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Enrichment and internalization in tricategories, the case of tensor
categories and alternative notion to intercategories
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Abstract. This paper emerged as a result of tackling the following three issues. Firstly, we would like
the well known embedding of bicategories into pseudo double categories to be monoidal, which it is not if
one uses the usual notion of a monoidal pseudo double category. Secondly, in [3] the question was raised:
which would be an alternative notion to intercategories of Grandis and Paré, so that monoids in Böhm’s
monoidal category (Dbl,⊗) of strict double categories and strict double functors with a Gray type monoidal
product be an example of it? We obtain and prove that precisely the monoidal structure of (Dbl,⊗) resolves
the first question. On the other hand, resolving the second question, we upgrade the category Dbl to a
tricategory DblPs and propose to consider internal categories in this tricategory. For this purpose we define
categories internal to tricategories (of the type of DblPs), which simultaneously serves our third motive.
Apart from monoids in (Dbl,⊗) - more importantly, weak pseudomonoids in a tricategory containing
(Dbl,⊗) as a sub 1-category - most of the examples of intercategories are also examples of this new gadget.
The ones that escape are duoidal categories and Gray categories, as their monoidal product induces a lax
double functor on the Cartesian product. What our third motive concerns, inspired by the tricategory and
(1 × 2)-category of tensor categories, we prove under mild conditions that categories enriched over certain
type of tricategories may be made into categories internal in them. We illustrate this occurrence for tensor
categories with respect to the ambient tricategory 2- Catwk of 2-categories, pseudofunctors, pseudonatural
transformations and modifications.

Contents

1 Introduction 2602

2 Monoidal double categories into which monoidal bicategories embed 2604

3 Tricategory of strict double categories and double pseudo functors 2611

4 The 2-category PsDbl embeds into our tricategory DblPs 2626

5 Tricategorical pullbacks and (co)products 2630

6 Categories internal in iconic tricategories 2632

2020 Mathematics Subject Classification. Primary 18N10; Secondary 18N20, 18B10
Keywords. double categories, bicategories, tricategories, enrichment, internalization, Gray monoidal product, 3-limits
Received: 01 April 2023; Revised: 06 September 2023; Accepted: 02 October 2023
Communicated by Dragan S. Djordjević
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1. Introduction

It is well-known that 2-categories embed in strict double categories and that bicategories embed in
pseudo double categories. However, it is not clear which of the definitions of a monoidal pseudo double
category existent in the literature would be suitable to have a monoidal version of the result, that monoidal
bicategories embed into monoidal pseudo double categories. This question we resolve in Subsection 2.2.
Namely, seeing a monoidal bicategory as a one-object tricategory, we consider the equivalent one-object
Gray 3-category (by the coherence of tricategories of [17]), which is nothing but a monoid in the monoidal
category Gray, i.e. a Gray monoid (see [8], [1, Lemma 4]). We then prove that Gray embeds as a monoidal
category in the monoidal category Dbl from [3] of strict double categories and strict double functors. For the
above-mentioned embedding we give an explicit description of the monoidal structure of Dbl (in [3] only
an explicit description of the structure of a monoid is given). Analogously as in [23], we introduce a cubical
double functor along the way. We also show why the other notions of monoidal double categories (monoids
in the category of strict double categories and strict double functors from [6], and pseudomonoids in the
2-category PsDbl of pseudo double categories, pseudo double functors and vertical transformations from
[30]) do not obey the embedding in question.

Then we turn to the following question of Böhm: if a monoid in her monoidal category Dbl could fit
some framework similar to intercategories of Grandis and Paré. Observe that neither of the two notions
would be more general than the other. While intercategories are categories internal in the 2-category LxDbl
of pseudo double categories, lax double functors and horizontal transformations, in the structure of Böhm’s
monoid in Dbl the relevant objects are strict double categories and morphisms double pseudo functors in the
sense of [31] (they are given by isomorphisms in both directions). By Strictification Theorem of [22, Section
7.5] every pseudo double category is equivalent to a strict double category, thus on the level of objects in the
ambient category basically nothing is changed. Though, going from lax double functors to double pseudo
functors, one tightens in one direction and weakens in the other.

In the search for a desired framework, we assume that the ambient category for internalization has
strict double categories for 0-cells and double pseudo functors for 1-cells. Then we define 2-cells among
double pseudo functors and we get that instead of an ambient 2-category, we indeed have a tricategory
structure, including modifications as 3-cells. This led us to propose an alternative notion for intercategories,
as categories internal in this tricategory, which we denote by DblPs. Given the extensiveness of the proof
that DblPs is a tricategory, some parts of the proof (which are listed in Subsection 3.6) we carried out in [13,
Section 4], which is the first part of a previous version of this paper.

Contrarily to LxDbl, the 1-cells of the 2-category PsDbl are particular cases of double pseudo functors.
Having in mind the above Strictification Theorem and adding only the trivial 3-cells to PsDbl, we also prove
that thus obtained tricategory PsDbl∗3 embeds in our tricategory DblPs. As a byproduct to this proof we
obtain a more general result: supposing that there is a connection ([5]) on 1v-components of strong vertical
transformations ([22, Section 7.4]), there is a bijection between strong vertical transformations and those
strong horizontal transformations whose 1h-cell components are 1h-companions of some 1v-cells. This we
prove in Corollary 4.3. (The abbreviations 1h and 1v stand for horizontal, respectively vertical, 1-cells.)

The general idea of considering categories internal in higher dimensional categories was present in the
literature, see for example [30]. In loc.cit a category internal in a tricategory is called a (1 × 2)-category.
Concretely, though, the notion of a category internal in a Gray category was introduced in [10]. For our
announced purpose we introduce a notion of a category internal in a tricategory V which is of a similar type
as DblPs. First of all, we introduce tricategorical pullbacks, which we call simply 3-pullbacks. The ambient
tricategory V for internalization needs to have 3-pullbacks, an underlying 1-category, and apart from the
interchange law, the associativity on the 2-cells holds only up to isomorphism, which makes it weaker than
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a Gray category. The latter two properties mean that we need to work with an iconic tricategory, see [32].
We then describe the structure of a category internal in DblPs, and, similarly to intercategories, we give a
geometric interpretation of it in the form of cubes. Moreover, we upgrade the monoidal category Dbl to
a 2-category Dbl2, and this one to an iconic tricategory Dbl3, and show how pseudomonoids in Dbl2 and
“weak pseudomonoids” in Dbl3, are categories internal in DblPs. The examples of intercategories treated in
[21] are also examples of categories internal in DblPs, except from duoidal categories and Gray categories,
whose compositions on the pullback induce lax (double) functors on the Cartesian product, rather than
pseudo ones.

As we mentioned above, bicategories (which are categories enriched over the 2-category Cat2 of cate-
gories) embed into double categories (which are categories internal in Cat2). We examine if the analogous
happens in one dimension higher: under which conditions a category enriched in a tricategory V is a cate-
gory internal in V. We have in mind the standard example of the bicategory of algebras and their bimodules,
and its well-known analogue in one dimension higher, the tricategory Tens of tensor categories, bimodule
categories over the latter, bimodule functors and bimodule natural transformations. In order to prove our
conjectured result, we first introduce the notions of tricategorical products and coproducts (which we call
simply 3-(co)products), and of a category enriched over an iconic tricategory with 3-products. Then we
show that Tens is a category enriched over the tricategory 2- Catwk, of 2-categories, pseudofunctors, weak
natural transformations and modifications. Moreover, we show that Tens is a part of the structure of a
category internal in 2- Catwk (of a certain (1 × 2)-category). This responds to [10, Example 2.14], where it
was conjectured that Tens is a category internal in the Gray 3-category 2CATnwk, which differs from 2- Catwk
in that its 1-cells are 2-functors, rather than pseudofunctors as in 2- Catwk. Motivated by this example, we
prove in Proposition 8.5 that under mild conditions categories enriched over iconic tricategories can be
made into categories internal in them. This generalizes to tricategories analogous results from [11] and [7],
studied among 1-categories. Since 2- Catwk embeds into DblPs, the (1 × 2)-category assigned to Tens is also
an example of our alternative notion to intercategories.

Let Bicat3 be the tricategory of bicategories, pseudofunctors, pseudonatural transformations and mod-
ifications. In [15] we used the construction of a category internal in an iconic tricategory from the present
article to create two internal categories in Bicat3: one is S of spans in a generic iconic tricategory V with
3-pullbacks, and the other isM of matrices in a generic iconic tricategory V with 3-products. (This means
that, among other data, we constructed a bicategory whose 0-cells are spans in V, and a bicategory whose
0-cells are matrices in V.) We used then S and M to deduce equivalence of the category of categories
internal in V and the category of categories enriched in V.

The composition of the paper is the following. In Section 2 we give a description of the monoidal
structure of Dbl of Böhm, we define cubical double functors and prove that Gray embeds into Dbl. Section
3 is dedicated to the construction of our tricategory DblPs. In Section 4 we prove that the tricategory
PsDbl∗3 embeds into DblPs and prove the bijection between vertical and horizontal strong transformations,
supposing the mentioned connection. In Section 5 we define tricategorical pullbacks and (co)products, and
in the next one we define categories internal in iconic tricategories with 3-pullbacks. In the subsequent
section we describe the structure of a category internal in DblPs, we show here that monoids in Böhm’s Dbl,
pseudomonoids in Dbl2 and weak pseudomonoids in Dbl3 fit this setting, and we present the announced
geometric interpretation on cubes. In Section 8 we define categories enriched over iconic tricategories with
3-products, we prove that categories enriched over certain type of iconic tricategories V are special cases of
categories internal in V, and we discuss examples in dimensions 2 and 1. In the last section we show the
enrichment and internal structures of Tens in 2- Catwk, illustrating the mentioned result. In the Appendix
the definition of a tricategory is recalled and discussed.

The reader is supposed to know double categories, distinct versions of double functors, transformations
and modifications. For reference we recommend [18]. For tricategories we recommend [17] and [25].
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2. Monoidal double categories into which monoidal bicategories embed

Although bicategories embed into pseudo double categories, this embedding is not monoidal, if one
takes for a definition of a monoidal double category any of the ones in [6] (a monoid in the category
of strict double categories and strict double functors) and in [30] (a pseudomonoid in the 2-category of
pseudo double categories, pseudo double functors and say vertical transformations). Namely, a monoidal
bicategory is a one-object tricategory, so its 0-cells have a product associative up to an equivalence. This is far
from what happens in the mentioned two definitions of a monoidal double category. Even if we consider
the triequivalence due to [17] of a monoidal bicategory with a one-object Gray-category, that is, a Gray
monoid, one does not have monoidal embeddings, as we will show. Nevertheless, a Gray monoid, which
is in fact a monoid in the monoidal category (Gray,⊗) of 2-categories, 2-functors with the monoidal product
due to Gray [23], can be seen as a monoid in the monoidal category (Dbl,⊗) of strict double categories and
strict double functors with the monoidal product constructed in [3, Section 4.3]. We will show in this section
that (Gray,⊗) embeds monoidally into (Dbl,⊗).

2.1. The monoidal structure in (Dbl,⊗)

The monoidal structure in (Dbl,⊗) is constructed in the analogous way as in [23]. For two double
categories A,B a double category JA,BK is defined in [3, Section 2.2] which induces a functor J−,−K :
Dblop

× Dbl −→ Dbl. Representability of the functor Dbl(A, JB,−K) : Dbl −→ Set is proved, which induces
a functor − ⊗ − : Dbl × Dbl −→ Dbl. For two double categories A,B we will give a full description of the
double categoryA ⊗ B. We will do this using the natural isomorphism

Dbl(A ⊗ B,C) � Dbl(A, JB,CK), (2.1)

that is, characterizing a double functor F : A −→ JB,CK for another double category C and reading off the
structure of the image double category F(A)(B), setting C = A ⊗ B.

Let us fix the notation in a double categoryD. Objects we denote by A,B, . . . , horizontal 1-cells we will
call for brevity 1h-cells and denote them by f , f ′, 1,F, . . . , vertical 1-cells we will call 1v-cells and denote
by u, v,U, . . . , and squares we will call just 2-cells and denote them by ω, ζ, . . . . In this section, we denote
the horizontal identity 1-cell by 1A, vertical identity 1-cell by 1A for an object A ∈ D, horizontal identity
2-cell on a 1v-cell u by Idu, and vertical identity 2-cell on a 1h-cell f by Id f (with subindices we denote those
identity 1- and 2-cells which come from the horizontal 2-category lying inD). The composition of 1h-cells
as well as the horizontal composition of 2-cells we will denote by ⊙ in this section, while the composition
of 1v-cells as well the vertical composition of 2-cells we will denote by juxtaposition.

We start by noticing that a strict double functor F : C −→ D is given by 1) the data: images on objects,
1h-, 1v- and 2-cells of C, and 2) rules (inD):

F(u′u) = F(u′)F(u), F(1A) = 1F(A),
F(ωζ) = F(ω)F(ζ), F(1 f ) = 1F( f ),
F(1 ⊙ f ) = F(1) ⊙ F( f ), F(ω ⊙ ζ) = F(ω) ⊙ F(ζ),
F(1A) = 1F(A), F(Idu) = IdF(u).
Having in mind the definition of a double category JA,BK from [3, Section 2.2], writing out the list of the

data and relations that determine a double functor F : A −→ JB,CK, one gets the following characterization
of it:

Proposition 2.1 A double functor F : A −→ JB,CK of double categories consists of the following:
1. double functors

(−,A) : B −→ C and (B,−) : A −→ C
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such that (−,A)|B = (B,−)|A = (B,A), for objects A ∈ A,B ∈ B,

2. given 1h-cells A F
−→ A′ and B

f
−→ B′ and 1v-cells A U

−→ Ã and B u
−→ B̃ there are 2-cells

(B,A) (B,A′)-(B,F)
(B′,A′)-( f ,A′)

(B,A) (B′,A)-( f ,A)
(B′,A′)-(B′,F)?

=

?

=( f ,F)

(B,A) (B,A′)-(B,F)

(B̃,A) (B̃,A′)-(B̃,F)?

(u,A)
?

(u,A′)(u,F)

(B,A) (B′,A)-( f ,A)

(B, Ã) (B′, Ã)-( f , Ã)?

(B,U)
?

(B′,U)( f ,U)

(B,A) (B,A)-=

(B, Ã)
?

(B,U)

(u,U)

(B̃, Ã) (B̃, Ã)-=
?

(u, Ã)
?
(B̃,U)

(B̃,A)
?

(u,A)

of which ( f ,F) is vertically invertible and (u,U) is horizontally invertible, which satisfy:

a) (11) (1B,F) = Id(B,F) and ( f , 1A) = Id( f ,A)

(21) (1B,F) = Id(B,F) and (u, 1A) = Id(u,A)

(12) (1B,U) = Id(B,U) and ( f , 1A) = Id( f ,A)

(22) (1B,U) = Id(B,U) and (u, 1A) = Id(u,A);

b) (11) ( f ′ ⊙ f ,F) = (B,A) (B,A′)-(B,F)
(B′,A′)-( f ,A′)

(B,A) (B′,A)-( f ,A)
(B′,A′)-(B′,F)

(B′′,A′)-( f ′,A′)?

=

?

=( f ,F)

( f ′,F)

(B′,A) (B′′,A)-( f ′,A)
(B′′,A′)-(B′′,F)?

=

?

=

and

( f ,F ′ ⊙ F) =

(B,A′) (B,A′′)-(B,F′)
(B′,A′′)-( f ,A′′)

(B,A) (B,A′)-(B,F)
(B′,A′)-( f ,A′)

(B′,A′′)-(B′,F ′)?

=

?

=( f ,F ′)

(B,A) (B′,A)-( f ,A)
(B′,A′)-(B′,F)?

=

?

=( f ,F)
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(21) (u′u,F) = (u′,F)(u,F) and (u,F ′ ⊙ F) = (u,F ′) ⊙ (u,F)

(12) ( f ′ ⊙ f ,U) = ( f ′,U) ⊙ ( f ,U) and ( f ,U′U) = ( f ,U′)( f ,U)

(22)

(u,U′U) =

(B,A) (B,A)-=

(B, Ã)
?

(B,U)

(u,U)

(B̃, Ã) (B̃, Ã)-=
?

(u, Ã)
?
(B̃,U)

(B̃,A)
?

(u,A)

(B, Ã) -=

?

(B,U′)

(B, Ã′)

(B̃, Ã′)
?

(u, Ã′)

-= (B̃, Ã′)
?
(B̃,U′)(u,U′)

and

(u′u,U) =

(B,A) (B,A)-=

(B, Ã)
?

(B,U)

(u,U)

(B̃, Ã) -=
?

(u, Ã)

(B̃, Ã)
?
(B̃,U)

(B̃,A)
?

(u,A)

(B̃,A)-=

?

(u′,A)

(B̃′,A)

(B̃′, Ã)
?
(B̃′,U)

-=(B̃′, Ã)
?

(U′, Ã) (u′,U)

c) (11)

(B,A) (B,A′)-(B,F)
(B′,A′)-( f ,A′)

(B,A) (B′,A)-( f ,A)
(B′,A′)-(B′,F)?

=

?

=( f ,F)

(v,F)

(B̃,A) (B̃′,A)-(1,A)
(B̃′,A′)-(B̃′,F)?

(u,A)
?

(v,A)
?

