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Abstract. In this article, we present a novel approach under the Taylor wavelet and collocation technique
which is computationally efficient to obtain the solution of the model of CD4+T cells of HIV infection.
A system of nonlinear ordinary differential equations represents this mathematical model. On applying
the proposed technique described in this article, we have transformed this model into algebraic form and
then simplified using a suitable method. The suggested Taylor wavelet approach is worked out for the
convergence analysis and thereafter it is also demonstrated that the Taylor wavelet expansion of a function
converges uniformly to itself. It is anticipated that the proposed approach would be more efficient and
suitable for solving a variety of nonlinear ordinary and partial differential equations that occur in various
such models of medical science and engineering. Tables and graphs are included to show how the suggested
wavelet method provides enhanced accuracy for a wide range of problems. Relative data and computations
are performed over MATLAB software.

1. Introduction

Mathematics provides a powerful tool for understanding and solving a wide range of real-world prob-
lems. For instance, we developed a model to explain biological elements like a human immunodeficiency
virus infection (HIV). Viruses have evolved various strategies to enter live cells, infect the host cell, and
evade the host immune system. Understanding these mechanisms is crucial in combating viral infections.
the activation of pattern-recognition receptors (PRRs) plays a pivotal role in triggering innate immune re-
sponses against pathogens, including viruses. When pathogens, such as viruses, connect to PRRs, it sets off
a cascade of events that initiate the body’s natural immune defense mechanisms. Adaptive immunological
responses play a crucial role in triggering the immune system’s development of effector cells. The adaptive
immune system is a specialized branch of the immune system responsible for mounting highly targeted
and specific responses to pathogens, including viruses. Alan Perelson, a renowned mathematical biologist
and immunologist, developed a mathematical model [1] of HIV infection in 1989. Perelson’s model is a
fundamental representation of how the human immunodeficiency virus (HIV) propagates in the human
body and how it interacts with the immune system. Leukocytes, commonly known as white blood cells, are
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indeed fundamental components of the human immune system (HIS). However, it’s important to clarify
that while leukocytes include various types of white blood cells, CD4+ T cells are a specific subset of white
blood cells with crucial roles in the immune system.

1.1. Global HIV report and statistics
Understanding and studying the HIV infection model is crucial because acquired immunodeficiency

syndrome (AIDS), which is the advanced stage of HIV infection, has significant and far-reaching impacts on
individual health and public health. The UNAIDS 2018 report highlights the global impact of HIV/AIDS.
The estimated number of people worldwide who were living with HIV at that time was 37.9 Million people
Living with HIV, the number of individuals who were receiving antiretroviral therapy (ART) was 23.3
Million, and the estimated number of new HIV infections that occurred during that year was 1.7 Million
[2].

1. In 2021, there were an estimated 36.7 million adults living with HIV and 1.7 million children (aged 15
and under) living with HIV.

2. Among the total number of individuals living with HIV in 2021, approximately 54% were women
and girls.

It’s important to note that these statistics emphasize the ongoing need for global collaboration and resources
dedicated to addressing HIV/AIDS and its associated health challenges. Many of the nations most affected
by HIV are also grappling with a range of other critical health and socioeconomic issues. This intersection
of HIV/AIDS with other challenges can exacerbate the overall impact on affected populations specifically
coexisting infectious diseases, healthcare infrastructure, food insecurity, economic challenges, population
mobility, etc. Literally, over the past few decades, a significant amount of research has been dedicated to
understanding HIV/AIDS, developing effective treatments, and devising strategies for HIV prevention. The
modeling of HIV dynamics and the assessment of various therapies are of significant interest to researchers
in the field of biomathematics. Mathematical modeling plays a crucial role in understanding the complex
dynamics of HIV infection, evaluating the efficacy of different treatment strategies, and predicting the
long-term outcomes of interventions. Numerical approaches are essential for examining and analyzing
mathematical models of complex biological systems, including models of HIV dynamics and its therapies.
These numerical methods allow researchers to approximate solutions to differential equations and simulate
the behavior of the system over time.
Consider the biological model of HIV infection of the CD4+T cells of the form:

dX
dβ = ρ − αX + κX

(
1 − X+Y

XMax

)
− ηXZ

dY
dβ = ηXZ − eY
dZ
dβ = Yle − ζZ

 , (1)

under the intial conditions X(0) = 0.1,Y(0) = 0, and Z(0) = 0.1.
The parameters involved are used for;

