is, traverse the tree from left to right and record the label of a vertex when it is last
visited. It was shown [7] that the obtained permutation is 132-avoiding on [n]. As an example, for the tree
in Figure 3, the obtained 132-avoiding permutation is 532461.

The reverse from a 132-avoiding permutation to a plane tree was not explicitly presented in Jani and
Rieper [7]. A reverse procedure was proposed in [2] and is presented here for later use. Let π be a 132-
avoiding permutation on [n]. Suppose the (increasing) chains induced by the p-descents of π from left to
right are τ1, τ2, . . . , τk. Start with τk and make it into a path with the maximum (i.e., rightmost) element in
τk attaching to the root of the expected plane tree T. For example, suppose π = 532461. Then, k = 4 and
τk = 1, and the path will be the path from vertex 1 to the root of the tree in Figure 3. After τi is “integrated”
into the (partial) tree, we find the minimum element u in the path from the leftmost leaf to the root in the
current partial tree that is larger than the maximum element x in τi−1, and attach the path induced by τi−1
to the tree such that u and x are adjacent; if no such a u exists, we attach the path induced by τi−1 to the root
of the current tree. Iteration of the procedure eventually yields a labelled plane tree. (The vertex labels are
uniquely determined by the underlying plane tree.)

In the forthcoming result, a straightforward generalization of 132e-avoiding permutations of P from a
linear extention e to an arbitrary permutation e of P will be used.

Proposition 2.10. Suppose C1C2 · · ·Ck is a linear extension of the poset (C,≤b). Then, there exists a labelled plane
tree T with non-root vertex labels from P such that π in Proposition 2.9 is 132e-avoiding, where e is the reverse of the
preorder of the vertices other than the root of T.

Proof. First, we use the chains Ci to build a labelled plane tree following the same procedure from the
induced chains of 132-avoiding permutations to plane trees described above. We then claim the obtained
tree is the desired T. To see this, one has to realize that the Jani-Rieper bijection essentially encodes the
relation among the non-root vertex sequences from the preorder, postorder and the reverse of the preorder.
In a word, the postorder is 132-avoiding with respect to the reverse of the preorder. Actually, this is how we
constructed all 132e-avoiding permutations in Figure 2. In particular, when the preorder is n,n−1, . . . , 1, the
postorder gives a conventional 132-avoiding permutation on [n]. The rest is clear, completing the proof.

It remains to prove that there exists a linear extension of (C,≤b) of which the corresponding e is in fact a
linear extension of P. We need one more important lemma to that end.

Lemma 2.11. Suppose {Ci1 ,Ci2 , . . . ,Cik′ } is a subposet of (C,≤b), and Ci1 ,Ci2 , . . . ,Cim are the maximal elements of
the subposet. Then, any Ci j for m + 1 ≤ j ≤ k′ satisfies either one of the cases:

(1) for at least one t (1 ≤ t ≤ m), min(Ci j ) > max(Cit );

(2) for a unique t (1 ≤ t ≤ m), Cit wrap around Ci j .

In addition, two case (2) elements wrapped around by distinct maximal elements are not comparable, while a case (1)
element is smaller than a case (2) element if comparable and the minimal (P-element) of the former is greater than the
maximal of the latter.

Proof. For any m + 1 ≤ j ≤ k′, by assumption, Ci j is smaller than at least one maximal element. We first
show that Ci j cannot satisfy both cases. Suppose min(Ci j ) > max(Cit ) for some 1 ≤ t ≤ m. If Ci j can be
wrapped around by another maximal element Cit′ , then it is easy to see that Cit and Cit′ are comparable,
a contradiction. Analogously, an element satisfying (2) cannot satisfy (1) at the same time. Moreover, an
element cannot be wrapped around by more than one maximal element.

If two case (2) elements wrapped around by distinct maximal elements are comparable, either the
minimal P-element (i.e., element in P) of one is greater than the maximal P-element of the other or one
wrap around the other. Either case implies the two involved distinct maximal elements are comparable,
contradicting the maximality. The remaining statement can be similarly verified, and the proof follows.
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Proposition 2.12. There exists a linear extension of (C,≤b), still denoted by C1C2 · · ·Ck, of which the corresponding
e referred to in Proposition 2.10 is a linear extension of P.

Proof. Our strategy here is to construct a linear extension of (C,≤b) first and then argue the corresponding
e is a linear extension of P.

Construct a linear extension of (C,≤b). First, we apply the following procedure.