(v,A′)(ω,A)

=

(B,A) (B,A′)-(B,F)
(B′,A′)-( f ,A′)

(B̃,A) (B̃,A′)-(B̃,F)
(B̃′,A′)-(1,A′)?

(u,A)
?

(u,A′)
?

(v,A′)(u,F) (ω,A′)

(B̃,A) (B̃′,A)-(1,A)
(B̃,A′)-(B̃′,F)?

=

?

=(1,F)

and

(B,A) (B,A′)-(B,F)
(B′,A′)-( f ,A′)

(B,A) (B′,A)-( f ,A)
(B′,A′)-(B′,F)?

=

?

=( f ,F)

(B′, ζ)

(B, Ã) (B′, Ã)-( f , Ã)
(B′, Ã′)-(B′,G)?

(B,U)
?

(B′,U)
?

(B′,V)( f ,U)

=

(B,A) (B,A′)-(B,F)
(B′,A′)-( f ,A′)

(B, Ã) (B, Ã′)-(B,G)
(B′, Ã′)-( f , Ã′)?

(B,U)
?

(B,V)
?

(B′,V)(B, ζ) (F,V)

(B, Ã) (B′, Ã)-( f , Ã)
(B′, Ã′)-(B′,G)?

=

?

=( f ,G)
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(22)

(B,A) (B,A)-= -( f ,A)

(B, Ã)
?

(B,U)

(u,U)

(B̃, Ã) -=
?

(u, Ã)

(B̃, Ã)
?

(B̃,U)

(B̃,A)
?

(u,A) (ω,A)

-(1,A)

(B̃′, Ã)
?
(B̃′,U)

(B′,A)

(B̃′,A)
?

(v,A)

-(1, Ã)

(1,U)

=

(B,A) (B′,A)-( f ,A) -=

(B, Ã)
?

(B,U)

(v,U)

(B̃, Ã) -(1, Ã)?
(u, Ã)

(B̃′, Ã)
?
(v, Ã)

(B′, Ã)
?

(B′,U)( f ,U)

-( f , Ã)

(B̃′, Ã)
?
(B̃′,U)

(B′,A)

(B̃′,A)
?

(v,A)

-
=

(ω, Ã)

and
(B,A) (B,A)-= -(B,F)

(B, Ã)
?

(B,U)

(u,U)

(B̃, Ã) -=
?

(u, Ã)

(B̃, Ã)
?

(B̃,U)

(B̃,A)
?

(u,A) (u,F)

-(B̃,F)

(B̃, Ã′)
?
(B̃,V)

(B,A′)

(B̃,A′)
?

(u,A′)

-(B̃,G)

(B̃, ζ)

=

(B,A) (B,A′)-(B,F) -=

(B, Ã)
?

(B,U)

(u,V)

(B̃, Ã) -(B̃,G)?
(u, Ã)

(B̃, Ã′)
?
(u, Ã′)

(B, Ã′)
?

(B,V)(B, ζ)

-(B,G)

(B̃, Ã′)
?
(B̃,V)

(B,A′)

(B̃,A′)
?

(u,A′)

-
=

(u,G)

for any 2-cells

B B′-f

B̃ B̃′-
1

?
u

?
vω and

A A′-F

Ã Ã′.-
G

?
U

?
Vζ (2.2)

in B, respectivelyA.

In analogy to [17, Section 4.2] we set:

Definition 2.2 A cubical double functor H : A × B −→ C consists of:

1. two families of double functors

(−,A) : B −→ C and (B,−) : A −→ C

such that H(A,−) = (−,A),H(−,B) = (B,−) and (−,A)|B = (B,−)|A = (B,A), for objects A ∈ A,B ∈ B, and

2. four families of 2-cells ( f ,F), (u,F), ( f ,U), (u,U) in C for 1h-cells F of A and f of B, and 1v-cells U of A and
u of B,

satisfying the conditions listed in part 2. of Proposition 2.1.

We may now describe a double categoryA⊗B by reading off the structure of the image double category
F(A)(B) for any double functor F : A −→ JB,A⊗BK in the right hand-side of (2.1) using the characterization
of a double functor before Proposition 2.1. With the notation F(x)(y) = (y, x) =: x ⊗ y for any 0-, 1h-, 1v- or
2-cells x ofA and y of Bwe get to the following:

Proposition 2.3 By the construction in [3, Section 2]A ⊗B is the double category generated by the following data:
ŏbjects: A ⊗ B for objects A ∈ A,B ∈ B;
1̆h-cells: A ⊗ f ,F ⊗ B modulo the following relations:

(A ⊗ f ′) ⊙ (A ⊗ f ) = A ⊗ ( f ′ ⊙ f ), (F ′ ⊗ B) ⊙ (F ⊗ B) = (F ′ ⊙ F) ⊗ B, A ⊗ 1B = 1A⊗B = 1A ⊗ B
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where f , f ′ are 1h-cells of B and F,F ′ 1h-cells ofA;
1̆v-cells: A ⊗ u,U ⊗ B obeying the following rules:

(A ⊗ u′)(A ⊗ u) = A ⊗ u′u, (U′ ⊗ B)(U ⊗ B) = U′U ⊗ B, A ⊗ 1B = 1A⊗B = 1A
⊗ B

where u,u′ are 1v-cells of B and U,U′ 1v-cells ofA;
2̆-cells: A ⊗ ω, ζ ⊗ B:

A ⊗ B A ⊗ B′-A ⊗ f

A ⊗ B̃ A′ ⊗ B̃′-A ⊗ 1?
A ⊗ u

?
A ⊗ vA ⊗ ω

A ⊗ B A′ ⊗ B-F ⊗ B

Ã ⊗ B Ã′ ⊗ B-G ⊗ B?
U ⊗ B

?
V ⊗ Bζ ⊗ B

whereω and ζ are as in (2.2), and four types of 2-cells coming from the 2-cells of point 2. in Proposition 2.1: vertically
invertible globular 2-cell F ⊗ f : (A′ ⊗ f ) ⊙ (F ⊗ B) ⇒ (F ⊗ B′) ⊙ (A ⊗ f ), horizontally invertible globular 2-cell
U ⊗ u : (Ã ⊗ u)(U ⊗ B) ⇒ (U ⊗ B̃)(A ⊗ u), 2-cells F ⊗ u and U ⊗ f subject to the rules induced by a), b) and c) of
point 2. in Proposition 2.1 and the following ones:

A ⊗ (ω′ ⊙ ω) = (A ⊗ ω′) ⊙ (A ⊗ ω), (ζ′ ⊙ ζ) ⊗ B = (ζ′ ⊗ B) ⊙ (ζ ⊗ B),

A ⊗ (ω′ω) = (A ⊗ ω′)(A ⊗ ω), (ζ′ζ) ⊗ B = (ζ′ ⊗ B)(ζ ⊗ B),

A ⊗ Id f = IdA⊗ f , IdF ⊗B = IdF⊗B, A ⊗ Id f = IdA⊗ f , IdF
⊗B = IdF⊗B .

2.2. A monoidal embedding of (Gray,⊗) into (Dbl,⊗)
Let E : (Gray,⊗) ↪→ (Dbl,⊗) denote the embedding functor which to a 2-category assigns a strict double

category whose all vertical 1-cells are identities and whose 2-cells are vertically globular cells. Then E is a
left adjoint to the functor that to a strict double category assigns its underlying horizontal 2-category. Let
us denote by C = (Gray,⊗) and byD = Im (E) ⊆ (Dbl,⊗), the image category by E, then the corestriction of
E toD is the identity functor

F : C −→ D. (2.3)

In order to examine the monoidality of F let us first consider an assignment t : F(A⊗B) −→ F(A) ∗ F(B)
for two 2-categories A and B, where ∗ denotes some monoidal product in the category of strict double
categories which a priori could be the Cartesian one or the one from the monoidal category (Dbl,⊗).

Observe that given 1-cells f : A −→ A′ inA and 1 : B −→ B′ in B the composition 1-cells ( f ⊗ B′)⊙ (A⊗ 1)
and (A′ ⊗ 1) ⊙ ( f ⊗ B) inA⊗B are not equal both in (Gray,⊗) and in (Dbl,⊗). This means that their images
F
(
( f ⊗ B′) ⊙ (A ⊗ 1)

)
and F

(
(A′ ⊗ 1) ⊙ ( f ⊗ B)

)
are different as 1h-cells of the double category F(A ⊗ B).

Now if we map these two images by t into the Cartesian product F(A) × F(B), we will get in both cases
the 1h-cell ( f , 1). Then t with the codomain in the Cartesian product is a bad candidate for the monoidal
structure of the identity functor F. This shows that the Cartesian monoidal product on the category of strict
double categories is not a good choice for a monoidal structure if one wants to embed the Gray category of
2-categories into the latter category. In contrast, if the codomain of t is the monoidal product of (Dbl,⊗), we
see that t is identity on these two 1-cells.

Similar considerations and comparing the monoidal product from [23, Theorem I.4.9] in (Gray,⊗) to
the one after Definition 2.2 above in (Dbl,⊗), show that for the candidate for (the one part of) a monoidal
structure on the identity functor F we may take the identity s = Id : F(A ⊗ B) −→ F(A) ⊗ F(B), and that it
is indeed a strict double functor of strict double categories. For the other part of a monoidal structure on
F, namely s0 : F(∗2) −→ ∗Dbl, where ∗2 is the trivial 2-category with a single object, and similarly ∗Dbl is the
trivial double category, it is clear that we again may take identity. The hexagonal and two square relations
for the monoidality of the functor (F, s, s0) come down to checking if

F(α1) = α2, F(λ1) = λ2, and F(ρ1) = ρ2
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where the monoidal constraints with indexes 1 are those from C and those with indexes 2 fromD.

Given any monoidal closed category (M,⊗, I, α, λ, ρ) in [3, Section 4.1] the author constructs a mate

aC
A,B : [A ⊗ B,C] −→ [A, [B,C]] (2.4)

for α under the adjunctions (−⊗X, [X,−]), for X taking to be A,B and A⊗ B, and then she constructs a mate
of a:

lCA,B :
(
[A,B]

[εC
A,1]
→ [[C,A] ⊗ C,B] aB

→ [[C,A], [C,B]]
)

(2.5)

where ε is the counit of the adjunction. By the mate correspondence one gets:

aC
A,B :
(
[A ⊗ B,C]

lBA⊗B,C
→ [[B,A ⊗ B], [B,C]]

[ηB
A,1]
→ [A, [B,C]]

)
(2.6)

where η is the unit of the adjunction. As above for the monoidal constraints, let us write li, ai, εi and ηi with
i = 1, 2 for the corresponding 2-functors in C (with i = 1), respectively double functors in D (with i = 2).
Comparing the description of l1 from [3, Section 4.7], obtained as indicated above: α1 determines a1, which
in turn determines l1 by (2.5), to the construction of l2 in [3, Section 2.4], on one hand, and the well-known
2-category [A,B] = Fun(A,B) of 2-functors between 2-categoriesA andB, pseudo natural transformations
and modifications (see e.g. [21, Section 5.1], [2]) to the definition of the double category JA,BK from [3,
Section 2.2] for double categoriesA,B, on the other hand, one immediately obtains:

Lemma 2.4 For two 2-categoriesA and B, functor F from (2.3) and l1 and l2 as above, it is:

• F(l1) = l2,

• F([A,B]) = JF(A),F(B)K.

Because of the extent of the definitions and the detailed proofs we will omit them, we only record that
the counits of the adjunctions εi, i = 1, 2 are basically given as evaluations and it is F(ε1) = ε2. The counits
ηi, i = 1, 2 are defined in the natural way and it is also clear that F(η1) = η2. Now by the above Lemma and
(2.6) we get: F(a1) = a2. Then from the next Lemma we get that F(α1) = α2:

Lemma 2.5 Suppose that there is an embedding functor F : C −→ D between monoidal closed categories which
fulfills:

a) F(X) ⊗ F(Y) = F(X ⊗ Y) for objects X,Y ∈ C,

b) F([X,Y]) = [F(X),F(Y)],

c) F(aC) = aD, where the respective a’s are given through (2.4),

then it is F(αC) = αD, being α’s the respective associativity constraints.

Proof. By the mate construction in (2.4) we have a commuting diagram:

C(A ⊗ (B ⊗ C),D) C(A, [B ⊗ C,D])-�

C((A ⊗ B) ⊗ C,D) C(A, [B, [C,D]])��
?

C(αC, id)
?

C(id, aC)(1)

Applying F to it, by the assumptions a) and b) we obtain a commuting diagram:

D(F(A) ⊗ (F(B) ⊗ F(C)),F(D)) D(F(A), [F(B) ⊗ F(C),F(D)])-�

D((F(A) ⊗ F(B)) ⊗ F(C),F(D)) D(F(A), [F(B), [F(C),F(D)]])� �?

D(F(αC), id)
?

D(id,F(aC))(2)

Now by the assumption c) and the mate construction in (2.4) it follows F(αC) = αD.
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So far we have proved that for the categories C and D as in (2.3) we have F(αC) = αD. For the unity
constraints ρi, λi, i = 1, 2 in the cases of both categories (see Sections 3.3 and 4.7 of [3]) it is:

ρA
i = ε

1i
i,A ◦ (ci ⊗ id1i ) and λA

i = ε
A
i,A ◦ (1A ⊗ idA)

where ci : A −→ [1i,A] is the canonical isomorphism and 1A : 1i −→ [A,A] the 2-functor (pseudofunctor)
sending the single object of the terminal 2-category 11 (double category 12) to the identity 2-functor (pseud-
ofunctor) A −→ A (here we have used the same notation for objects A and inner home objects both in C and
in D). Then it is clear that also F(λ1) = λ2 and F(ρ1) = ρ2, which finishes the proof that the functor F : C
−→ D is a monoidal embedding.

Proposition 2.6 The category (Gray,⊗) monoidally embeds into (Dbl,⊗), where the respective monoidal structures
are those from [23] and [3]. Consequently, a monoid in (Gray,⊗) is a monoid in (Dbl,⊗), and a monoidal bicategory
can be seen as a monoidal double category with respect to Böhm’s tensor product.

2.3. A monoid in (Dbl,⊗)
In [3, Section 4.3] a complete list of data and conditions defining the structure of a monoidA in (Dbl,⊗)

is given. As a part of this structure we have the following occurrence. As a monoid in (Dbl,⊗), we have
that A is equipped with a strict double functor m : A ⊗A −→ A. Since in the monoidal product A ⊗A
horizontal and vertical 1-cells of the type ( f ⊗ 1)(1 ⊗ 1) and (1 ⊗ 1)( f ⊗ 1) are not equal (here juxtaposition
denotes the corresponding composition of the 1-cells), one can fix a choice for how to define an image 1-cell
f ⊛ 1 by m (either m

(
( f ⊗ 1)(1⊗ 1)

)
or m
(
(1⊗ 1)( f ⊗ 1)

)
). Any of the two choices yields a double pseudo functor

from the Cartesian product double category

⊛ : A ×A −→ A. (2.7)

Let us see this. If we take two pairs of horizontal 1-cells (h, k), (h′, k′) in A×A, for the images under ⊛, fixing
the second choice above, we get (h′h) ⊛ (k′k) = m

(
(1 ⊗ k′k)(h′h ⊗ 1)

)
= m(1 ⊗ k′)m(1 ⊗ k)m(h′ ⊗ 1)m(h ⊗ 1),

whereas (h′ ⊛ k′)(h⊛ k) = m
(
(1⊗ k′)(h′ ⊗ 1)

)
m
(
(1⊗ k)(h⊗ 1)

)
= m(1⊗ k′)m(h′ ⊗ 1)m(1⊗ k)m(h⊗ 1). So, the two

images differ in the flip on the middle factors. The analogous situation happens on the vertical level, thus
the functor ⊛ preserves both vertical and horizontal 1-cells only up to an isomorphism 2-cell. This makes
it a double pseudo functor due to [31, Definition 6.1].

As outlined at the end of [3, Section 4.3], monoids in (the non-Cartesian monoidal category) (Dbl,⊗) are
monoids in the Cartesian monoidal category (Dbl,⊛) of strict double categories and double pseudo functors
(in the sense of [31]).

2.4. Monoidal double categories as intercategories and beyond
A monoidal double category in [30] is a pseudomonoid in the 2-category PsDbl of pseudo double

categories, pseudo double functors and vertical transformations, seen as a monoidal 2-category with the
Cartesian product. As such it is a particular case of an intercategory [19].

An intercategory is a pseudocategory (i.e. weakly internal category) in the 2-category LxDbl of pseudo
double categories, lax double functors and horizontal transformations. It consists of pseudodouble cate-
goriesD0 andD1 and pseudo double functors S,T : D1 −→ D0,U : D0 −→ D1,M : D1 ×D0 D1 −→ D1 (where
S and T are strict) satisfying the corresponding properties. One may denote this structure formally by

D1 ×D0 D1
−→
−→
−→ D1

−→
←−
−→ D0

whereD1 ×D0 D1 is a certain 2-pullback and the additional two arrowsD1 ×D0 D1 −→ D1 stand for the two
projections. When D0 is the trivial double category 1 (the terminal object in LxDbl, consisting of a single
object *), settingD1 = D one has thatD ×D is the Cartesian product of pseudo double categories.
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As a pseudomonoid in PsDbl, a monoidal double category of Shulman consists of a pseudo double
category D and pseudo double functors M : D ×D −→ D and U : 1 −→ D which satisfy properties that
makeD precisely an intercategory

D ×D −→−→−→ D
−→
←−
−→ 1,

as explained in [21, Section 3.1].