X(β) = The concentration of uninfected CD4+T cells (per unit volume) at time β,
Y(β) =The concentration of infected CD4+T cells (per unit volume) at time β,
Z(β) =The concentration of free virus particles (per unit volume) at time β,
α = Natural turnover rates of uninfected CD4+T cells
e = Infected CD4+T cells
ζ = Virus particles

ηXZ = HIV infection of healthy CD4+T cells
Xmax =Maximum CD4+T cells in the body(

1 −
X + Y
Xmax

)
= Logistic development of the healthy CD4+T cells.
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Let’s say that the infection rate is represented by the real number η in the infectious body of a person,
and the values of the parameters that happened in this system as follows: ρ = 0.1, α = 0.02, e = 0.3, κ =
3, ζ = 2.4, η = 0.0027,Xmax = 1500, l = 9. Numerous numerical methods have been introduced to tackle the
model of HIV infected CD4+T cells and other problems of significant interest. For instance, the operational
matrix of Bessel polynomials [3], HPM technique [5], Homotopy method for HIV infection model [4],
LADM approach for HIV infection model [6], LSCA for HIV infection model [7], MDTM for fractional HIV
infection model [8], MVIM for HIV infection model [9], SLCM for HIV infection model [10], BCM for HIV
infection model [11, 12], and on the modeling and analysis of HIV infection and other applied problems by
means of the wavelet and collocation techniques are addressed such as [23] developed a novel model for
infection, [24] proposed a novel method for nonlinear PDEs, [25] proposed a novel clique collection method
for the fractional model, [26] proposed a B-spline and Jacobi method for nonlinear PDEs, [27] solved a
Heat transfer model using Fibonacci wavelets represented by nonlinear PDEs, [28] solved a fractional order
model using Legendre spectral method, [29] solved a fractional order Integro-differential equations model
using the collocation method, [30] studied the HIV Latent Reservoir in HIV Infection and others [35–37].

1.2. Wavelets in Numerical Analysis

Wavelet algorithms have indeed gained attention from researchers in the field of numerical analysis
and computational mathematics for solving a wide range of linear and nonlinear ordinary and partial
differential equations (ODEs and PDEs). Wavelets are capable of representing functions at multiple levels
of resolution or detail. This multiresolution property allows for adaptive refinements in regions where fine-
scale information is needed while maintaining a coarser representation elsewhere. It is particularly useful
in capturing localized features in differential equations. Due to these features, wavelet-based numerical
approaches have gained popularity for solving Integral equations [20], including both ordinary and partial
differential equations. Wavelet-based numerical methods are extensively applied in [24] and [22]. Little
research is known that uses wavelets to address the HIV mathematical model so this impetus us to use the
Taylor wavelet collocation method (TWCM).

Wavelet bases have indeed found applications in various real-life mathematical models across different
fields. These applications leverage the adaptivity, accuracy, and efficiency of wavelets to address complex
problems as in BWM Bernoulli wavelet method [13]-[16], operational matrix of integration for the IDEs [14],
Numerical solution using Haar wavelet [15–17], MTF equations using Hermite [18], solution of singular
differential equations [33], and Fibonacci wavelet method [32]etc.

The primary objective of this paper is to present and explore the Taylor wavelet collocation technique
(TWCM), which uses the Taylor wavelet basis to learn more about the numerical and geometrical behavior
of a nonlinear mathematical representation. Only a few of the approaches that have been explored pre-
viously explained for dealing with this mathematical structure include the R-K technique, Haar wavelet
technique, Laplace Adomian Decomposition method (LADM), LADM Pade, The Homotopy analysis ap-
proach, Differential transform method, multistep Adomian decomposition method, modified variational
iteration method, Runge-Kutta, and other semi-analytic techniques. Although these techniques were accu-
rate and effective, TWCM offers an approach that is more exact. The research presented in this publication
is absolutely new and has never been done before. With this strategy, difficult numerical techniques are
removed, and useful data about the model’s numerical behavior is generated. The problem is also resolved
via numerical computing using the provided approach. By comparing our strategy to the existing work,
the accuracy and proficiency of the recommended technique are shown.