(i) Initialize j = 0, W0 = (C,≤b) and F =W0;

(ii) Arrange the maximal elements of F on a line in an arbitrary way;

(iii) Put each of those case (2) elements w.r.t. F right before the maximal element in F that wrap around it
(and after the preceeding maximal element) and order those right before the same maximal element
later. Next, denote the set of case (1) elements w.r.t. F by W j+1 and put them in front of the current
“partially linearized” sequence in an arbitrary way. Update F to W j+1 and j to j + 1;

(iv) Iterate (ii) and (iii) until F is an empty set.

At this point, all elements of (C,≤b) are in a sense grouped into disjoint ordered groups. The involved
maximal C-elements (w.r.t. a certain iteration) serve as a kind of group markers. (The group marker of
a group is on the right-hand side.) See Figure 4 for an illustration, where Cm and the case (2) elements
wrapped around by Cm give an example of a group. The groups obtained so far will be referred to as type
I groups. By construction, the maximum P-element contained in a group marker is larger than (in terms of
(P,≤)) all other P-elements contained in the chains in the same group. Moreover, in view of Lemma 2.11,
any C-element in a left group is smaller than any C-element in a right group if comparable, not violating
the current sequence to possibly become a linear extension of (C,≤b).

Iteratively apply the above procedure to each type I group with the group marker excluded and each of
those newly generated groups (excluding the group markers) in the process until each non-empty group
contains a single element. It is a kind of successive “linearization”. Eventually, we obtain a linear extension
of (C,≤b).

C1 C2 Cm

case (2) elements 
wrapped around by

Cm 

case (2) elements 
wrapped around by

C2 

case (2) elements 
wrapped around by

C1 

W1: case (1) elements

C1 C2 Cm

case (2) elements 
wrapped around by

Cm 

case (2) elements 
wrapped around by

C2 

case (2) elements 
wrapped around by

C1 

arrange the elements in W1 in the same manner

XX

case (2)case (2)W2: case (1)

continue the iteration

Figure 4: Construct a linear extension of (C,≤b).

Assume the resulting linear extension is C1C2 · · ·Ck, and its corresponding tree from the reverse proce-
dure of the Jani-Rieper bijection is T. Note that in terms of Figure 4, Ck here is actually Cm, i.e., the rightmost
chain. We next show that the reverse e of the preorder of the vertices other than the root of T is a linear
extension of P, which is equivalent to showing that for any two entries in the preorder, the left one is greater
than the right one if comparable in P. To this end, for any vertex u in T, consider the subtree Tu with u as
the root. It suffices to show: (i) u is greater than any of its descendants (in terms of the labels in P) where
the root of T is assumed to be an artificial maximum element added into P; (ii) any vertex in a left subtree
of Tu is greater than any vertex in a right subtree of Tu if comparable.

Suppose u is the root of T. Then, Tu = T. According to the construction of the linear extension C1C2 · · ·Ck
and the tree T, P-elements contained in chains belonging to distinct type I groups (including respective
group markers) are contained in distinct subtrees of T. Thus, a P-element in a left subtree of Tu is greater
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than a P-element in a right subtree of Tu if comparable. So, the above two requirements (i) and (ii) hold for
this case.

We next examine the cases where u is the root of a subtree of T. Recall that the maximum P-element
contained in a group marker is the maximum of the whole group. Then, the maximum P-element must be
the root of the corresponding subtree of T formed by the P-elements in the group in view of the building
process of T. Without loss of generality, we take the rightmost type I group, i.e., the one with Ck as the
group marker, to continue the analysis. In this case, u = skmk . The requirement (i) is clear since skmk is the
maximum P-element. As for the requirement (ii), suppose in the linear extension C1C2 · · ·Ck, the chains
contained in the subsequence ClCl+1 · · ·Ck constitute the type I group with Ck as the group marker. Noticing
that when restricted to this subsequence, the constructed plane tree is exactly the subtree Tu with skmk as
the root. Then the requirement (ii) concerning the vertices in the subtrees of Tu follows by the same token
as that for the subtrees of T verified above.

Iterating the above reasoning for u being a vertex in T in a kind of “top-down” manner, we conclude
that the requirements (i) and (ii) hold for all vertices. Therefore, e, the reverse of the preorder of T is a linear
extension of P, completing the proof.

Now it is not hard to piece all properties above together to arrive at Theorem 2.6. Obviously, when P
is itself a chain, all inequalities become equalities whence the sharpness claim. We end this paper with
some future study problems: (1) in which more general cases can some of the equalities be achieved in
Theorem 2.6, e.g., when Minnc(P) =Minh(P)? and (2) how many noncrossing partitions are there for a given
poset P? Note that the answer is given by the famous Catalan numbers when P = [n].
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