Nevertheless, if one would try to make a monoid in (Dbl,⊗), which is a monoid in (Dbl,⊛), into
an intercategory, one would need a lax double functor on the Cartesian product D × D (the pullback).
However, as we showed in the last subsection, on the Cartesian product one has a double pseudo functor ⊛.
So, as observed at the end of [3, Section 4.3], there seems to be no easy way to regard a monoid in (Dbl,⊗)
as a suitably degenerated intercategory. Motivated by this and Proposition 2.6, we want now to upgrade
the Cartesian monoidal category (Dbl,⊛) from the end of Subsection 2.3 to a 2-category, so to obtain an
intercategory-type notion which would include monoidal double categories due to Böhm.

In the next section we introduce 2-cells and “unfortunately” rather than a 2-category we will obtain a
tricategory of strict double categories whose 1-cells are double pseudo functors of Shulman. Since 1-cells
of the 2-category LxDbl (considered by Grandis and Paré to define intercategories) are lax double functors
(they are lax in one and strict in the other direction), and our 1-cells are double pseudo functors, that is, they
are given by isomorphisms in both directions, we can not generalize intercategories this way, rather, we will
propose an alternative notion to intercategories which will include most of the examples of intercategories
treated in [21], but not duoidal categories, as they induce lax functors on Cartesian product, rather than
pseudo ones.

3. Tricategory of strict double categories and double pseudo functors

For the notion of a tricategory we refer the reader to the first part of the Appendix. Let us denote the
tricategory from the title of this section by DblPs. As we are going to use double pseudo functors of [31],
which preserve compositions of 1-cells and identity 1-cells in both horizontal and vertical direction up to an
isomorphism, we have to introduce accordingly horizontal and vertical transformations. A pair consisting
of a horizontal and a vertical pseudonatural transformation, which we define next, will be a part of the
data constituting a 2-cell of the tricategory DblPs. Note that while PsDbl usually denotes a category or
a 2-category of pseudo double categories and pseudo double functors, that is, in which 0- and 1-cells are
weakened, in the notation DblPs we wish to stress that both 1- and 2-cells are weakened in both directions
so to deal with double pseudo functors. Because of the extensiveness, in this section we only spell out the
definitions and the structure of a tricategory for DblPs. The easier checks are left to the reader, while the
detailed proofs that require more involved computations are carried out in [13].

3.1. Towards the 2-cells
For the structure of a double pseudo functor we use the same notation as in [31, Definition 6.1] with

the only difference that 0-cells we denote by A,B... and 1v-cells by u, v.... To simplify the notation, we will
denote by juxtaposition the compositions of both 1h- and 1v-cells, from the notation of the 1-cells it will
be clear which kind of 1-cells and therefore composition is meant. Let A,B,C be strict double categories
throughout.

Definition 3.1 A horizontal pseudonatural transformation between double pseudo functors F,G : A −→ B
consists of the following:

• for every 0-cell A inA a 1h-cell α(A) : F(A) −→ G(A) in B,

• for every 1v-cell u : A −→ A′ inA a 2-cell in B:

F(A) G(A)-α(A)

F(A′) G(A′)-α(A′)?
F(u)

?
G(u)αu
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• for every 1h-cell f : A −→ B inA there is a 2-cell in B:

F(A) F(B)-F( f )
G(B)-α(B)

F(A) G(A)-α(A)
G(A)-G( f )?

=
?
=δα, f

so that the following are satisfied:

1. pseudonaturality of 2-cells: for every 2-cell inA A B-f

A′ B′-
1

?
u

?
va

the following identity in B must hold:

F(A) F(B)-F( f )
G(B)-α(B)

F(A′) F(B′)-F(1)
G(B′)-α(B′)?

F(u)
?

F(v)
?

G(v)F(a) αv

F(A′) G(A′)-α(A′)
G(B′)-G(1)?

=

?

=δα,1

=

F(A) F(B)-F( f )
G(B)-α(B)

F(A) G(A)-α(A)
G(B)-G( f )?

=

?

=δα, f

G(a)

F(A′) G(A′)-α(A′)
G(B′)-G(1)?

F(u)
?

G(u)
?

G(v)αu

2. vertical functoriality: for any composable 1v-cells u and v inA:

F(A) F(A)-= -α(A)

F(A′)
?

F(u) Fvu

F(A′′) F(A′′)-=
?

F(v)
?

F(vu) αvu

G(A)

G(A′′)
?

G(vu)

-α(A′′)

=

F(A) G(A)-α(A) -=

F(A′)
?

F(u)

Gvu

F(A′′) -α(A′′)?

F(v)

G(A′′)
?

G(v)

G(A′)
?

G(u)αu

-α(A′)

G(A)

G(A′′)
?

G(vu)

-
=

αv

and

F(A) F(A)-= G(A)-α(A)

?

F(idA)

F(A) F(A)-= G(A)-α(A)?

=

?

G(idA)FA αidA =

F(A) G(A)-α(A)
G(A)-=

?

=

F(A) G(A)-α(A)
G(A)-=?

=

?

G(idA)Idα(A)
GA
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3. horizontal functoriality for δα,−: for any composable 1h-cells f and 1 inA the 2-cell δα,1 f is given by:

F(A) F(C)-F(1 f )
G(C)-α(C)

F(A) G(A)-α(A)
G(C)-G(1 f )?

=
?
=δα,1 f

=

F(A) F(C)-F(1 f )

F(A) F(B)-F( f )
F(C)-F(1)

G(C)-α(C)?

=

?

=F1 f

δα,1

F(A) F(B)-F( f )
G(B)-α(B)

G(C)-G(1)?

=

?

=

F(A) G(A)-α(A)
G(B)-G( f )

G(C)-G(1)?

=

?

=δα, f

G−1
1 f

G(A) G(C)-G(1 f )?

=

?

=

and unit:
F(A) F(A)-=

?
=

?
=

F(A) F(A)-F(idA)

(FA)−1

G(A)-α(A)

F(A) G(A)-α(A)
G(A)-G(idA)?

=
?
=δα,idA

GA
?

=
?
=

G(A) G(A)-=

= F(A) G(A)-α(A)

F(A) G(A)-
α(A)

?
=

?
=Idα(A)

Remark 3.2 Recall horizontal transformations from [20, Section 2.2] and their version when R = S =
Id,A = B,C = D, which constitute the 2-cells of the 2-category LxDbl from [19]. Considering them as
acting between pseudo double functors of strict double categories, one has that they are particular cases
of our horizontal pseudonatural transformations so that the 2-cells δα, f and F1 f ,FA are identities. Similarly,
vertical transformations from [30] and [16] are particular cases of the vertical analogon of Definition 3.1.

Remark 3.3 Our above definition generalizes also horizontal pseudotransformations from [3, Section 2.2]
to the case of double pseudo functors instead of strict double functors. In [3, Section 2.2] horizontal pseu-
dotransformations appear as 1h-cells of the double category JA,BK defined therein, which we mentioned
in Subsection 2.1. On the other hand, our definition of horizontal pseudotransformations differs from
strong horizontal transformations from [22, Section 7.4] in that therein the authors work with pseudo double
categories (whereas we work here with strict ones), and they work with double functors which are lax
in one direction and strict in the other, whereas we work with double functors which are pseudo in both
directions.

The following results are straightforwardly proved:

Lemma 3.4 For a double pseudofunctor H : B −→ C and a horizontal pseudonatural transformation α : F −→ G of
double pseudofunctors F,G : A −→ B, H(α) is a horizontal pseudonatural transformation with (H(α))u = H(αu) and
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δH(α), f satisfying:

HF(A) HG(B)-H(α(B)F( f ))

HF(A) HF(B)-HF( f )
HG(B)-H(α(B))?

=

?

=Hα(B),F( f )

HF(A) HG(A)-H(α(A))
HG(B)-HG( f )?

=

?

=δH(α), f

=
?

=

?

=

HF(A) -=

HF(A) -=

HF(A) (HG(B))−1

HG(B)-=

HG(B)-=

HF(A) HG(B)-H(α(B)F( f ))

HF(A) HG(B)-
H
(
G( f )α(A)

)
?

H(id)
?

H(id)H(δα, f )

HG( f ),α(A)

HF(A) HG(A)-H(α(A))
HG(B).-HG( f )?

=

?

=

Lemma 3.5 Horizontal composition of two horizontal pseudonatural transformations α1 : F ⇒ G : A −→ B and
β1 : F ′ ⇒ G′ : B −→ C, denoted by β1 ◦ α1, is well-given by:

• for every 0-cell A inA a 1h-cell in C:

(β1 ◦ α1)(A) =
(
F ′F(A)

F ′(α1(A))
−→ F ′G(A)

β1(G(A))
−→ G′G(A)

)
,

• for every 1v-cell u : A −→ A′ inA a 2-cell in C:

(β1 ◦ α1)u =

F ′F(A) F ′G(A)-F ′(α1(A))
G′G(A)-β1(G(A))

F ′F(A′) F ′G(A′)-F ′(α1(A′))
G′G(A′)-β1(G(A′))?

F ′F(u)
?

F ′G(u)
?

G′G(u)F ′((α1)u) (β1)G(u)

• for every 1h-cell f : A −→ B inA a 2-cell in C:

δβ1◦α1, f = F ′F(A) F ′F(B)-F ′F( f )
F ′G(B)-F ′(α1(B))

F ′F(A) F ′G(A)-F ′(α1(A))
F ′G(B)-F ′G( f )

G′G(B)-β1(G(B))?

=

?

=δF ′(α1), f

δβ1,G( f )

F ′G(A) G′G(A)-β1(G(A))
G′G(B)-G′G( f )?

=

?

=

where δF ′(α1), f is from Lemma 3.4.

Vertical pseudonatural transformations between double pseudo functors F,G : A −→ B are defined in an
analogous way, consisting of a 1v-cell α(A) : F(A) −→ G(A) in B for every 0-cell A in A, for every 1h-cell
f : A −→ B in A a 2-cell on the left hand-side below and for every 1v-cell u : A −→ A′ in A a 2-cell on the
right hand-side below, both in B:

F(A) F(B)-F( f )

G(A) G(B)-G( f )?
α(A)

?
α(B)

α f

F(A) F(A)-=

F(A′)
?

F(u)

G(A′) G(A′)-=
?

α(A′)
?
G(u)

G(A)
?
α(A)

δα,u



B. Femić / Filomat 38:8 (2024), 2601–2660 2615

Observe that we use the same notation for the 2-cells α• and δα,• both for a horizontal and a vertical
pseudonatural transformation α, the difference is indicated by the notation for the respective 1-cell, recall
that horizontal ones are denoted by f , 1.. and vertical ones by u, v....

For vertical pseudonatural transformations results analogous to Lemma 3.4 and Lemma 3.5 hold, the
analogon of the latter one we state here in order to fix the structures that we use:

Lemma 3.6 Horizontal composition of two vertical pseudonatural transformations α0 : F ⇒ G : A −→ B and
β0 : F ′ ⇒ G′ : B −→ C, denoted by β0 ◦ α0, is well-given by:

• for every 0-cell A in A a 1v-cell on the left below, and for every 1h-cell f : A −→ B in A a 2-cell on the right
below, both in C:

(β0 ◦ α0)(A) =

F ′F(A)

F ′G(A)
?

F ′(α0(A))

G′G(A)
?

β0(G(A))

(β0 ◦ α0) f =

F ′F(A) F ′F(B)-F ′F( f )

F ′G(A) F ′G(B)-F ′G( f )

G′G(A) G′G(B)-G′G( f )

?

F ′(α0(A))

?

β0(G(A))

?

F ′(α0(B))

?

β0(G(B))

F ′((α0) f )

(β0)G( f )

• for every 1v-cell u : A −→ A′ inA a 2-cell in C:

δβ0◦α0,u =

F ′F(A) F ′F(A)-=

F ′F(A′)
?

F ′F(u)

δF ′(α0),u

F ′G(A′) F ′G(A′)-=
?

F ′(α0(A′))

?

F ′(α0(A))

F ′G(A)

?

F ′G(u)

F ′G(A)-=

-
=

?

β0(G(A))

G′G(A)

G′G(A′)
?

G′G(u)

G′G(A′)
?

β0(G(A′)) δβ0,G(u)

where δF ′(α0),u is defined analogously as in Lemma 3.4.

Horizontal compositions of horizontal and of vertical pseudonatural transformations are not strictly
associative.

We proceed by defining vertical compositions of horizontal and of vertical pseudonatural transforma-
tions. From the respective definitions it will be clear that these vertical compositions are strictly associative.

Lemma 3.7 Vertical composition of two horizontal pseudonatural transformations α1 : F ⇒ G : A −→ B and
β1 : G⇒ H : A −→ B, denoted by α1

β1
, is well-given by:

• for every 0-cell A inA a 1h-cell in B:

(
α1

β1
)(A) =

(
F(A)

α1(A)
−→ G(A)

β1(A)
−→ H(A)

)
,



B. Femić / Filomat 38:8 (2024), 2601–2660 2616

• for every 1v-cell u : A −→ A′ inA a 2-cell in B:

(
α1

β1
)(u) = F(A) G(A)-α1(A)

H(A)-β1(A)

F(A′) G(A′)-α1(A′)?
F(u)

?
G(u)(α1)u

H(A′)-β1(A′) ?
H(u)(β1)u

• for every 1h-cell f : A −→ B inA a 2-cell in B:

δ α1
β1
, f = F(A) F(B)-F( f )

G(B)-α1(B)

F(A) G(A)-α1(A)
G(B)-G( f )

H(B)-β1(B)?
=

?
=δα1, f

δβ1, f

G(A) H(A)-β1(A)
G(B).-H( f )?

=
?
=

Lemma 3.8 Vertical composition of two vertical pseudonatural transformations α0 : F ⇒ G : A −→ B and
β0 : G⇒ H : A −→ B, denoted by α0

β0
, is well-given by:

• for every 0-cell A in A a 1v-cell on the left below, and for every 1h-cell f : A −→ B in A a 2-cell on the right
below, both in B:

(
α0

β0
)(A) =

F(A)

G(A)
?

α0(A)

H(A)
?

β0(A)

(
α0

β0
)( f ) =

F(A) F(B)-F( f )

G(A) G(B)-G( f )

H(A) H(B)-H( f )

?

α0(A)

?

β0(A)

?

α0(B)

?

β0(B)

(α0) f

(β0) f

• for every 1v-cell u : A −→ A′ inA a 2-cell in B:

δ α0
β0
,u =

F(A) F(A)-=

F(A′)
?

F(u) δα0,u

G(A′) G(A′)-=
?

α0(A′)

?
α0(A)

G(A)

?
G(u)

G(A)-=

H(A′).-=

?
β0(A)

H(A)

?
H(u)

H(A′)
?

β0(A′)

δβ0,u
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3.2. 2-cells of the tricategory and their compositions

Now we may define what will be the 2-cells of our tricategory DblPs of strict double categories and
double pseudofunctors.

Definition 3.9 A double pseudonatural transformationα : F −→ G between double pseudofunctors is a quadruple
(α0, α1, tα, rα), where:

(T1) α0 : F⇒ G is a vertical pseudonatural transformation, and
α1 : F⇒ G is a horizontal pseudonatural transformation,
(T2) the 2-cells δα1, f and δα0,u are invertible when f is a 1h-cell component of a horizontal pseudonatural

transformation, and u is a 1v-cell component of a vertical pseudonatural transformation;
(T3) for every 1h-cell f : A −→ B and 1v-cell u : A −→ A′ inA there are 2-cells in B:

F(A) F(B)-F( f )
G(B)-α1(B)

G(A) G(B)-
G( f )

?
α0(A)

?
=tαf

and

F(A) G(A)-α1(A)

F(A′)
?

F(u)

G(A′) -=
?

α0(A′)

G(A′)
?

G(u)rαu

satisfying:
(T3-1)

F(A) F(B)-F( f )
G(B)-α1(B)

F(A′) F(B′)-F(1)
G(B′)-α1(B′)?

F(u)
?

F(v)
?

G(v)F(a) (α1)v

G(A′) G(B′)-G(1)?

α0(A′)
?

=
tα1

=

F(A) F(A)-=

F(A′)
?

F(u)

δα0,u

G(A′) G(A′)-=
?

α0(A′)

?

α0(A)

G(A)

?

G(u)

F(A) F(B)-F( f )
G(B)-α1(B)

G(B)-
G( f )

?

=tαf

G(B′)-G(1) ?

G(v)G(a)

and

F(A) F(B)-F( f )
G(B)-α1(B)

F(A′)
?

F(u)

rαv

G(A′) -G(1)?

α0(A′)

G(B′)
?

α0(B′)

F(B′)
?

F(v)F(a)

-F(1)

G(B′)
?

G(v)

-
=

(α0)1

=

F(A) F(B)-F( f )
G(B)-α1(B)

F(A) G(A)-α1(A)
G(B)-G( f )?

=
?
=δα1, f

F(A′)
?

F(u)

G(A′) -=
?

α0(A′)

G(A′)
?

G(u)rαu

G(B′)
?