Following is an overview of this article: We explain the characteristics of the Taylor wavelets and the
approximation of a function using the Taylor wavelet basis in Section 2. Section 3 presents a fundamental
concept for approximating a function while Section 4 provides a convergence analysis of the method. In
Section 5, we discuss how to use the Taylor wavelets to generate the operational matrix of integration. In
Section 6, we provide the methodology for the proposed method using Taylor wavelets. Application of the
method to the given problem and comparison with the previous work has been discussed in Section 7. In
Section 8, an overall conclusion is drawn.
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2. Taylor wavelets

A family of functions generated by the translation and dilation of a single function which is known
as the ”mother wavelet” is called the wavelets. Let x and y be two continuous parameters that stand for
dilation and translation then we define the continuous family of wavelets as;

Φx,y(β) = |x|−1/2Φ

(
β − y

x

)
,∀x, y ∈ R, x ̸= 0. (2)

If we choose x = x−θ0 , y = ωx−θ0 y0, x0 > 1, y0 > 1, and ω and θ are positive integers, the discrete wavelet
family is introduced as,

Φθ,ω(β) = |x0|
θ
2 Φ

(
xθ0β − ωy0

)
,

where Φθ,ω(β) is the wavelet basis in L2(R). Further wavelets family Φθ,ω(β) represents an orthonormal
basis for the fixed values of x0 = 2 and y0 = 1.

2.1. Taylor wavelets

Taylor wavelets [32, 34] are defined under four arguments as Φω,r(β) = Φ(θ, ω̂, r, β): ω̂ = ω − 1, ω =
1, 2, . . . , 2θ−1. Consider the following collection of functions defined on [0, 1]:

Φω,r(β) =

2
θ−1

2 L̃r

(
2θ−1β − ω̂

)
, ω̂

2θ−1 ≤ β <
ω̂+1
2θ−1

0, otherwise
(3)

with
L̃r(β) =

√

2r + 1Lr(β),

where Φω,r(β) are defined as the Taylor wavelets and Lr(β) = βr is the well-known Taylor polynomials of
order r for r = 0, 1, 2, . . . ,M− 1. The coefficient

√
2r + 1 is for normality, the dilation parameter is x = 2−(θ−1)

and the translation parameter is y = ω̂2−(θ−1).

3. Approximation of function

Consider a function Λ ∈ L2[0, 1] then we can represent it as;

Λ(β) =
∞∑
ω=1

∞∑
r=0

aω,rΦω,r(β), (4)

whereΦω,r stands for the Taylor wavelets basis and aω,r = ⟨Λ(β),Φω,r⟩ are the unknown coefficients. Assume
the truncated series of the Λ(β):

Λ(β) ≃
2θ−1∑
ω=1

M−1∑
r=0

aω,rΦω,r(β) = ETΦ(β) = Λn(β), (5)

where E, Φ(β) are n × 1
(
n = 2θ−1M

)
matrices defined as;

E =
[
a1,0, a1,1, . . . , a1,M−1, a2,0, . . . , a2,M−1, . . . , a2θ−1,0, . . . , a2θ−1,M−1

]T
,

Φ(β) =
[
Φ1,0(β), Φ1,1(β), . . . , Φ1,M−1(β), Φ2,0(β), . . . , Φ2,M−1(β), . . . , Φ2θ−1,0(β), . . . , Φ2θ−1,M−1(β)]T.

(6)
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4. Convergence analysis

This section presents two main theorems related to the analysis of convergence and absolute error;

Theorem 1. Let Λ(β) ∈ L2(R) be a continuous function on the interval [0, 1) such that it is bounded by δ
i.e. |Λ(β)|< δ, for every β ∈ [0, 1). Then, the Taylor wavelet coefficients of Λ(β) in Eq. (5) are bounded as:

∣∣∣aω,r∣∣∣ < λ

2
θ−1

2

δ
2

2r + 1
,

where δ is a constant and λ is given by

λ =
√

2r + 1.