G(v)

-G(1)

G(a)

for every 2-cell a inA,
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(T3-2) for every composable 1h-cells f and 1 and every composable 1v-cells u and v it is:

F(B) F(C)-F(1)
G(C)-α1(C)

F(A) F(B)-F( f )
G(B)-α1(B)

G(C)-G(1)?
=

?
=δα1,1

tαf

G(A) G(B)-G( f )?
α0(A)

?
=

=

F(A) F(B)-F( f )
F(C)-F(1)

G(C)-α1(C)

(α0) f

?
α0(A) tα1

?
α0(B)

?
=

G(A) G(B)-G( f )
G(C)-G(1)

and
F(A) F(A)-α1(A)

F(A′)
?

F(u) rαu

G(A′) G(A′)-=
?

G(u)F(A′)

F(A′′)
?

F(v)

-=

G(A′′)-=

?

α0(A′)

?

G(v)

G(A′′)
?

α0(A′′)

δα0,v

=

F(A) G(A)-α1(A)

F(A′)
?

F(u)

G(A′)
?
G(u)

F(A′′)
?

F(v)

G(A′)
?

G(v)

(α1)u

-α1(A′)

rαv

?
α0(A′′)

G(A′) -
=

(T3-3) for every composable 1h-cells f and 1 and every composable 1v-cells u and v it is:

tα
1 f =

F(A) F(C)-F(1 f )

F(A) F(B)-F( f )
F(C)-F(1)

G(C)-α1(C)?
=

?
=F1 f

(α0) f

?
α0(A) tα1

?
α0(B)

?
=

G(A) G(B)-G( f )
G(C)-G(1)

?
=

?
=G−1

1 f

G(A) G(C)-
G(1 f )

and

rαvu =

F(A)

F(A′′)
?

F(vu)

F(A)-= G(A)-α1(A) -=

F(A′)
?

F(u)

Gvu

G(A′′) -=

?
F(v)

F(A′′)

?
α0(A′′)

-=

G(A′′)
?

G(v)

G(A′)
?

G(u)(α1)u

-α1(A′)

G(A)

G(A′′).
?

G(vu)

-=

rαv

(Fvu)−1

By the axiom (v) of a double pseudofunctor in [31, Definition 6.1] one has:
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Lemma 3.10 Given three composable 1h-cells f , 1, h and three composable 1v-cells u, v,w for a double pseudonatural
transformation α it is: tα(h1) f = tαh(1 f ) and rα(wv)u = rαw(vu).

Remark 3.11 The horizontal and vertical compositions of t’s and r’s are defined in the next two Propositions
below. Axiom (T3-2) in the above definition is introduced in order for t’s to satisfy the interchange law (up
to isomorphism).

For every 1-cell F of DblPs, the identity 2-cell IdF : F ⇒ F is given by the 2-cells: ((IdF)0) f = IdF( f ) =

tIdF
f , ((IdF)1)u = IdF(u) = rIdF

u , δ(IdF)0,u = IdF(u) and δ(IdF)1, f = IdF( f ), with (IdF)0(A) and (IdF)1(A) being the identity
1v- and 1h-cells on F(A), respectively, f an arbitrary 1h-cell and u an arbitrary 1v-cell.

For the horizontal and vertical compositions of double pseudonatural transformations we have:

Proposition 3.12 A horizontal composition of two double pseudonatural transformations acting between double
pseudo functors (α0, α1, tα, rα) : F ⇒ G : A −→ B and (β0, β1, tβ, rβ) : F ′ ⇒ G′ : B −→ C, denoted by β ◦ α, is
well-given by:

• the horizontal pseudonatural transformation β1 ◦ α1 from Lemma 3.5,

• the vertical pseudonatural transformation β0 ◦ α0 from Lemma 3.6,

• for every 1h-cell f : A −→ B and 1v-cell u : A −→ A′ inA: 2-cells in B:

tβ◦αf := tβf ◦ tαf =

F ′F(A) -=

F ′G(A)
?

F ′(α0(A))

F ′G(A)
?

=

?
β0(G(A))

G′G(A) -
=

δβ0,α0(A)

F ′F(A) F ′F(B)-F ′F( f )
F ′G(B)-F ′(α1(B))

G′G(B)-β1(G(B))

(β0)F( f )

?
β0(F(A)) tβ

α1(B)

?
β0(F(B))

?
=

G′F(A) G′F(B)-G′F( f )
G′G(B)-G′(α1(B))

?
=

?
=G′−1

α1(B),F( f )

G′F(A) G′G(B)-G′(α1(B)F( f ))
G′G(B)-=

G′G(A) G′G(B)-
G′G( f )

G′G(B)-
=

?
G′(α0(A))

?
=

?
G′(id)G′(tαf )

(
G′G(B)

)−1

and

rβ◦αu := rβu ◦ rαu =

F ′F(A) F ′G(A)-F ′(α1(A))
F ′G(A)-= G′G(A)-β1(G(A))

?
=

?
=δβ1,α1(A)

F ′F(A) G′F(A)-β1(F(A))

F ′F(A′)
?

F ′F(u)

G′••

-=

F ′G(A′)
?

F ′(α0(A′))

?

G′(α0(A′))

?
β0(G(A′))

G′G(A′) G′G(A′)-= G′G(A′)-= -=

?

G′F(u)(β1)F(u)

G′F(A′)-β1(F(A′))

G′F(A)

?

G′(••)

?

=

G′G(A′) G′G(A′)-G′(id)

G′G(A′).
?

=

?

G′G(u)

G′G(A)-G′(α1(A))

rβ
α0(A′)

G′(rαu)

G′G(A′)

From the axioms of Definition 3.1 and Lemma 3.4 identities (9) and (10) in [13, Section 4.1] are deduced,
of which the vertical version of (10) is used to prove that the horizontal composition of t’s satisfies the
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axiom (T3-1), and the vertical version of (9) is used in order to show for this composition to be associative.
Identities after [13, Remark 4.11] are used in order to prove that the horizontal composition of t’s (and r’s)
satisfies the axiom (T3-2).

Proposition 3.13 A vertical composition of two double pseudonatural transformations acting between double pseudo
functors (α0, α1, tα, rα) : F⇒ G : A −→ B and (β0, β1, tβ, rβ) : G⇒ H : A −→ B, denoted by αβ , is well-given by:

• the horizontal pseudonatural transformation α1
β1

from Lemma 3.7,

• the vertical pseudonatural transformation α0
β0

from Lemma 3.8,

• for every 1h-cell f : A −→ B and 1v-cell u : A −→ A′ inA: 2-cells in B:

t
α
β

f :=
tαf

tβf
=

F(A) F(B)-F( f )
G(B)-α1(B)

G(A) G(B)-G( f )
H(B)-β1(B)?

α0(A)
?
=tαf

tβf
H(A) H(B)-H( f )?
β0(A)

?
=

and

r
α
β

u :=
rαu
rβu
=

F(A) G(A)-α1(A)
H(A)-β1(A)

F(A′)
?

F(u) rαu

G(A′) G(A′)-=
?

α0(A′)
?

G(u)

H(A′).-=
?

H(u)

H(A′)
?

β0(A′)

rβu

This composition is clearly strictly associative. The unity constraint 3-cells for the vertical composi-
tion of 2-cells will be identities. The unity constraints for the horizontal composition we will discuss in
Subsection 3.6.

3.3. A subclass of the class of 2-cells

In [4, Definition 6.3] double natural transformations between strict double functors were used, as a par-
ticular case of generalized natural transformations from [6, Definition 3]. Adapting the former to the case of
double pseudo functors of Shulman, we get the following weakening of [4, Definition 6.3]:

Definition 3.14 A Θ-double pseudonatural transformation between two double pseudofunctors F ⇒ G : A
−→ B is a tripple (α0, α1,Θα), which we will denote shortly by Θα, where:

• α0 is a vertical and α1 a horizontal pseudonatural transformation (from Definition 3.1 and the analogous one),

• the axiom (T2) from Definition 3.9 holds, and
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• for every 0-cell A inA there are 2-cells in B:

F(A) G(A)-α1(A)

G(A) G(A)-=
?

α0(A)
?
=ΘαA

so that for every 1h-cell f : A −→ B and every 1v-cell u : A −→ A′ inA the following identities hold:
(Θ0)

F(A) F(B)-F( f )
G(B)-α1(B)

G(A) G(B)-G( f )
G(B)-=

?

α0(A)
?

α0(B)
?

=(α0) f ΘαB

=

F(A) F(B)-F( f )
G(B)-α1(B)

F(A) G(A)-α1(A)
G(B)-G( f )?

=

?

=δα1, f

F(A′) G(A′)-=
?

α0(A)
?

=ΘαA

and
(Θ1)

F(A) G(A)-α1(A)

F(A′)
?

F(u)

G(A′) -=
?

α0(A′)

G(A′)
?

=

G(A′)
?

G(u)(α1)u

-α1(A′)

ΘαA′

=

F(A) F(A)-= -α1(A)

F(A′)
?

F(u)

δα0,u

G(A′) G(A′).-=
?

α0(A′)

?

α0(A)

G(A)

?

G(u)

ΘαA

G(A)

G(A)
?

=

-=

Let us denote a Θ-double pseudonatural transformation Θα by A ⇓Θα

F
##

G

==B .

Horizontal composition of Θ-double pseudonatural transformations A ⇓Θα

F
##

G

==B ⇓Θβ

F′
""

G′

>>C is given by

Θ
β◦α
A := ΘβA ◦Θ

α
A =

F ′F(A) F ′G(A)-F ′(α1(A)) -=

F ′G(A)
?

F ′(α0(A))
?F ′(id)

F ′•−1

F ′G(A)-=

?

=

?

=

F ′(ΘαA)

F ′G(A)-F ′(id)

F ′G(A)

?

=

?

=

F ′G(A) F ′G(A)-= F ′G(A)-=

?
=

G′G(A)-β1(G(A))

G′G(A)
?

β0(G(A))

G′G(A)-=

F ′G(A) 1

Θ
β
G(A)
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and vertical composition of Θ-double pseudonatural transformations A
⇓Θα

F

��G //

⇓Θβ

H

BBB is given by

ΘαA

Θ
β
A

=
F(A) G(A)-α1(A)

G(A) -= H(A)-β1(A)?
α0(A)

G(A)
?

=ΘαA

Θ
β
A

?
β0(A)

?
=

H(A) H(A).-=

The following result is directly proved:

Proposition 3.15 AΘ-double pseudonatural transformationΘα gives rise to a double pseudonatural transformation
(α0, α1, tα, rα), where

tαf =

F(A) F(B)-F( f )
G(B)-α1(B)

G(A) G(B)-G( f )
G(B)-=

?

α0(A)
?

α0(B)
?

=(α0) f ΘαB and rαu =

F(A) G(A)-α1(A)

F(A′)
?

F(u)

G(A′) -=
?

α0(A′)

G(A′)
?

=

G(A′)
?

G(u)(α1)u

-α1(A′)

ΘαA′

for every 1h-cell f : A −→ B and 1v-cell u : A −→ A′. Moreover, the class of all Θ-double pseudonatural transforma-
tions is a subclass of the class of double pseudonatural transformations.

Proof. By the axiom (Θ1), axiom 1. for the horizontal pseudonatural transformation α1 implies axiom (T3-1)
for tαf .

Thus, from the point of view of Θ-double pseudonatural transformations, the axioms (T3-2) and (T3-3)
of double pseudonatural transformations become redundant.

Observe also that given a double pseudonatural transformation α : F⇒ G acting between strict double
functors, the 2-cells tαidA

obey the conditions (Θ0) and (Θ1) for every 0-cell A.

The other way around, observe that setting

F(A) G(A)-α1(A)

G(A) G(A).-=
?

α0(A)
?
=tΘαA

:=

F(A) F(A)-=

?
=

?
=

F(A) F(A)-F(idA)

(FA)−1

G(A)-α1(A)

F(A) G(A)-G(idA)?
α0(A)

?
=tαidA

GA
?

=
?
=

G(A) G(A),-=
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by (T3-3) we get

tαf =

F(A) F(B)-F( f )
F(B)-F(idB)

G(B)-α1(B)

(α0) f

?
α0(A) tαidB

?
α0(B)

?
=

G(A) G(B)-G( f )
G(B),-G(idB)

and analogously, setting

F(A) G(A)-α1(A)

G(A) G(A).-=
?

α0(A)
?
=rΘαA

:=

F(A) -=

?

=

F(A) F(A)-=

FA

F(A) G(A)-α1(A) -=

?

F(idA)

rαidA

G(A) G(A)-=
?

α0(A)
?

G(idA)

(GA)−1

G(A)

G(A),
?

=

-=

one gets

rαu =

F(A) G(A)-α1(A)

F(A′)
?

F(u)

G(A′)
?
G(u)

F(A′)
?

F(idA′ )

G(A′).
?

G(idA′ )

(α1)u

-α1(A′)

rαidA′

?
α0(A′)

G(A′) -
=

By successive applications of (T3-2) and axiom 2. for α0 one gets that tΘα• satisfies the axiom (Θ0), and
similarly rΘα• satisfies the axiom (Θ1) of Definition 3.14. Since the 2-cells tαf and rαf are not related, we can
not claim that all double pseudonatural transformations are Θ-double pseudotransformations.

3.4. 3-cells of the tricategory

We first define modifications for horizontal and vertical pseudonatural transformations. Since we will
then define modifications for double pseudonatural transformations, for mnemonic reasons we will denote
vertical pseudonatural transformations with index 0 and horizontal ones with index 1.

Definition 3.16 A modification between two vertical pseudonatural transformations α0 and β0 which act between
double psuedofunctors F ⇒ G is an application a : α0 ⇛ β0 such that for each 0-cell A in A there is a horizontally
globular 2-cell a0(A) : α0(A)⇒ β0(A) which for each 1h-cell f : A −→ B satisfies:

F(A) F(A)-= F(B)-F( f )

G(A) G(A)-= G(B)-G( f )?

α0(A)
?

β0(A)
?

β0(B)a0(A) (β0) f =

F(A) F(B)-F( f )
F(B)-=

G(A) G(B)-G( f )
G(B)-=

?

α0(A)
?

α0(B)
?

β0(B)(α0) f a0(B)

and
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-=

F(A) F(A)-=

F(A′)

G(A′)
?

α0(A′)

-= F(A′)
?

F(u) δβ0,u

G(A′) G(A′)-=
?

β0(A′)

?

β0(A)

G(A)

?

G(u)a0(A′)

=

F(A) F(A)-= -=

F(A′)
?

F(u)

δα0,u

G(A′) G(A′).-=
?

α0(A′)

?

α0(A)

G(A)

?

G(u)

a0(A)

F(A)

G(A)
?

β0(A)

-=

A modification between two horizontal pseudonatural transformations α1 and β1 which act between
double pseudofunctors F ⇒ G is an application a : α1 ⇛ β1 such that for each 0-cell A in A there is a
vertically globular 2-cell a1(A) : α1(A) ⇒ β1(A) which for each 1v-cell u : A −→ A′ satisfies two conditions
analogous to those of the above definition.

Now, 3-cells for our tricategory DblPs will be modifications which we define here:

Definition 3.17 A modification between two double pseudonatural transformations α = (α0, α1, tα, rα) and β =
(β0, β1, tβ, rβ) which act between double pseudofunctors F⇒ G is an application a : α⇛ β consisting of a modification
a0 for vertical pseudonatural transformations and a modification a1 for horizontal pseudonatural transformations,
such that for each 0-cell A inA it holds:

F(B) G(B)-α1(B)

?
=

?
=a1(B)

F(A) F(A)-= F(B)-F( f )
G(B)-β1(B)

?

=

G(A) G(A)-= G(B)-G( f )?

α0(A)
?

β0(A)a0(A) tβf =

F(A) F(B)-F( f )
G(B)-α1(B)

F(A) G(A)-
G( f )

?
α0(A)

?
=tαf (3.8)

and

F(A) G(A)-α1(A)

F(A)
?

=

G(A)
?
=

?
F(u)

G(A′)
?

G(u)

a1(A)

-β1(A)

rβu

?
β0(A′)

?
α0(A′)

F(A′) F(A′)-
=

G(A′) -
= G(A′) -

=

a0(A′)

=

F(A) G(A)-α1(A)

F(A′)
?

F(u)

G(A′) -=
?

α0(A′)

G(A′).
?

G(u)rαu

Horizontal composition of the modifications a : α⇛ β : F⇒ G and b : α′ ⇛ β′ : F ′ ⇒ G′, acting between
horizontally composable double pseudonatural transformations α′ ◦ α ⇛ β′ ◦ β : F ′ ◦ F ⇒ G′ ◦ G is given
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for every 0-cell A inA by pairs consisting of

(b ◦ a)0(A) =

F ′F(A) F ′F(A)-=

?
=

?
F ′(α0(A))

?
F ′(β0(A))

?
=(F ′•)−1

F ′F(A) F ′F(A)-F ′(id)

F ′G(A) F ′G(A)-
F ′(id)

F ′(a0(A))

?
=

?
=

F ′G(A) F ′G(A)-
=

F ′•

?
α′0(G(A))

?
β′0(G(A))

G′G(A) G′G(A)-
=

b0(G(A))

and

(b ◦ a)1(A) =
?

=

?

=

F ′F(A) -=

F ′F(A) -=

F ′• (F ′•)−1

F ′G(A)-= F ′G(A)-
α′1(G(A))

F ′G(A)-= F ′G(A).-
β′1(G(A)) ?