Proof. See [33]
Theorem 2. Let Λ(β) ∈ L2(R) be a continuous function on the interval [0, 1) and |Λ(β)|< δ for every

β ∈ [0, 1). Let Λ∗(β) =
2θ−1∑
ω=1

M−1∑
r=0

aω,rΦω,r(β) be the Taylor wavelet series expansions where aω,r, Φω,r(β) be the

Taylor wavelet coefficients and Taylor wavelet basis respectively. Then, the bound of the truncated error
e(β) is given as:

∥e(β)∥2=
∥∥∥Λ(β) −Λ∗(β)

∥∥∥ <  ∞∑
ω=2θ−1+1

M−1∑
r=0

a2
ω,r


1
2

+

 ∞∑
ω=1

∞∑
r=M

a2
ω,r


1
2

,

where,

aω,r =
λ

2
θ−1

2

δ
2

2r + 1
, λ =

√

2r + 1.

Proof. See [33]

5. Operational matrix of integration

Let us consider some initial Taylor wavelet basis to generate an integration operator matrix for θ = 1
and 2θ−1M = n = 6:

Φ1,0(β) = 1,

Φ1,1(β) =
√

3β,

Φ1,2(β) =
√

5β2,

Φ1,3(β) =
√

7β3,

Φ1,4(β) =
√

9β4,

Φ1,5(β) =
√

11β5.

Let Φ(β) =
[
Φ1,0(β), Φ1,1(β), Φ1,2(β), Φ1,3(β), Φ1,4(β), Φ1,5(β)

]
.
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Now integrate each basis element with respect to β from 0 to β and then express them as a linear combination
to obtain the following vector form expression;∫ β

0
Φ1,0(β)dβ =

[
0 1√

3
0 0 0 0

]
Φ6(β),∫ β

0
Φ1,1(β)dβ =

[
0 0

√

3
2
√

5
0 0 0

]
Φ6(β),∫ β

0
Φ1,2(β)dβ =

[
0 0 0

√

5
3
√

7
0 0

]
Φ6(β),∫ β

0
Φ1,3(β)dβ =

[
0 0 0 0

√

7
4
√

9
0

]
Φ6(β),∫ β

0
Φ1,4(β)dβ =

[
0 0 0 0 0

√

9
5
√

11

]
Φ6(β),∫ β

0
Φ1,5(β)dβ =

[
0 0 0 0 0 0

]
Φ6(β) +

√

11

6
√

13
Φ1,6(β).

Therefore, we obtain∫ β

0
Φ(β)dβ = P6×6Φ6(β) + Φ6(β), (7)

here P6×6 is the required operational matrix of integration and given as;

P6×6 =



0 1√
3

0 0 0 0

0 0
√

3
2
√

5
0 0 0

0 0 0
√

5
3
√

7
0 0

0 0 0 0
√

7
4
√

9
0

0 0 0 0 0
√

9
5
√

11
0 0 0 0 0 0


with

Φ6(β) =



0
0
0
0
0

√

11
6
√

13
Φ1,6(β)


.

The same process can be adapted to proceed to generate an operational matrix of integration for any order
n × n.

6. Methodology

This section presents the strategy of application of the proposed method for the HIV infection model of
CD4+T cells.
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Consider,

dX
dβ
= RTΦ(β) (8)

dY
dβ
= STΦ(β) (9)

dZ
dβ
= TTΦ(β) (10)

where,

RT =
[
rx1,0, . . . rx1,M−1, rx2,0, . . . rx2,M−1, rx2θ−1,0, . . . rx2θ−1,M−1

]
,

ST =
[
sy1,0, . . . sy1,M−1, sy2,0, . . . sy2,M−1, sy2θ−1,0, . . . sy2θ−1,M−1

]
,

TT =
[
tz1,0, . . . tz1,M−1, tz2,0, . . . tz2,M−1, tz2θ−1,0, . . . tz2θ−1,M−1

]
,

are the unknown coefficients vector and Φ(β) =
[
Φ1,0(β), . . .Φ1,M−1(β),Φ2,0(β), . . .Φ2,M−1(β),Φ2θ−1,0(β), . . .Φ2θ−1,M−1(β)

]
.