=b1(G(A))

F ′F(A) F ′G(A)-F ′(α1(A))

F ′F(A) F ′G(A)-F ′(β1(A))?

F ′(id)
?

F ′(id)F ′(a1(A))

Vertical composition of the modifications a : α ⇛ β : F ⇒ G and b : α′ ⇛ β′ : G ⇒ H, acting between

vertically composable double pseudonatural transformations F α
⇒ G α′

⇒ H and F
β
⇒ G

β′

⇒ H, is given for
every 0-cell A inA by pairs consisting of

(
a
b

)0(A) =

F(A) F(A)-=

G(A)
?

α0(A)

?
α′0(A)

H(A)
?
β′0(A)

G(A)
?
β0(A)a0(A)

-=

H(A) -
β1(A′)

a′0(A)
and (

a
b

)1(A) =

F(A) G(A)-α1(A)
H(A)-

α′1(A)

F(A) G(A)-β1(A)
H(A).-

β′1(A)?

=

?

=

?

=a1(A) a′1(A)

Transversal composition of the modifications α
a
⇛ β

b
⇛ γ : F⇒ G is given for every 0-cell A inA by pairs

consisting of

(b · a)0(A) =

F(A) G(A)-= H(A)-=

F(A) G(A)-= H(A)-=
?
α0(A)

?
β0(A)

?
γ0(A)

a0(A) b0(A)
and (b · a)1(A) =

F(A) G(A)-α1(A)

F(A)
?

=

F(A)
?

=

G(A).
?
=

G(A)
?
=a1(A)

-β1(A)

-
γ1(A)

b1(A)

From the definitions it is clear that vertical and transversal composition of the 3-cells is strictly associative.
That the associativity in the horizontal direction is also strict we proved in [13, Section 4.7].
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3.5. A subclass of the 3-cells

For Θ-double pseudonatural transformations we define modifications as follows:

Definition 3.18 A modification between two Θ-double pseudonatural transformations Θα ≡ (α0, α1,Θα) and Θβ ≡
(β0, β1,Θβ) which act between double psuedofunctors F⇒ G is an application a : α⇛ β consisting of a modification
a0 for vertical pseudonatural transformations and a modification a1 for horizontal pseudonatural transformations,
such that for each 0-cell A inA it holds:

G(A)-α1(A)F(A)

?
=

?
=a1(A)

F(A) F(A)-= -β1(A)

?

α0(A) a0(A)

G(A) G(A)-=
?

β0(A) Θ
β
A

G(A)

G(A)
?

=

-=

= F(A) G(A)-α1(A)

G(A) G(A).-=
?

α0(A)
?
=ΘαA

It is directly proved that modifications betweenΘ-double pseudonatural transformations are particular
cases of modifications between double pseudonatural transformations. This gives a sub-tricategory DblPsΘ

of the tricategory DblPs.

3.6. The obtained tricategory

In Sections 4.6 and 4.9 of [13] we proved that horizontal associativity of the 2-cells of DblPs and the
interchange law for 2-cells, respectively, hold up to isomorphisms, which we gave explicitly. In Section
4.7 of loc.cit. we proved the strict associativity of the 3-cells, and in Section 4.8 we showed that left unity
constraints on 2-cells is identity, but for the right one we gave an isomorphism. In Section 4.10 we showed
that the distinguished modifications from the axiom (TD8) of [17] fulfill the required identities, which
concludes the construction of the tricategory DblPs.

4. The 2-category PsDbl embeds into our tricategory DblPs

As we want to propose an alternative notion to intercategories as categories internal to the tricategory
DblPs, which we do in the next two sections, so that monoids in the Cartesian monoidal category (Dbl,⊛)
fit in it, in this section we compare the 2-category LxDbl and our tricategory DblPs. As we explained,
we can not embed LxDbl (whose 1-cells are lax double functors) into DblPs, instead we will embed the
2-category PsDbl of pseudo double categories, pseudo double functors and vertical transformations, used
in [30]. Apart from 1-cells, it differs from LxDbl in that the horizontal direction is weak and the vertical
one is strict, while in the approach of Grandis and Paré and in LxDbl it is the other way around. Moreover,
2-cells in PsDbl are vertical rather than horizontal transformations, as in LxDbl. Thus the 2-category PsDbl
is the closest one to LxDbl in the presented context which we could embed into our tricategory DblPs.

The 0-cells of PsDbl are pseudo double categories and not strict double categories as in DblPs. Though,
by Strictification Theorem of [22, Section 7.5] every pseudo double category is equivalent by a pseudodouble
functor to a strict double category. Let PsDbl∗3 be the 3-category defined by adding only the identity 3-cells to
the 2-category equivalent to PsDbl having strict double categories for 0-cells. Thus PsDbl∗3 consists of strict
double categories, pseudo double functors, vertical transformations and identity modifications among the
latter. Pseudo double functors are in particular double pseudo functors, so the only thing it remains to
check is how to make a vertical transformation a double pseudonatural transformation, that is, embed
2-cells of PsDbl into those of DblPs.

Before doing this, we prove some more general results.
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4.1. Bijectivity between strong vertical and strong horizontal transformations

Recall that a companion for a 1v-cell u : A −→ A′ is a 1h-cell u∗ : A −→ A′ together with certain 2-cells ε
and η satisfying [η|ε] = Idu∗ and η

ε = Idu, [20, Section 1.2], [30, Section 3]. (Here [η|ε] denotes the horizontal
composition of 2-cells, where η acts first, and the fraction denotes their vertical composition.) We will say
that u∗ is a 1h-companion of u. Companions are unique up to a unique globular isomorphism [30, Lemma 3.8]
and a connection on a double category is a functorial choice of a companion for each 1v-cell, [5]. We will need
a functorial choice of companions only for 1v-cell components of vertical pseudonatural transformations,
accordingly we will speak about a connection on those 1v-cells.

Proposition 4.1 Let α0 : F ⇒ G be a strong vertical transformation between pseudo double functors acting
between strict double categories A −→ B ([22, Section 7.4]). The following data define a horizontal pseudonatural
transformation α1 : F⇒ G:

• a fixed choice of a 1h-companion of α0(A), for every 0-cell A of A (with corresponding 2-cells εαA and ηαA), we
denote it by α1(A);

• the 2-cell

(α1)u =
-
= δα0,u

F(A′) G(A′)-α1(A′)

F(A′)

?

=

?

F(u)

G(A)
?

α0(A)

F(A′)

?

α0(A′)

F(A) F(A)-= G(A)-α1(A)

G(A)-
=

?

=εαA

G(A′)-=
?

G(u)ηαA′

for every 1v-cell u : A −→ A′;

• the 2-cell

δα1, f =

F(A) F(A)-=

ηαA
?

α0(A)
?

α0(B)

F(A) F(B)-F( f )
G(B)-α1(B)

G(B)-
G( f )

G(B)-
=

?

=(α0) f εαB

F(A) G(A)-α1(A)?

=

for every 1h-cell f : A −→ B.

Proof. To prove axiom 1), the axiom 1) of α0 is used; the first part of the axiom 2) works directly, and in the
second one use second part of the axiom 3) for α0; the first part of the axiom 3) works directly, and in the
second one use second part of the axiom 2) for α0; in checking of all the three axioms also the rules ε-η are
used.

Observe that there is a way in the other direction:

Proposition 4.2 Let α1 : F ⇒ G be a strong horizontal transformation between pseudo double functors acting
between strict double categories A −→ B. Suppose that for every 0h-cell A the 1h-cell α1(A) is a 1h-companion of
some 1v-cell (with corresponding 2-cells εαA and ηαA). Fix a choice of such 1v-cells for each A and denote them by
α0(A). The following data define a vertical pseudonatural transformation α0 : F⇒ G:

• the 1v-cell α0(A), for every 0-cell A ofA;
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• the 2-cell

(α0) f = F(A) F(B)-F( f )
G(B)-α1(B)

F(A) G(A)-α1(A)
G(B)-G( f )?

=

?

=δα1, f

F(B) F(B)-=

?

=

?

α0(B)ηαB

?

α0(A)
?

=

G(A) G(A)-=

εαA

for every 1h-cell f : A −→ B;

• the 2-cell

δα0,u =

F(A) F(A)-=

F(A)
?

=

G(A)
?
α0(A)

F(A′)
?

F(u)

G(A′)
?
G(u)

ηαA

-α1(A)

(α1)u

?
α0(A′)

-α1(A′)

G(A′)
?
=

G(A′) -
=

εαA′

for every 1v-cell u : A −→ A′.

By ε-η-relations, there is a 1-1 correspondence between those strong vertical transformations whose
1v-cell components have 1h-companions and those strong horizontal transformations whose 1h-cell com-
ponents are 1h-companions of some 1v-cells.

Corollary 4.3 Suppose that there is a connection on 1v-components of strong vertical transformations. Then there
is a bijection between strong vertical transformations and those strong horizontal transformations whose 1h-cell
components are 1h-companions of some 1v-cells.

As a direct corollary of Proposition 4.1 we get:

Corollary 4.4 Suppose that the 1v-components of a strong vertical transformation α0 : F⇒ G have 1h-companions
α1(A), for every 0-cell A (with corresponding 2-cells εαA and ηαA), and define the 2-cells (α1)u and δα1, f as in
Proposition 4.1. The following identities then follow:

F(A) F(B)-F( f )
G(B)-α1(B)

G(A) G(B)-G( f )
G(B)-=

?

α0(A)
?

α0(B)
?

=(α0) f εαB

=

F(A) F(B)-F( f )
G(B)-α1(B)

F(A) G(A)-α1(A)
G(B)-G( f )?

=

?

=δα1, f

F(A′) G(A′).-=
?

α0(A)
?

=εαA
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and

F(A) F(A)-= G(B)-F( f )

F(A) G(A)-α1(A)
G(B)-G( f )?

=

?

α0(A)
?

α0(B)ηαA (α0) f

= F(A) F(B)-F( f )
G(B)-α1(B)

F(A) G(A)-α1(A)
G(B)-G( f )?

=

?

=δα1, f

F(B) F(B)-=

?

=

?

α0(B)ηαB

for every 1h-cell f : A −→ B;

F(A) G(A)-α1(A)

F(A′)
?

F(u)

G(A′) -=
?

α0(A′)

G(A′)
?

=

G(A′)
?

G(u)(α1)u

-α1(A′)

εαA′

=

F(A) F(A)-= -α1(A)

F(A′)
?

F(u)

δα0,u

F(A′′) F(A′′)-=
?

α0(A′)

?

α0(A)

G(A)

?

G(u)

εαA

G(A)

G(A)
?

=

-=

and
F(A) F(A)-=

F(A)
?

=

F(A′) -α1(A′)?

F(u)

G(A′)
?

G(u)

G(A)
?

α0(A)ηαA

-α1(A)

(α1)u

=

-α1(A′)

F(A) F(A)-=

F(A′)

F(A′)
?

=

-= F(A′)
?

F(u) δα0,u

G(A′) G(A′)-=
?

α0(A′)

?

α0(A)

G(A)

?

G(u)ηαA′

for every 1v-cell u : A −→ A′.

In the following Proposition ηF(u) and εG(u) are given as in [30, Lemma 3.16].

Proposition 4.5 Given a strong vertical transformation α0 under conditions of Proposition 4.1. Let u : A −→ A′ be
a 1v-cell with a 1h-companion f = u∗. Then the inverse of the 2-cell δα1,u∗ is given by:

δ−1
α1,u∗ =

F(A) F(A)-=

?

F(u)

F(A)
?

=

-
F(u)∗

ηF(u)

-
= δα0,u

F(A′) G(A′)-α1(A′)

F(A′)

?

=

?

F(u)

G(A)
?

α0(A)

F(A′)

?

α0(A′)

F(A) F(A)-= G(A)-α1(A)

G(A)-
=

?

=εαA

G(A′)-=
?

G(u)ηαA′

G(A′)-G(u)∗

?

=

G(A′)
?

G(u)

G(A′).-=

εG(u)

Proof. Use axiom 1) for α0 and (6.3) of [31, Definition 6.1], together with ε-η-relations.

Note that the above inverse of δα1,u∗ is in fact the image of the known pseudofunctor VD −→ HD from
the vertical 2-category to the horizontal one of a given double category D in which all 1v-cells have 1h-
companions. For a horizontally globular 2-cell a with a left 1v-cell u and a right 1v-cell v, the image by this
functor of a is given by [ηu|a|εv] (horizontal composition of 2-cells).
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Remark 4.6 One could start with a vertical transformation α0 (for which δα0,u = Id for all 1v-cells u : A
−→ A′) and define a horizontal transformation α1 setting δα1, f = Id for all 1h-cells f : A −→ B and defining
(α1)u as in Proposition 4.1. Though, in order for α1 to satisfy the corresponding axiom 1), one needs to
assume the first two identities of Corollary 4.4.

4.2. Embedding PsDbl∗3 into DblPs

It remains to show how to turn vertical transformations into double pseudonatural transformations. We
will assume that 1v-cell components of vertical transformations have 1h-companions.

Observe that for vertical transformations the 2-cells δα0,u are identities. Moreover, we know that vertical
transformations are particular cases of vertical pseudonatural transformations (Remark 3.2), and that strong
horizontal transformations are particular cases of horizontal pseudonatural transformations. By Proposi-
tion 4.1 we have that a vertical transformation α0 determines a strong horizontal transformation. So far we
have axiom (T1) of Definition 3.9. Furthermore, by Proposition 4.5 we have in particular that for all 1v-cell
components α0(A) of vertical transformations the 2-cells δα1,α1(A) are invertible. Then we have that the axiom
(T2) is fulfilled. Observe that setting ΘαA = ε

α
A, by the first and third identities in Corollary 4.4 we have

a Θ-double pseudonatural transformation between pseudo double functors. Due to Proposition 3.15 we
have indeed a double pseudonatural transformation, as we wanted. (Actually, thanks to the ε-η-relations,
by the first identity in Corollary 4.4, axiom 1) for the horizontal pseudonatural transformation α1 holds if
and only if axiom (T3-1) for tαf in Proposition 3.15 holds.)

Moreover, we may deduce the following bijective correspondence tαf ↔ δα1, f :

tαf =

F(A) F(B)-F( f )
G(B)-α1(B)

F(A) G(A)-α1(A)
G(B),-G( f )?

=
?
=δα1, f

F(A′) G(A′)-=
?
α0(A)

?
=εαA

δα1, f =

F(A) F(A)-=

ηαA
?
α0(A)

F(A) F(B)-F( f )
G(B)-α1(B)

G(B)-
G( f )

G(B),-
=

?
=tαf

F(A) G(A)-
α1(A)

?
=

and complete the bijection tαf ↔ (α0) f :

(α0) f =

F(B) F(B)-=

?
=

?
α0(B)ηαB

F(A) F(B)-F( f )
G(B)-α1(B)

F(A) G(A).-G( f )?
=

?
=tαf

Remark 4.7 Given the ε-η-relations, by the properties developed in this and the previous subsection,
axiom 1) for the horizontal pseudonatural transformation α1 holds if and only if axiom (T3-1) for tαf in
Proposition 3.15 holds, if and only if axiom 1) for the vertical pseudonatural transformation α0 holds.

5. Tricategorical pullbacks and (co)products

For a notion of enrichment over (an iconic) tricategory V we need some notion of a monoidal structure
on V, while for a notion of an internal category in V we need some notion of tricategorical pullbacks.
We define both such notions in this section, where for the monoidal structure we consider tricategorical
products. As justified in Remark 9.3 we denote by fractions the vertical composition of 2- and 3-cells.
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5.1. Tricategorical pullbacks
In this subsection we define tricategorical pullbacks, that is pullbacks in tricategories. We will also call

them shortly 3-pullbacks.

Definition 5.1 A 3-pullback over a 0-cell S with respect to 1-cells f : M −→ S and 1 : N −→ S in a tricategory V is
given by: a 0-cell P, 1-cells p1 : P −→M, p2 : P −→ N and an equivalence 2-cell ω : 1p2 ⇒ f p1 so that

• for every 0-cell T, 1-cells q1 : T −→M, q2 : T −→ N and equivalence 2-cell σ : 1q2 ⇒ f q1 there are a 1-cell u : T
−→ P, equivalence 2-cells ζ1 : p1u⇒ q1 and ζ2 : q2 ⇒ p2u and an isomorphism 3-cell

Σ :
Id1 ⊗ζ2

ω ⊗ Idu
Id f ⊗ζ1

⇛ σ;

• for all 1-cells u, v : T −→ P, 2-cells α : p1u⇒ p1v, β : p2u⇒ p2v and a 3-cell κ : Id1 ⊗β
ω⊗Idv

⇛ ω⊗Idu
Id f ⊗α

such that

(Id1 ⊗ Idp2 ) ⊗ γ
ω ⊗ Idv

ξ
⇛

ω ⊗ Idu

(Id f ⊗ Idp1 ) ⊗ γ

Id
a−1

⇛
ω ⊗ Idu

Id f ⊗(Idp1 ⊗γ)

⇓
a−1

Id
⇓

Id
Id⊗Γ1

Id1 ⊗(Idp2 ⊗γ)
ω ⊗ Idv

Id⊗Γ1
Id
⇛

Id1 ⊗β
ω ⊗ Idv

κ
⇛
ω ⊗ Idu

Id f ⊗α

commutes, there are a 2-cell γ : u⇒ v and isomorphism 3-cells Γ1 : Idp1 ⊗γ⇒ α,Γ2 : Idp2 ⊗γ⇒ β;

• for all 2-cells γ, γ′ : u⇒ v and 3-cells χ1 : Idp1 ⊗γ⇛ Idp1 ⊗γ
′ and χ2 : Idp2 ⊗γ⇛ Idp2 ⊗γ

′ such that

Id1 ⊗(Idp2 ⊗γ)
ω ⊗ Idv

ξ
⇛

ω ⊗ Idu

Id f ⊗(Idp1 ⊗γ)

Id
Id⊗χ1
⇛

ω ⊗ Idu

Id f ⊗(Idp1 ⊗γ′)

⇓
Id⊗χ2

Id
⇓

Id
a

Id1 ⊗(Idp2 ⊗γ
′)

ω ⊗ Idv

a
Id
⇛

(Id1 ⊗ Idp2 ) ⊗ γ′

ω ⊗ Idv

ξ
⇛

ω ⊗ Idu

(Id f ⊗ Idp1 ) ⊗ γ′

commutes, there exists a unique 3-cell χ : γ⇛ γ′ such that χ1 = IdIdp1
⊗χ and χ2 = IdIdp2

⊗χ.

A 3-pullback with notations as in the above Definition we will denote shortly by (P,M,N,S, p1, p2; f , 1),
or (M ×S N, f , 1).

5.2. Tricategorical (co)products
In the literature there are bicategorical (co)products, that is, (co)products in bicategories. In this section

we propose a definition for their tricategorical companions, we will shortly also call them 3-(co)products.
Before defining them let us remark what data comprise a 2-product in a bicategoryK . A 2-product consists
of: 1) a 0-cell A × B for 0-cells A,B ∈ K and 1-cells p1 : A × B −→ A, p2 : A × B −→ B, and 2) for every
X ∈ K a natural equivalence of categories: F : K (X,A × B) −→ K (X,A) ×K (X,B). Observe that the point 2)
means that F is an equivalence 1-cell in the 2-category Cat2 of categories, and that the 2-functorK (X,−) : K
−→ Cat2 sends the product 0-cell A × B inK to the 1-product in the 1-category of categories Cat1.

With this in mind we define:

Definition 5.2 A 3-product of 0-cells A and B in a tricategory V consists of:
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• a 0-cell A × B and 1-cells p1 : A × B −→ A, p2 : A × B −→ B, such that

• for every X ∈ V there is a biequivalence of bicategories

V(X,A × B) ≃ V(X,A) × V(X,B)

where on the right hand-side the 2-product in the 2-category Bicat2 of bicategories, pseudofunctors and icons
[27] is meant.

The second point in the above definition says that there is an equivalence 1-cell in the tricategory Bicat3 of
bicategories (bicategories, pseudofunctors, pseudonatural transformations and modifications) up to which
the “trifunctor” V(X,−) : V −→ Bicat3 sends the product 0-cell A × B to the 2-product of bicategories.

For 3-products of k > 2 0-cells the projection 1-cells to the first i and last j components we will write by
pk

1...i and pk
k− j+1...k, respectively.

It is useful to unpack the above definition. We will do it for the dual notion of a 3-coproduct in V. In this
case the natural biequivalence of bicategories in question takes the form V(A ⨿ B,X) ≃ V(A,X) ⨿ V(B,X)
and the analogous “trifunctor” V(−,X) : V −→ Bicat is now contravariant.

Definition 5.3 A 3-coproduct of 0-cells A and B in a tricategory V consists of: a 0-cell A ⨿ B and 1-cells ι1 : A
−→ A⨿ B, ι2 : B −→ A⨿ B, such that

• for every 0-cell T and 1-cells f1 : A −→ T, f2 : B −→ T there are a 1-cell u : A⨿ B −→ T and equivalence 2-cells
ζi : uιi ⇒ fi, i = 1, 2;

• for all 1-cells u, v : A⨿ B −→ T and 2-cells α : uι1 ⇒ vι1 and β : uι2 ⇒ vι2, there are a 2-cell γ : u ⇒ v and
3-cells Γ1 : γ ⊗ Idι1 ⇛ α and Γ2 : γ ⊗ Idι2 ⇛ β;

• for every two 2-cells γ, γ′ : u ⇒ v and every two 3-cells χi : γ ⊗ ιi ⇛ γ′ ⊗ ιi, i = 1, 2 there is a unique 3-cell
Γ : γ⇛ γ′ such that χi = Γ ⊗ IdIdιi

, i = 1, 2.

We say that a tricategory V has small 3-(co)products if it has them for any family of 0-cells indexed by
(elements of) a set.

6. Categories internal in iconic tricategories

We are interested in internalization in ambient weak n-categories, for n = 1, 2, 3, that have an underlying
1-category. Such ambient weak n-categories can be various “categories of categories”.

6.1. Iconic tricategories
For n = 2 a folklore example of internal categories are pseudo double categories for which the above

condition is fulfilled: they are internal categories in the 2-category of categories. For n = 3 such ambient
categories are Gray categories and iconic tricategories from [32]. We recall that Gray categories, introduced
in [17], are categories enriched in the category of 2-categories and 2-functors equipped with the monoidal
product constructed by Gray in [23]. As such, Gray categories are tricategories with: strictly associative
and unital composition on 1-cells, horizontal composition on 2-cells is given by whiskering and it turns
out to be also strictly associative and unital, the only non-strict isomorphism is the interchange (between
2-cells).

On the other hand, iconic tricategories, introduced in [32], are categories enriched over Cartesian
monoidal 2-category Bicat2 of bicategories, pseudofunctors and icons from [27]. Being the pseudonatural
equivalences for associativity and units icons, i.e. their 1-cell components are identities, associativity and
unitality of 1-cells is strict, but it is not necessarily so (in the horizontal direction) on 2-cells. The associativity
and units icons must satisfy the pentagon and the triangle identities strictly (from the enrichment). As the
edges of the pentagonal and triangular diagrams are the 1-cell components of the icons, they are identity
2-cells in the iconic tricategory, and what forces the pentagon and the triangle to commute strictly are
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uniquely determined 3-cells (that determine modifications π and µ), which satisfy any axiom, including
the tricategory axioms. Similarly, one has modifications λ and ρ whose 1-cell components are uniquely
determined 3-cells, and all the modifications π, µ, λ and ρ fulfill the desired axioms for a tricategory from
[17]. One has that every Gray category is an iconic tricategory, and consequently every tricategory is
triequivalent to an iconic tricategory (see e.g. [32, Remark 6.7]).

A very well-known example of an iconic tricategory is the tricategory Bicat3 of bicategories, pseudo-
functors, pseudonatural transformations and modifications. In particular, in this paper we are interested
in iconic tricategories DblPs and 2Catwk, the latter being the tricategory of 2-categories, pseudofunctors,
pseudonatural transformations and modifications. Observe that none of these three iconic tricategories is
a Gray category. Namely, we saw in Subsection 3.6 that the horizontal associativity of 2-cells in DblPs is
not strict. As for 2-cells of Bicat3 and 2Catwk, that the associativity of pseudonatural transformations is not
strict, see e.g. in [34, Lemma 11.5.9].

From now on we fix throughout this section V to be an iconic tricategory.

6.2. Internalization
We want to define a category internal in V. In [10, Definition 2.11] an internal category in a Gray-

category was defined. Therein, the definition of a Gray-category is based on whisker, so that instead of a
full interchange law there appears an isomorphism 3-cell sw (with an additional rule for whiskering). From
the point of view of V, the 3-cell sw can be defined as the following transversal composition of 3-cells:( [α| Id]

[Id |β]

)
ξ
⇛
[( α

Id

)∣∣∣∣∣( Idβ )] � [( Idα )
∣∣∣∣∣( βId )] ξ−1

⇛
( [Id |β]

[α| Id]

)
,

for 2-cells α and β, where the middle isomorphism stands for the composition of one “vertical” unity
constraint with the inverse of the other in the appropriate order, in both coordinates. Here [α|β] denotes
the horizontal composition β ⊗ α, and the fractions denote the vertical one. We consider by the coherence
Theorem [17, Theorem 1.5] that these unity constraints are identities, so sw will be identity. Another
difference with respect to [10, Definition 2.11] is that therein the authors work with 1-pullbacks (a Gray-
category is an iconic tricategory), while we are working with 3-pullbacks introduced in Section 5.

As a matter of fact, we will need only certain 3-pullbacks. For this reason we define iterated 3-pullbacks,

analogously to iterated 2-pullbacks from [19]. Let B1
s
−→
−→

t
B0 be 1-cells in an iconic tricategory V. Iterated n-

fold composition of the span B1
s
−→
−→

t
B0 in V can be defined via 3-pullbacks. Such n-fold composition we call

iterated 3-pullbacks. We denote them by (any of the distributions of the parentheses on) B1×B0 B1×B0 · · ·×B0 B1

(n times). We will write this shortly as B(n)0

1 , regardless the choice of the distributions, which will be clear
from the context. Let B(0)0

1 be B0. For the projections pi : B(n)0

1 −→ B1 for i = 1, 2 . . . n we will use lexicographical
order.

Remark 6.1 The 3-pullback (B1 ×B0 B1, s, t) we will consider with the following order of factors:

-p2 B1

B0.
?
t

B1 ×B0 B1

B1

?
p1

-
s

The labels s and t are suggestive for the case when B1 is a hom-set, then as the diagram indicates, the
3-pullback B1 ×B0 B1 is read from right to left, although the projections are labeled in the lexicographical
order.

In the next definition, to simplify the notation, the unsubscribed symbol × will stand for ×B0 at many
places.
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Definition 6.2 Let V be an iconic tricategory. A category internal in V consists of:

1. 1-cells B1
s
−→
−→

t
B0 in V, which we call source and target morphisms, for which the iterated 3-pullbacks B(n)0

1 ,n ∈N

exist;

2. 1-cells: B1 ×B0 B1
c
−→ B1 composition and u : B0 −→ B1 unit (or identity) morphism in V;

3. equivalence 2-cells a∗ : c⊗(idB1×B0 c)⇒ c⊗(c×B0 idB1 ), l∗ : c⊗(u×B0 idB1 )⇒ idB1 and r∗ : c⊗(idB1×B0 u)⇒ idB1

in V;

4. 3-cells in V:

π∗ :
Idc ⊗(IdidB1

×a∗)
a∗ ⊗ Id1×c×1

Idc ⊗(a∗ × IdidB1
)
⇛

a∗ ⊗ Id1×1×c
Idc ⊗Nat(c×1)(1×1×c)

a∗ ⊗ Idc×1×1

µ∗ : Idc ⊗(IdidB1
×r∗)⇛

a∗ ⊗ IdidB1×u×idB1

Idc ⊗(l∗ × idB1 )

λ∗ : Idc ⊗(IdidB1
×l∗)⇛

a∗ ⊗ IdidB1×idB1×u

Idc ⊗Nat(c×idB1 )⊗(idB1×idB1×u)

l∗ ⊗ Idc

ρ∗ :
a∗ ⊗ Idu×idB1×idB1

Idc ⊗(r∗ × idB1 )
⇛

Idc ⊗Nat(c×idB1 )⊗(u×idB1×idB1 )

r∗ ⊗ Idc
NatidB1⊗c

ϵ∗ : l∗ ⊗ Idu ⇛
Idc ⊗Nat(idB1×u)⊗u

r∗ ⊗ Idu

which satisfy axioms (IT-1) - (IT-5) in the second part of the Appendix and symmetric versions of (IT-1), (IT-3)
and (IT-4) (here the 2-cells ν are all identities, see the Remark below);

the above data should moreover satisfy the following compatibility conditions:

sp2 = tp1, su = idB0 = tu, sc = sp1, tc = tp2,

ids ⊗ l∗ = ids = ids ⊗ r∗, idt ⊗ l∗ = idt = idt ⊗ r∗, ids ⊗ a∗ = idsp1 , idt ⊗ a∗ = idtp3 ,

Idids ⊗π
∗ = Ididsp1

, Ididt ⊗π
∗ = Ididtp4

,

Idids ⊗µ
∗ = Idids ⊗λ

∗ = Idids ⊗ρ
∗ = Ididsp1

, Ididt ⊗µ
∗ = Ididt ⊗λ

∗ = Ididt ⊗ρ
∗ = Ididtp2

,

where pi, i = 1, 2, 3, 4, are 1-cells projections from the corresponding pullbacks in V.

Remark 6.3 When writing out the 3-cells (and the axioms) in our definition, the following should be kept
in mind.

a) We will identify 1-cells (idB1 × u) ⊗ c (acting on B1 ×B0 B1) and c × u (acting on (B1 ×B0 B1) ×B0 B0), by
suppressing the isomorphism 1-cells (for the associativity and unity of the 3-pullback) between their
domains. We do similar for u and their symmetric counterparts. Recall that since V is iconic, one has
c ⊗ idB1 = c.

b) We explain the (co)domains of the 2-cells Id• ×a∗, Id• ×r∗, Id• ×l∗ and their symmetric counterparts in
item 4 in the definition above. Given a 2-cell α : G⊗F⇒ G′ ⊗F′, by abuse of notation, by α× idB1 we will
mean the induced 2-cell (G × 1) ⊗ (F × 1)⇒ (G′ × 1) ⊗ (F′ × 1). (Observe that by the 3-pullback property,
between (G × 1) ⊗ (F × 1) and (G ⊗ F) × 1 there exists a (possibly non-isomorphism) 2-cell γ.)
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c) The naturality identity 2-cells we will sometimes draw explicitly and denote them all by ν, or we will
just write “=” between two equal compositions of 1-cells. Here we refer to the 1-cells of the form
G × F = (G ⊗ 1) × (1 ⊗ F) = (1 ⊗ F) × (G ⊗ 1).

d) In order to simplify the diagrams and the definition, we could want the following two vertical compo-
sitions of horizontal compositions of 2-cells to be equal:

��
⇓Id CC

��
⇓Id CC

��
⇓Id CC

��
⇓α CC

��
⇓Id CC

��
⇓α CC

��
⇓Id CC

��
⇓Id CC

When V = DblPs, applying Proposition 3.12 and Proposition 3.13 one can see that the two compositions
above differ by a modification given by the globular 2-cells δαi,id for i = 1, 2. Thus one could restrict to
a full sub tricategory of V whose 1-cells are double pseudofunctors F which applied to the identity 1h-
and 1v-cells give identities. Then one could also consider that their distinguished 2-cells FA and FA (see
the next section) are identities (for all 0-cells A of the domain strict double category of F), thus the unity
constraints for the horizontal composition would both be identities (see [13, Section 4.8]), and one could
also consider that 2-cells of the sub tricategory are those double pseudonatural tranformations α of V
whose associated globular 2-cells δαi,id for i = 1, 2 are identities (see the end of Definition 3.1).

Remark 6.4 Let us comment the axioms (IT-1) - (IT-5). We do it for the case of the full sub tricategory of V
from point e) in the above Remark, let us denote it by V∗. Although the 3-cell sw is identity in our context,
we will mention it, as it helps to better understand technically how the compositions of 3-cells are made in
the axioms.

By n-fold fractions we denote vertical composition of n 3-cells (observe that we consider vertical as-
sociativity of 2-cells as identity). All the drawings of 2-cells (bicategory diagrams), and accordingly the
3-cells acting between them, are read from top to bottom and from left to right, including the horizontal
composition of 3-cells α⊗β, (first acts α, then β) which otherwise is read from right to left. In one entry of an
n-fraction vertical lines present transversal composition of 3-cells (read from left to right). Moreover, in one
such entry may appear: αα′ |β|β

′
|β′′ where all the named cells are 3-cells. This means that instead of writing

separate drawings for four transversally composed 3-cells, we condense them into one 3-cell written this
way. We usually do this when applying the distinguished 3-cells sw, a, ξ from the ambient tricategory V∗

(associativity of 2-cells and interchangers).
(IT-1) comprises of λ∗u, ε∗, µ∗u, sw and the first 1-cell in its domain 2-cell is idB1 ⊗ u ⊗ u (in the symmetric

version it is u ⊗ u ⊗ idB1 ).
(IT-2) comprises of λ∗, ρ∗, sw, a, ξ and the first 1-cell in its domain 2-cell is u ⊗ idB1 ⊗ u.
(IT-3) comprises of λ∗, π∗, sw, a, ξ and the first 1-cell in its domain 2-cell is idB1 ⊗ idB1 ⊗ idB1 ⊗ u (in the

symmetric version it is u ⊗ idB1 ⊗ idB1 ⊗ idB1 ). It corresponds to the normalization in the first and the fourth
coordinate.

(IT-4) comprises of µ∗, λ∗, π∗, sw, a, ξ and the first 1-cell in its domain 2-cell is idB1 ⊗ idB1 ⊗ u ⊗ idB1 (in the
symmetric version it is idB1 ⊗ u ⊗ idB1 ⊗ idB1 ). It corresponds to the normalization in the second and the third
coordinate.

(IT-5) comprises of π∗, sw, ξ. It corresponds to the 4-cocycle condition on a∗.
Observe in these axioms that the 3-cells sw, a, ξ are the distinguished 3-cells from the ambient tricategory
V∗.