Integrate (8), (9), and (10) concerning ’ β ’ from ’ 0 ’ to ’ β ’, we get

X(β) = X(0) +
∫ β

0
RTΦ(β)dβ,

Y(β) = Y(0) +
∫ β

0
STΦ(β)dβ,

Z(β) = Z(0) +
∫ β

0
TTΦ(β)dβ,

Again, we can also define the initial condition with the help of the wavelets using Φ(β) in terms of known
vectors D, E, and F as;

X(β) = DTΦ(β) + RT[PΦ(β) + Φ(β)]
Y(β) = ETΦ(β) + ST[PΦ(β) + Φ(β)]
Z(β) = FTΦ(β) + TT[PΦ(β) + Φ(β)]

 . (11)

Put (8), (9), (10), and (11) in (1) to get,

RTΦ(β) − ρ + α
(
DTΦ(β) + RT[PΦ(β) + Φ(β)]

)
− κ

(
DTΦ(β) + RT[PΦ(β) + Φ(β)]

)(
1

Xmax

) (
Xmax −DTΦ(β) − RT[PΦ(β) + Φ(β)] − ETΦ(β) − ST[PΦ(β) + Φ(β)]

)
+η

(
FTΦ(β) + CT[PΦ(β) + Φ(β)]

) (
DTΦ(β) + RT[PΦ(β) + Φ(β)]

)
= 0

STΦ(β) + η
(
FTΦ(β) + TT[PΦ(β) + Φ(β)]

) (
DTΦ(β) + RT[PΦ(β) + Φ(β)]

)
+e

(
ETΦ(β) + ST[PΦ(β) + Φ(β)]

)
= 0.

TTΦ(β) − le
(
ETΦ(β) + ST[PΦ(β) + Φ(β)]

)
+ ζ

(
FTΦ(β) + TT[PΦ(β) + Φ(β)]

)
= 0·


(12)

Hence using the grid points βi =
2i−1
2M , i = 1, 2, . . . ,M collocate each equation in (12) to get a system of 3M

number of nonlinear algebraic equations as:

RTΦ(βi) − ρ + α
(
DTΦ(βi) + RT[PΦ(βi) + Φ(βi)]

)
− κ

(
DTΦ(βi) + RT[PΦ(βi) + Φ(βi)]

)(
1

Xmax

) (
Xmax −DTΦ(βi) − RT[PΦ(βi) + Φ(βi)] − ETΦ(βi) − ST[PΦ(βi) + Φ(βi)]

)
+η

(
FTΦ(βi) + CT[PΦ(βi) + Φ(βi)]

) (
DTΦ(βi) + RT[PΦ(βi) + Φ(βi)]

)
= 0

STΦ(βi) + η
(
FTΦ(βi) + TT[PΦ(βi) + Φ(βi)]

) (
DTΦ(βi) + RT[PΦ(βi) + Φ(βi)]

)
+e

(
ETΦ(βi) + ST[PΦ(βi) + Φ(βi)]

)
= 0.

TTΦ(βi) − le
(
ETΦ(βi) + ST[PΦ(βi) + Φ(βi)]

)
+ ζ

(
FTΦ(βi) + TT[PΦ(βi) + Φ(βi)]

)
= 0·


(13)
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This system of 3Mnumber of algebraic equations can be solved using the Newton-Raphson iterative method
for the unknown wavelet coefficients. On substituting these values of the Taylor wavelet coefficients into
(11), we obtain the Taylor wavelet solution (TWCM) of the given set of differential equations.

7. Application

Consider the mathematical model given in (1) under the physical conditions X(0) = 0.1,X(0) = 0 and
Z(0) = 0.1. We solve this problem under the parameter assumption ρ = 0.1, α = 0.02, e = 0.3, κ = 3, ζ =
2.4, η = 0.0027,Xmax = 1500, l = 9, and use the TWCM at multiple values ofM specifically,M = 6, 10 and
resulting functions are defined in terms of β as an approximate solution.