7. Categories internal in DblPs

For the iterated 3-pullbacks B(n)0

1 = B1 ×B0 B1 ×B0 · · · ×B0 B1 (n times) in DblPs to exist we consider
the source and target double functors to be strict. Under this assumption, an internal category in DblPs
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consists of strict double categories D0 and D1, strict double functors S,T : D1 −→ D0, double pseudo
functors U : D0 −→ D1,M : D1 ×D0 D1 −→ D1, double pseudonatural transformations a∗, l∗, r∗ and double
modifications π∗, µ∗, λ∗, ρ∗, ε∗, satisfying the corresponding axioms from the previous section. Both double
pseudo functors U and M are equipped with distinguished globular 2-cells (set F for any of U and M):

F(A) F(C)-F(1 f )

F(A) F(B)-F( f )
F(C)-F(1)?

=
?

=F1 f

F(A) F(A)-F(idA)

?
=

F(A) F(A)-=
?
= FA

F(A) F(A)-=

F(A′)
?

F(u)

F(A′′) F(A′′)-=
?

F(v)
?

F(vu)

Fvu F(A) F(A)-=

?
F(idA)

F(A) F(A)-=
?
= FA

satisfying the following axioms, where f , 1, h are composable 1h-cells, u, v,w are composable 1v-cells, a
and b are 2-cells composable horizontally and a and a′ are 2-cells composable vertically (note that here, for
simplicity of the notation, we are denoting both 1h- and 1v-composition by juxtaposition, the difference is
clear from the letters denoting 1-cells). Coherence in the 1h-direction:

F(A) F(C)-F(1 f )
F(D)-F(h)

F(A) F(B)-F( f )
F(C)-F(1)

F(D)-F(h)?
=

?
=

?
=F1 f Id

F(A) F(D)-F(h(1 f ))

?
=

?
=Fh(1 f )

= F(A) F(B)-F( f )
F(D)-F(h1)

F(A) F(B)-F( f )
F(C)-F(1)

F(D)-F(h)?
=

?
=

?
=Id Fh1

F(A) F(D)-F((h1) f )

?
=

?
=F(h1) f

F(A) F(A)-F(idA)
F(B)-F( f )

?
=

F(A) F(A)-= F(B)-F( f )?
=

?
=FA

Id =

F(A) F(A)-F(idA)
F(B)-F( f )

F(A) F(B)-
F( f idA)

?
=

?
=F f idA

F(A) F(B)-F( f )
F(B)-F(idB)

?
=

F(A) F(B)-F( f )
F(B)-=

?
=

?
=FBId =

F(A) F(B)-F( f )
F(B)-F(idB)

F(A) F(B),-
F(idB f )

?
=

?
=FidB f

coherence in the 1v-direction:

F(A) F(A)-= F(A)-=

F(A′)
?

F(u)

Fw(vu)

F(A′′) -=
?

F(v)

F(A′′)
?

F(vu)Fvu

?
F(w)Id

?
F(w)

F(A′′′) -= F(A′′′) -= G(B′)
?

F(w(vu))

=

F(A) F(A)-= F(A)-=

F(A′)
?

F(u)

F(wv)u

F(A′′)
?

F(v)

?

F(wv)

F(A′)
?
F(u)Id

?
F(w)

F(A′′′) -= F(A′′′) -=

-=

F(A′′′)
?

F((wv)u)

Fwv

F(A) F(A)-=

F(A) F(A)-=

F(A′) F(A′)-=

?
=

?
F(u)

?
F(idA)

?
F(u)

FA

Id

=

F(A) F(A)-=

F(A′) F(A′)-=
?

F(uidA) F(A)
?

F(idA)

?
F(u)

FuidA and

F(A) F(A)-=

F(A′) F(A′)-=

F(A′) F(A′)-=

?
F(u)

?
=

?
F(u)

?

F(idA′ )

Id

FA′

=

F(A) F(A)-=

F(A′) F(A′),-=
?

F(idA′u) F(A′)
?

F(u)

?
F(idA′ )

FidA′u



B. Femić / Filomat 38:8 (2024), 2601–2660 2637

coherence for the composition of and unity 2-cells, horizontally:

F(A) F(C)-F(1 f )

F(A) F(B)-F( f )
F(C)-F(1)

F1 f

?

F(v)

?

=

?

=

F(a) F(b)

F(A′) F(B′)-F( f ′)
F(C′)-F(1′)?

F(u)
?

F(w)

=

F(A) F(C)-F(1 f )

F(A′) F(C′)-F(1′ f ′)?

F(u)
?

F(w)F(a|b)

F1′ f ′

F(A′) F(B′)-F( f ′)
F(C′)-F(1′)?

=

?

=

F(A) F(A)-=

F(A) F(A)-F(idA)

F(A′) F(A′)-F(idA′ )

?

=

?

F(u)

?

=

?

F(u)

F−1
A

F(Idu)
=

F(A) F(A)-=

F(A′) F(A′)-=

F(A′) F(A′)-F(idA′ )

?

F(u)

?

=

?

F(u)

?

=

F(Idu)

F−1
A′

and vertically:

F(A) F(A)-= -F( f )

F(A′)
?

F(u) Fvu

F(A′′) F(A′′)-=
?

F(v)
?

F(vu) F( a
a′ )

F(B)

F(B′′)
?

F(v′u′)

-F(h)

=

F(A) F(B)-F( f ) -=

?

F(u)

Fv′u′

F(A′′) -F(h)?

F(v)

F(B′)
?

F(u′)

F(B′′)
?

F(v′)

F(a)

F(A′) -F(1)

F(B)

F(B′′)
?

F(v′u′)

-
=

F(a′)

F(A) F(A)-= F(B)-F( f )

?

F(idA)

F(A) F(A)-= F(B)-F( f )?

=

?

F(idB)FA F(Id f ) =

F(A) F(B)-F( f )
F(B)-=

F(A) F(B)-F( f )
F(B).-=

?

=

?

=

?

F(idB)IdF( f ) FB

The above three coherences in the 1v-direction for U and M correspond to axioms (21)-(26) of [19,
Section 3], respectively. The analogous six coherences in the 1h-direction do not appear there. The two
(horizontally) globular 2-cells Fvu and FA for U and M correspond to natural transformations (17)-(20):
UA = τ,Uvu = µ,MA = δ,Mvu = χ, and the above two coherences for the composition of and unity 2-cells in
the vertical direction for U and M correspond to naturalities of (17)-(20). One can analogously formulate
natural transformations in the horizontal direction, introducing additional two (vertically) globular 2-cells
F1 f and FA for U and M and the above two coherences for the composition of and unity 2-cells in the
horizontal direction, which correspond to their naturalities. (To formulate these natural transformations in
the horizontal direction change the roles of vertical and horizontal cells in the definition of two categories
determining a strict double category.) For the sake of comparing this structure to intercategories, for
mnemotechnical reasons we could denote these distinguished (vertically) globular 2-cells as follows: UA =
τ′,U1 f = µ′,MA = δ′,M1 f = χ′.

Summing up, for the double pseudo functors U and M we have eight globular 2-cells:

U1 f ,UA,Uvu,UA, M1 f ,MA,Mvu,MA,

which satisfy in total 20 axioms named above. We will denote their actions as follows. Let us denote the
image under M : D1 ×D0 D1 −→ D1 of (y, x) by (x|y) for any of the four types of cells (y, x) ∈ D1 ×D0 D1.
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Moreover, let us denote by Idh
x the image under U : D0 −→ D1 of any of the four types of cells x inD0. Now

for 1h-cells 1, 1′, f , f ′ and 1v-cells u,u′, v, v′ ofD1 (for the action of M), respectively ofD0 (for the action of
U) we will write:

χ :
(u|u′)
(v|v′)

⇒ (
u
v
|
u′

v′
), δ : idv

(A|A′) ⇒ (idv
A|id

v
A′ ), µ :

Idh
u

Idh
v

⇒ Idh
u
v
, τ : idv

Idh
A
⇒ Idh

idv
A

(7.9)


(1 f |1′ f ′)
⇓ χ′

(1|1′)( f | f ′)


(idh

A|id
h
A′ )

⇓ δ′

idh
(A|A′)


Idh
1 f

⇓ µ′

Idh
1 Idh

f


Idh

idh
A

⇓ τ′

idh
Idh

A

(7.10)

here idv
A denotes the identity 1v-cell on A (observe that the composition in the juxtapositions is read from

right to left, while in (−|−) it is done the other way around!).

A double pseudonatural transformation α : F ⇒ G between double pseudo functors F and G consists
of a vertical pseudonatural transformation α0 : F ⇒ G and a horizontal pseudonatural transformation
α1 : F ⇒ G, both of which by Definition 3.1 are given by two distinguished globular 2-cells δα0,u and δα1, f
and satisfy 5 axioms (two of them are trivial and one is simplified in the context of intercategories), two
distinguished 2-cells tαf and rαu for every 1v-cell u and 1h-cell f , which have to satisfy 6 axioms in total, by
Definition 3.9. Comparing such a structure of a double pseudonatural transformation with the context of
intercategories, that is, comparing 2-cells of the tricategory DblPs and the 2-category LxDbl, one finds that
in the latter context only α1 appears (with δα1, f trivial), being the resting data α0, four 2-cells and 6 axioms
new in our context.

Thus each of double pseudonatural transformations a∗ : M(Id×D0 M) −→ M(M ×D0 Id), l∗ : M(U ×D0 −)
−→ − and r∗ : M(−×D0 U) −→ − is equipped with 6 distinguished 2-cells for every 1v-cell u and 1h-cell f and
satisfies 16 axioms. This makes 18 distinguished 2-cells and 48 axioms. As commented in Subsection 3.3, if
double pseudonatural transformations come from Θ-double pseudonatural transformations (the 2-cells tαf
and rαu come from a 2-cell ΘαA), as indicated in Proposition 3.15, then two axioms become trivially fulfilled
for each double pseudonatural transformation, reducing the amount of axioms to 42. The 6 conditions
(27)-(32) from [19, Section 3] for horizontal transformations, corresponding to our a∗, l∗, r∗, together with the
corresponding three naturality conditions, so 9 in total, are substituted by 42 or 48 axioms in our context.

Instead of writing out all the axioms for all of the transformations here, let us just record the following.
For the double pseudonatural transformation a∗ : M(Id×D0 M) −→ M(M ×D0 Id), which we can also write
as a∗ : ((−|−)|−) ⇒ (−|(−|−)), let us shorten: L = (−|−)|− = ((−|−)|−) and R = −|(−|−) = (−|(−|−)). The 1v-
and 1h-composition inD1 we will denote by fractions and juxtapositions: u

v and 1 f , respectively. Then the
distinguished globular 2-cells for the double pseudonatural transformations L and R are given by:

Lvu =
( (u|u′)|u′′

(v|v′)|v′′
χ••,•
⇒

(u|u′)
(v|v′)

|
u′′

v′′
χ|1
⇒

(u
v
|
u′

v′
)
|
u′′

v′′
)
, Rvu =

(u|(u′|u′′)
v|(v′|v′′)

χ•,••
⇒

u
v
|
(u′|u′′)
(v′|v′′)

1|χ
⇒

u
v
|

(u′
v′
|
u′′

v′′
))

LA =
(

Idv
(A|A′)|A′′

δ••,•
⇒ [Idv

(A|A′) | Id
v
A′′ ]

[δ|1]
⇒ [Idv

A | Id
v
A′ ] Idv

A′′
)

RA =
(

Idv
A|(A′ |A′′)

δ•,••
⇒ [Idv

A | Id
v
(A′ |A′′)]

[1|δ]
⇒ Idv

A[Idv
A′ | Id

v
A′′ ]
)

L1 f =



(
( f |1)|( f ′|1′)

)
|( f ′′|1′′)

⇓ χ′| Id
( f ′ f |1′1)|( f ′′|1′′)

⇓ χ′

f ′′( f ′ f )|1′′(1′1)

R1 f =



( f |1)|
(
( f ′|1′)|( f ′′|1′′)

)
⇓ Id |χ′

( f |1)|( f ′′ f ′|1′′1′)
⇓ χ′

f ′′( f ′ f )|1′′(1′1)
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LA =



(idh
A|id

h
A′ )|id

h
A′′

⇓ δ′| Id
idh

A|A′ |id
h
A′′

⇓ δ′

idh
(A|A′)|A′′

RA =



idh
A|(id

h
A′ |id

h
A′′ )

⇓ Id |δ′

idh
A|id

h
A′ |A′′

⇓ δ′

idh
A|(A′ |A′′).

In [14, Section 4.2] we wrote out a half of the axioms for the double pseudonatural transformation a∗.

7.1. (Pseudo)monoid in Böhm’s (Dbl,⊗) as a category internal in DblPs

From our discussion from the end of Subsection 2.4 we see that in order to view a monoidA in (Dbl,⊗)
as a category internal in DblPs, the double pseudo functor ⊛ : A×A −→ A is a good candidate for a desired
composition on the pullback (M : D1 ×D0 D1 −→ D1, withD1 = A andD0 = 1).

Recall that m : A ⊗A −→ A is a strict double functor on the Gray type monoidal product on (Dbl,⊗),
while ⊛ : A ×A −→ A is a double pseudo functor on the Cartesian product of double categories. Let us
set f ⊛ 1 = m

(
(1 ⊗ 1)( f ⊗ 1)

)
(recall the discussion from Subsection 2.3). Since m is strictly multiplicative

in both directions, we find m
(
(1 ⊗ 1)( f ⊗ 1)

)
= m(1 ⊗ 1)m( f ⊗ 1), which yields (1 ⊛ 1)( f ⊛ 1) = f ⊛ 1 (taking

h′ = 1, k = 1 in the computation in Subsection 2.3 we recover the same identity).
Now direct computation shows: h ⊛ (1 ⊛ f ) = (h ⊛ 1) ⊛ f in both vertical and horizontal direction of 1-

cells: use the distributive law of the tensor with respect to the composition of 1-cells in the Gray type tensor
productA⊗A (see the description of this tensor product after Definition 2.2), the fact that associativity of the
latter compositions is strict and that m is strictly associative [3, (iii) of Section 4.3]). This yields an analogous
result on 0- and double cells, then for the double pseudonatural transformation a∗ : ⊛(Id×⊛) −→ ⊛(⊛ × Id)
we may set to be identity: (a∗0)C,B,A = idv

(A|B)|C and (a∗1)C,B,A = idh
(A|B)|C, (a∗0) f ′′, f ′, f = Id( f | f ′)| f ′′ = ta∗

f = ta∗
f ′′, f ′, f and

(a∗1)u′′,u′,u = Id(u|u′)|u′′ = ra∗
u = ra∗

u′′,u′,u, and LA = LA′′,A′,A = 1(A|A′)|A′′ , the same for RA, here C,B,A are 0-cells,
u′′,u′,u 1v-cells, and f ′′, f ′, f 1h-cells ofA. Observe that it is M = ⊛,M(y, x) = y ⊛ x = (x|y).

Let I denote the image 0-cell of the strict double functor u : ∗ −→ A. Observe that: m(A, I) = ⊛(A, I) = A⊛I
and similarly the other way around, for any 0-cell A ∈ A. Now by [3, (iii) of Section 4.3] we deduce that
left and right unity constraints l∗ and r∗ for ⊛ : A ×A −→ A are identities. As a matter of fact, as a monoid
in a 1-category it can not have 2- and 3-cells for the constraints, so we have that a monoid A in (Dbl,⊗) is
not only a category internal in DblPs, but even a category internal in the underlying 1-category of DblPs,
which is the category from [31, Section 6].

Let us consider a monoidal 2-category made out of the monoidal category (Dbl,⊗) from [3] by adding as
2-cells vertical transformations, whose 1v-cell components have 1h-companions (recall Subsection 4.1). We
denote this 2-category by (Dbl2,⊗). Let us now consider peudomonoids in this 2-category. We repeat the
analogous arguments as in the above computations. The difference appears when computing associativity
on the 1-cells: now m is not strictly associative, rather there is an isomorphism am

0 : ⊗(id × ⊗) −→ ⊗(⊗ × id).
We have to take into account the form of (horizontal and vertical) 1-cells inA⊗A⊗A, we find: h⊛ (1⊛ f ) =(
h⊛ (1⊛1)

)
[
(
1⊛ (1⊛1)

)
· (1⊛ (1⊛ f )

)
] and (h⊛1)⊛ f = [

(
(h⊛1)⊛1

)
·

(
(1⊛1)⊛1

)
]
(
(1⊛1)⊛ f

)
, where the square

brackets may be omitted, and the dot denotes the composition of 1-cells (in the corresponding direction).
Then we define the 2-cell (a∗0)h,1, f as the following 2-cell:

(a∗0)h,1, f =

-( f |1)|1 -(1|1)|1 -(1|1)|h

(am
0 ) f ,1,1

?

(am
0 )A,B,C

(am
0 )1,1,1 (am

0 )1,1,h

?
(am

0 )A′,B,C
?
(am

0 )A′,B′,C
?