X6(β) =0.1 + 0.391849314980778β + 0.652578569714826β2 + 0.305352911248652β3

+ 1.112908367827407β4
− 0.574276380696896β5 + 0.600245500852454β6.

Y6(β) =0.26927109803740110−04β + 0.174859493819873−04β2
− 0.090018123930134 × 10−04β3

0.068532503343592 × 10−04β4
− 0.029607084090885 × 10−04β5 + 0.006836809445419 × 10−04β6.

Z6(β) =0.1 − 0.239930028033178β + 0.287163852666480β2
− 0.225793198953596β3

0.125350261037950β4
− 0.046066799809311β5 + 0.008375595715552β6.

Again, the Taylor wavelet approximate solution can be obtained forM = 10 as;

X10(β) =0.1 + 0.397952585375662β + 0.592857405152523β2 + 0.588631170910021β3 + 0.438833723264729β4+

0.258747731575785β5 + 0.134718839752166β6 + 0.044976485213545β7
− 0.031472139619475 × 10−4β8

− 0.001849090990152β9 + 0.005253753938138β10.

Y10(β) =0.269999971410632 × 10−04β + 0.172736714738806 × 10−04β2
− 0.084056242865232 × 10−04β3+

0.061466882585223 × 10−04β4
− 0.028374283467235 × 10−04β5 + 0.011526511266758 × 10−04β6

− 0.003888503584565 × 10−04β7 + 0.001144412865512 × 10−04β8
− 0.000251503853561 × 10−04β9

− 0.000037603138067 × 10−04β10.

Z10(β) =0.1 − 0.239999991710964β + 0.288036263222978β2
− 0.230411617444864β3 + 0.138230037967910β4

−

0.066303550094900β5 + 0.026408822903378β6
− 0.008863392956058β7 + 0.002442548239049β8

− 0.000495202499617β9 + 0.000054021311694β10.

Figure 1, 2, 3 shows the comparison of the approximate solution of TWCM with the analytical solution
graphically for X(β),Y(β) and Z(β), respectively while Figures 4, 5, 6 shows that the absolute error occurred
in TWCM is much closure to the x-axis than several other methods for X(β),Y(β) and Z(β), respectively.
Similarly, Table 1, 2, 3 are placed to compare the outcomes of the TWCM with several other methods
for X(β),Y(β) and Z(β), respectively while Tables 4, 5, 6 displays the TWCM absolute error statistics and
how they relate to the absolute errors of other known methods i.e Haar method, for X(β),Y(β) and Z(β),
respectively.



Vivek at al. / Filomat 38:8 (2024), 2949–2963 2957

Table 1: Taylor wavelet solution comparison with some available methods for X.

β
Taylor wavelet
atM = 10 Analytic solution Runge-Kutta

Haar wavelet
at J = 5 LADM [19] LADM-pade [19]

0.0 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.146359074139530 0.1463590954390 0.1463590819784 0.1464175305555 0.1463590767342 0.1463590766244
0.2 0.208808073744523 0.2088080635351 0.2088080845252 0.2088998615066 0.2088073298445 0.2088072731333
0.3 0.292929399742979 0.2929294113660 0.2929294121750 0.2930706066095 0.2929159946833 0.2929137862375
0.4 0.406240523590163 0.4062403736489 0.4062405377477 0.4064543676649 0.4061358315487 0.4061052625432
0.5 0.558863332475990 0.5588631040412 0.5588633525856 0.5591827244497 0.5583427110663 0.5581020599255
0.6 0.764423864020007 0.7644235436246 0.7644238855225 0.7648968622088 0.7624762220221 0.7611467713422
0.7 1.041260776119432 1.0412603282587 1.0412608078360 1.0419569015502 1.0352712974845 1.0295183448456
0.8 1.414046790541765 1.4140461662432 1.4140468253655 1.4149122238159 1.3980828630585 1.3773198590566
0.9 1.915961149951419 1.9159602830465 1.9159611979814 1.9166641235351 1.8778035035674 1.8129744009876
1.0 2.591594743811891 2.5915957524456 2.5915948088777 2.5922241210937 2.5078741510885 2.3291697610879

Figure 1: Approximate solution using Taylor wavelets and analytic solution comparison for X.

Table 2: Taylor wavelet solution comparison with some available methods for Y.

β
Taylor wavelet
atM = 10 Analytic solution Runge-Kutta

Haar wavelet
at J = 5 LADM [19] LADM-pade [19]

0.0 0 0 0 0 0 0
0.1 0.0286491821e-04 0.0000028649198 0.0000028649252 0.0000028674043 0.0000028649189 0.0000028649189
0.2 0.0603269708e-04 0.0000060327036 0.0000060327021 0.0000060368541 0.0000060327069 0.0000060327072
0.3 0.0947133322e-04 0.0000094713566 0.0000094713552 0.0000094773870 0.0000094714323 0.0000094714472
0.4 0.1315827925e-04 0.0000131583444 0.0000131583407 0.0000131664732 0.0000131589100 0.0000131591617
0.5 0.1707858565e-04 0.0000170787402 0.0000170787355 0.0000170891907 0.0000170813741 0.0000170841716
0.6 0.2122346176e-04 0.0000212237911 0.0000212237850 0.0000212367950 0.0000212329817 0.0000212683688
0.7 0.2558917453e-04 0.0000255898231 0.0000255898156 0.0000256056241 0.0000256161463 0.0000254183417
0.8 0.3017622375e-04 0.0000301774286 0.0000301774195 0.0000301963391 0.0000302427015 0.0000300691867
0.9 0.3498875105e-04 0.0000349908913 0.0000349908805 0.0000350132468 0.0000351358962 0.0000348647969
1.0 0.4003415622e-04 0.0000400378278 0.0000400378146 0.0000400630524 0.0000403332185 0.0000398736542
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Figure 2: Approximate solution using Taylor wavelets and analytic solution comparison for Y.

Table 3: Taylor wavelet solution comparison with some available methods for Z.

β
Taylor wavelet
atM = 10 Analytic solution Runge-Kutta

Haar wavelet
at J = 5 LADM [19] LADM-pade [19]

0.0 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.078663137358404 0.0786631825201 0.0786631763321 0.0786747964168 0.0786631771622 0.0786631770757
0.2 0.061879692890033 0.0618798440184 0.0618798433073 0.0618872437681 0.0618799530567 0.0618799602595
0.3 0.048678162621944 0.0486784909571 0.0486784889977 0.0486829421885 0.0486803130909 0.0486806266335
0.4 0.038294327888014 0.0382948815020 0.0382948878764 0.0382973184821 0.0383081804755 0.0383132488366
0.5 0.030127028569443 0.0301278673029 0.0301278739346 0.0301335302519 0.0301895642466 0.0302409705361
0.6 0.023703372572185 0.0237045441571 0.0237045501402 0.0239030930242 0.0239198160879 0.0243917434987
0.7 0.018651368339482 0.0186529155941 0.0186529209061 0.0193062210455 0.0192699954285 0.0445826889163
0.8 0.014678396597194 0.0146803591209 0.0146803637634 0.0142131736502 0.0162123434366 0.0099672189344
0.9 0.011554275444768 0.0115566903957 0.0115566944064 0.0115583240985 0.0149648655605 0.0069108403314
1.0 0.009097938938606 0.0091008452186 0.0091008450579 0.0093183517456 0.0160550223855 0.0033050764474

Figure 3: Approximate solution using Taylor wavelets and analytic solution comparison for Z.
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Table 4: Error variance in X along with variousM values.

β Analytic Solution
Taylor wavelet
atM = 6

Taylor wavelet
atM = 9

Haar wavelet
at J = 5

AE
atM = 6

AE
atM = 9

AE in Haar
solution

0.0 0.1 0.1 0.1 0.1 0 0 0
0.2 0.2088080635351 0.208551129733493 0.208808073744523 0.2088998615066 2.5693e-04 1.0209e-08 9.179714e-05
0.4 0.4062403736489 0.405763353116134 0.406240523590163 0.4064543676649 4.7702e-04 1.4994e-07 2.139940e-05
0.6 0.7644235436246 0.763576350110727 0.764423864020007 0.7648968622088 8.4719e-04 3.2040e-07 4.733185e-04
0.8 1.4140461662432 1.412489566772234 1.414046790541765 1.4149122238159 1.5566e-03 6.2430e-07 8.660575e-04
1.0 2.5915957524456 2.588658283927222 2.591594743811891 2.5922241210937 2.9375e-03 1.0086e-06 6.283686e-04

Figure 4: Absolute error comparison of TWCM with Haar wavelet, Runge-Kutta method, LADM method [19] and LADM-pade
method [19] for X.

Table 5: Error variance in Y along with variousM values.

β Analytic solution
Taylor wavelet
atM = 6

Taylor wavelet
atM = 9

Haar wavelet
at J = 5

AE
atM = 6

AE
atM = 9

AE in Haar
solution

0.0 0 0 0 0 0 0 0
0.2 0.0000060327036 0.06022906968e-04 0.0603269708e-04 0.0000060368541 9.7966e-09 6.5101e-12 4.150499e-09
0.4 0.0000131583444 0.13140405748e-04 0.1315827925e-04 0.0000131664732 1.7939e-08 6.5141e-11 8.128791e-09
0.6 0.0000212237911 0.21196670558e-04 0.2122346176e-04 0.0000212367950 2.7121e-08 3.2934e-10 1.300390e-08
0.8 0.0000301774286 0.30139916768e-04 0.3017622375e-04 0.0000301963391 3.7512e-08 1.2048e-09 1.891049e-08
1.0 0.0000400378278 0.39987469668e-04 0.4003415622e-04 0.0000400630524 5.0358e-08 3.6716e-09 2.522460e-08
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Figure 5: Absolute error comparison of TWCM with Haar wavelet, Runge-Kutta method, LADM method [19] and LADM-pade
method [19] for Y.

Table 6: Error variance in Z along with variousM values.

β Analytic solution
Taylor wavelet
atM = 6

Taylor wavelet
atM = 9

Haar wavelet
at J = 5

AE
atM = 6

AE
atM = 9

AE in Haar
Method

0.0 0.1 0.1 0.1 0.1 0 0 0
0.2 0.0618798440184 0.061880557988242 0.061879692890033 0.0618872437681 7.1397e-07 1.5113e-07 7.399749e-06
0.4 0.0382948815020 0.038294989572911 0.038294327888014 0.0382973184821 1.0807e-07 5.5361e-07 2.436980e-06
0.6 0.0237045441571 0.023703650437101 0.023703372572185 0.0239030930242 8.9372e-07 1.1716e-06 1.985488e-04
0.8 0.0146803591209 0.014678635538651 0.014678396597194 0.0142131736502 1.7236e-06 1.9625e-06 4.671854e-04
1.0 0.0091008452186 0.009099682623898 0.009097938938606 0.0093183517456 1.1626e-06 2.9063e-06 2.175065e-04
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Figure 6: Absolute error comparison of TWCM with Haar wavelet, Runge-Kutta method, LADM method [19] and LADM-pade
method [19] for Z.

8. Conclusion

In this study, we have presented and studied a new mathematical model representing the spreading
behavior of a very serious disease HIV infection. The model is numerically solved using a new wavelet
method-based analysis including some operations of MATLAB software. The outcomes of the method are
compared with several other existing methods under some specific values of the underlying parameters and
it is shown that the method works well to handle the given problem and outcomes are more accurate than
several other existing strategies of the literature. The suggested approach, which we refer to as TWCM, is
used for two distinct stages, the results are compared in tabulated form, and figures are provided to prove
less absolute error occurred in comparison with the precise answer than previous methods. Therefore
increasing the number of truncated terms will produce a more accurate solution and reduced absolute error
as well. Finally, we present some of the findings from our analysis:

1. The current method delivers greater precision than the exact solution.
2. This approach is straightforward for implementation within computer programming, and by simply

performing a little alteration to the present system, we can expand it to additional problems.
3. The proposed technique also happens to be relatively simple to put into practice, and the com-

putational findings demonstrate that it is fairly successful for computationally solving the above-
mentioned mathematical frameworks along with other systems of ordinary differential equations.

4. Taylor wavelet characteristics and their convergent analysis are clarified using theoretical explana-
tions.

5. Large operational matrix may require more operations and computation time.
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