(am
0 )A′,B′,C′

-f |(1|1) -1|(1|1) -1|(1|h)

(7.11)

so that on 0-cells we have: (a∗0)A,B,C = (am
0 )A,B,C. (On the right hand-side of the identity (7.11) the indexes are

read from the left to the right, to accompany the notation of the 1h-cells used here.) In Subsection 4.2 we
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proved for what here are 2-cells of (Dbl2,⊗) that they can be turned into 2-cells in the tricategory DblPs. Let
am

1 denote the obtained (strong) horizontal transformation, and tm
h,1, f and rm

w,v,u the obtained distinguished
2-cells making am = (am

0 , a
m
1 , t

m, rm) a double pseudonatural transformation. We define the 2-cell (a∗1)w,v,u, for
1v-cells u, v,w, in the analogous way as we did for (a∗0)h,1, f above. The 2-cells tm, rm are constructed due to
Proposition 3.15 as follows:

tm
f̃
=

F(Ã) F(B̃)-F( f̃ )
G(B̃)-

am
1 (B̃)

G(Ã) G(B̃)-G( f̃ )
G(B̃)-=

?

am
0 (Ã)

?

am
0 (B̃)

?

=(am
0 ) f̃ εm

B̃ and rm
ũ =

F(Ã) G(Ã)-
am

1 (Ã)

F(Ã′)
?

F(ũ)

G(Ã′) -=
?

am
0 (Ã′)

G(Ã′)
?

=

G(Ã′)
?

G(ũ)(am
1 )ũ

-
am

1 (Ã′)

εm
Ã′

(7.12)

where F = ⊗(id × ⊗) and G = ⊗(⊗ × id), f̃ and ũ are 1h- and 1v-cell inA ×A ×A, respectively, and εm
A is the

2-cell from the data that am
0 (A) is a companion of am

1 (A). We construct t∗ and r∗ by the same recipe: substitute
(am

0 ) f̃ from (7.12) by (a∗0)h,1, f from (7.11), and set ε∗C′,B′,A′ = ε
m
C′,B′,A′ to define t∗h,1, f , analogously for r∗w,v,u. Then

a∗ = (a∗0, a
∗

1, t
∗, r∗) constitutes a 2-cell in DblPs.

For the unity constraints l∗, r∗ the argument is simpler. Since A ⊛ I is an image both by m : A ⊗A −→ A
and by ⊛ : A ×A −→ A, as we argued above, we just set l∗ = lm and r∗ = rm, being the right hand-sides
unity constraints for m. Analogously as above, these vertical transformations can be made into double
pseudonatural transformations, hence l∗ and r∗ are indeed 2-cells in DblPs.

For the 3-cells in Definition 6.2 we take to be identities and get that a pseudomonoid in (Dbl2,⊗) is
indeed a category internal in DblPs.

In order to have an example with non-trivial 3-cells from Definition 6.2, one can take a “weak pseu-
domonoid” in the tricategory (Dbl3,⊗), which is obtained from the 2-category (Dbl2,⊗) by adding invertible
vertical modifications as 3-cells, i.e. invertible modifications of vertical transformations.

Let us now prove that invertible vertical modifications give rise to invertible horizontal modifications,
so that together they make (invertible) 3-cells in the tricategory DblPs. Then the 3-cells constraints for
m, which are πm, µm, λm, ρm, can be upgraded to 3-cells π∗, µ∗, λ∗, ρ∗ corresponding to the desired 3-cells in
Definition 6.2, and we would have this desired example.

Recall that vertical modifications are given by 2-cells b0(A) as on the left hand-side below, then let the
inverses of horizontal modifications be given via the 2-cells b−1

1 (A) on the right hand-side below:

F(A) F(A)-=

G(A) G(A)-=
?

α0(A)
?

β0(A)b0(A) b−1
1 (A) =

F(A) F(A)-=

ηα(A)

?

α0(A)
?

β0(A)

F(A) F(A)-= G(A)-β1(A)

G(A)-
= G(A)-

=

?

=b0(A) ε
β
A

F(A) G(A)-α1(A)?

=

(in the obvious way b1(A) is given via b−1
0 (A); recall that η and ε come from the data of companions).

It is straightforward to prove that this defines horizontal modifications (one uses ε-η-properties and the
construction of a horizontal transformation out of a vertical one from Proposition 4.1; recall that for vertical
transformations α0 the distinguished 2-cells δα0,u are identities, for 1v-cells u). Finally, the two compatibility
conditions between a horizontal and a vertical modification from Definition 3.17 are directly proved. In the
second condition one uses the third identity in Corollary 4.4 which is fulfilled in this context. This finishes
the proof that a “weak pseudomonoid” in the tricategory (Dbl3,⊗) is a category internal in the tricategory
DblPs.

Among the examples of intercategories from [21] duoidal categories and Gray categories are such that
their composition functor on the pullback (when they are seen as internal categories) induces a lax (double)
functor on the Cartesian product. For this reason they do not fit our construction, of a category internal
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in DblPs. The rest of the examples do (so that 3-cells for the internal structure are trivial). These are e.g.
monoidal double categories of [30], cubical bicategories of [16], Verity double bicategories from [33].

7.2. Geometric interpretation of a category internal in DblPs

Let us denote this structure formally by

D1 ×D0 D1
−→
−→
−→ D1

−→
←−
−→ D0

and the functor components of the double pseudo functors U : D0 −→ D1 and M : D1 ×D0 D1 −→ D1 by
Ui,Mi, i = 0, 1. Then we may obtain a similar grid of categories and functors to (∗) from [19, Section 4],
the difference is that now the three columns in the grid are strict double categories and the rows differ in
that not only the functors U1 and M1, but now also U0 and M0, are equipped with natural transformations
expressing their lax multiplicativity and lax unitality.

Let us see a geometrical representation of this alternative notion to intercategories on a cube. Con-
sidering source and target functors, as well as arrows from morphisms to objects in the categories
(D0)0, (D0)1, (D1)0, (D1)1 constituting double categoriesD0 andD1, one sees that the objects of (D0)0 are the
lowest and morphisms of (D1)1 are the highest in this hierarchy, so we may present the former by vertices
of a cube and the latter by the whole cube. For the rest of gadgets there is a choice, we will fix the one as in
[19, Section 4], so that we have:

vertices - objects ofD0

horizontal arrows - objects ofD1,
vertical arrows - 1v-cells ofD0,
transversal arrows - 1h-cells ofD0,
horizontal cells - 1h-cells ofD1,
lateral cells - 2-cells ofD0,
basic cells - 1v-cells ofD1 and
cube - 2-cells ofD1.

�
���

���*
• •-

�
���

���*

1h o f D1

vertices : objects o f D0

• •-
objects o f D1

•

?

1v o f D0

• •-
?

1v o f D1

cube : 2-cells o f D1

•

?

���
���*

1h o f D0

2-cells o f D0

From here we see that vertical and transversal arrows compose in their respective directions, horizontal
cells compose in the transversal direction, basic cells compose in the vertical direction, and lateral cells both
in vertical and transversal directions. All of them compose strictly associatively and unitary. The pullback
D1×D0D1 can be represented by horizontal connecting of cubes, and accordingly the functor M : D1×D0D1
−→ D1 corresponds to the horizontal composition of cubes.

The globular 2-cells (7.9) ofD1 are thus cubes whose only non-identity cells are the basic ones, and we
will consider that they map from the back towards the front. They compose in the transversal direction. On
the other hand, the globular 2-cells (7.10) of D1 are cubes whose only non-identity cells are the horizontal
ones, they map from top to bottom, and compose in the vertical direction.

The double pseudofunctor U applied to a 2-cell a of D0 gives a cube Idh
a which is horizontal identity

cube on the lateral cell a, and the rest of the cells are identities on the corresponding 1h- and 1v-cells at the
borders of a.

A 2-cell in D1 is a cube whose lateral cells are identities, top and bottom correspond to its source and
target 1h-cells, while front and back basic cells correspond to its source and target 1v-cells.

For all the laws described in Section 7 observe that horizontal composition of 2-cells inD1 corresponds
to the transversal composition of cubes, and that vertical composition of 2-cells in D1 corresponds to the
vertical composition of cubes.
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8. Enriched categories as internal categories in iconic tricategories

In the first subsection of this section we introduce categories enriched over iconic tricategories. In the
second subsection we prove the result from the above title and in the third one we discuss examples in
lower dimensions that can be seen as its consequences. The next section we dedicate to illustrate this result
on the tricategory of tensor categories.

8.1. Categories enriched over iconic tricategories
For enrichment we need some kind of a monoidal product in the ambient tricategory. We will consider

tricategorical products from Subsection 5.2 (with the terminal object). By a terminal object in a tricategory
we mean a 0-cell I so that for any 0-cell T there is a unique 1-cell t : T −→ I, and all the 2-cells t⇒ t are the
identity one. In the following definition for the terminal object in the ambient tricategory V we will write
just ∗.

Definition 8.1 Let V be an iconic tricategory with 3-products. We say that T is a category enriched over V if it
consists of:

1. a set of objects ObT of T ;

2. for all A,B ∈ ObT a 0-cell T (A,B) in V;

3. for all A,B,C ∈ ObT a 1-cell ◦ : T (B,C) × T (A,B) −→ T (A,C) in V called composition;

4. for all A ∈ ObT a 1-cell IA : ∗ −→ T (A,A) in V called unit;

5. equivalence 2-cells in V: a† : − ◦ (− ◦ −) −→ (− ◦ −) ◦ −, and for all A,B ∈ ObT : l† : IB · 1T (A,B) −→ 1T (A,B)
and r† : 1T (A,B) · IA −→ 1T (A,B);

6. 3-cells π†, µ†, l†, r† and ε† analogous to those in item 4. of Definition 6.2 and which satisfy the analogous
Axioms as the latter ones.

The formal differences in the cells and Axioms in Definition 6.2 and the above one are the following. In
the vertices of the diagrams the iterated 3-pullbacks B(n)0

1 are replaced by T (•, •)×n for natural numbers n,
1-cells c and u are replaced by ◦ and I•, respectively, and supraindeces * are replaced by supraindeces †.

Lemma 8.2 There exist equivalence 1-cells in V between the following 3-coproducts:

⨿A∈ObT ⨿B∈ObT T (A,B) ≃ ⨿B∈ObT ⨿A∈ObT T (A,B) ≃ ⨿A,B∈ObTT (A,B).

Example 8.3 Let Bicat3 denote the iconic tricategory of bicategories, pseudofunctors, pseudonatural trans-
formations and modifications. A tricategory from [17, Definition 2.2] is a category enriched in Bicat3 such
that ε† is an identity. Of course, the latter can not be used as a definition of the notion of a tricategory.
Rather, one could say that a tricategory is a category weakly enriched over the category Bicat1 of bicategories
and pseudofunctors. More general, instead of saying “a category enriched over an iconic tricategory V”
one could say “a category weakly enriched over the underlying category of V”.

8.2. Enriched categories as internal categories in iconic tricategories
Let V be a tricategory with a terminal objectI, finite tricategorical products and tricategorical pullbacks.

Then observe that a 3-product X × Y is in particular a 3-pullback
(
X ×I Y; tX, tY

)
, where tX, tY are the

unique morphisms into I. Moreover, a 3-product X × Y × Z is a 3-pullback
(
(X × Y) ×Y (Y × Z); p2, p1

)
.

In particular, for Y = Y1 × · · · × Yk for any natural k, a 3-product X × Y1 × · · · × Yk × Z is a 3-pullback(
(X × Y1 × · · · × Yk) ×(Y1×···×Yk) (Y1 × · · · × Yk × Z); p2, p1

)
.

In this section we deal with “hands on enrichment” and for this we found it easier to use lexicographical
order when writing 3-products and 3-pullbacks (contrary to Remark 6.1).
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Proposition 8.4 Let V be an iconic tricategory with finite 3-products, a terminal object I and small tricategorical
coproducts. Assume thatT is a category enriched over V, set T0 = ⨿A∈ObTIA - the coproduct of copies of the terminal
object indexed by the objects of T , and T1 = ⨿A,B∈ObTT (A,B), and suppose that V has iterated 3-pullbacks T(n)0

1 . If
additionally the following conditions are fulfilled:

1. for every natural n ≥ 2 the trifunctors⨿B1,...,Bn−1 preserve the following 3-pullbacks:
(
⨿AT (A,B1)

)
×T (B1,B2)×

· · · × T (Bn−2,Bn−1) ×
(
⨿C T (Bn−1,C)

)
;

2. the trifunctors X × − and − × X, for X ∈ ObT , preserve the coproducts ⨿AT (A,B) and ⨿BT (A,B);

then the resulting 3-pullbacks in 1. are ⨿A,B1...,Bn−1,C∈ObTT (A,B1) × · · · × T (Bn−1,C) and for every natural n ≥ 2
there are equivalence 1-cells in V:

an
A1,...,An+1

: ⨿A1,...,An+1∈ObTT (A1,A2) × · · · × T (An,An+1) ≃
−→ T1 ×T0 · · · ×T0 T1︸              ︷︷              ︸

n

(with all possible distributions of parentheses).

Proof. We will do the proof for the cases when n equals 2 and 3, the higher cases are proven in analogous
way. For n = 2 we start by a 3-pullback

(
⨿A T (A,B)

)
×

(
⨿C T (B,C)

)
(over I), and act by the trifunctor

⨿B on it. By the assumption 1. we get the following 3-pullback, where in the first coordinate we apply the
preservation assumption 2., and in the second and third the corresponding equivalences of the coproducts
(in the rest of coordinates by abuse of notation we do not change the notation of the 1-cells for simplicity
reasons):

(⨿A,B,CT (A,B) × T (B,C), ⨿A,BT (A,B), ⨿B,CT (B,C), ⨿BIB, ⨿Bp1, ⨿Bp2; ⨿Bt, ⨿Bt).

On the other hand, by construction this 3-pullback is (T1 ×T0 T1, s, t). Thus there is an equivalence

a2
A,B,C : ⨿A,B,CT (A,B) × T (B,C) ≃

−→ T1 ×T0 T1.

For n = 3 we start with a 3-pullback

(
[(
⨿A T (A,B)

)
× T (B,C)

]
×T (B,C)

[
T (B,C) ×

(
⨿D T (C,D)

)]
, p2, p1

)
, (8.13)

which can be rewritten as the 3-product:

(
(
⨿A T (A,B)

)
× T (B,C) ×

(
⨿D T (C,D)

)
,
(
⨿A T (A,B)

)
× T (B,C), T (B,C) ×

(
⨿D T (C,D)

)
,

T (B,C), p3
12, p

3
23; p2, p1

)
.

We act on it by the trifunctor ⨿B⨿C ≃ ⨿B,C ≃ ⨿C⨿B and get by the part 1. a 3-pullback, which by the
assumption 2. has the form:

(⨿A,B,C,D

(
T (A,B) × T (B,C) × T (C,D)

)
, ⨿A,B,C

(
T (A,B) × T (B,C)

)
, ⨿B,C,D

(
T (B,C) × T (C,D)

)
,

⨿B,C T (B,C), ⨿B,Cp12, ⨿B,Cp23, ⨿B,Cp2, ⨿B,Cp1

)
and by construction (see (8.13)) it is indeed the 3-pullback T1 ×T0 T1 ×T0 T1 (we differentiate the two
distributions of the parentheses). This yields equivalences

a3,L
A,B,C,D : ⨿A,B,C,D

(
T (A,B) × T (B,C)

)
× T (C,D) ≃

−→ (T1 ×T0 T1) ×T0 T1
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and
a3,R

A,B,C,D : ⨿A,B,C,DT (A,B) ×
(
T (B,C) × T (C,D)

)
≃
−→ T1 ×T0 (T1 ×T0 T1).

For general n one obtains that by construction ⨿A,B1...,Bn−1,C∈ObTT (A,B1) × · · · × T (Bn−1,C) is(
T1 ×T0 · · · ×T0 T1︸              ︷︷              ︸

n−1

)
×T1 ×T0 · · · ×T0 T1︸              ︷︷              ︸

n−2

(
T1 ×T0 · · · ×T0 T1︸              ︷︷              ︸

n−1

)
, which is equivalent to T1 ×T0 · · · ×T0 T1︸              ︷︷              ︸

n

.

Let us fix the notation for the associated equivalence 2-cells for the above equivalences:

α3,L : (a3,L)−1
◦ a3,L ≃

⇒ Id, α3,R : (a3,R)−1
◦ a3,R ≃

⇒ Id, α2 : (a2)−1
◦ a2 ≃
⇒ Id (8.14)

(by (•)−1 here we denote a quasi-inverse).

Proposition 8.5 In the conditions of the previous Proposition, a category T enriched over V is a particular case of a
category internal in V.

Proof. By the 3-coproduct property, the composition from the enrichment ◦ : T (A,B) × T (B,C) −→ T (A,C)
induces a 1-cell ◦ up to an equivalence 2-cell κA,B,C, and similarly the 1-cell ◦ × id induces a 1-cell ◦12 up to
an equivalence 2-cell ζL, as indicated in the two left squares in the diagram:

(
T (A,B)xT (B,C)

)
xT (C,D) ⨿A,B,C,D

(
T (A,B)xT (B,C)

)
xT (C,D)-

ι4,LA,B,C,D (T1 ×T0 T1) ×T0 T1-
a3,L

A,B,C,D

?
◦12

?
◦ × id

?
c ×T0 idw ζL w ζ′L

T (A,C) × T (C,D) ⨿A,C,D∈ObT T (A,C) × T (C,D)-
ι3A,C,D

?
◦

T1 ×T0 T1-
a2

A,C,D

⨿A,D∈ObT T (A,D)-
ι2A,DT (A,D)

?
◦

T1.
?
c

-=

w κA,C,D w ξ

Using the equivalences a3,L, a2 and their quasi-inverses, the 1-cells ◦ and ◦12 induce 1-cells c : T1 ×T0 T1
−→ T1 and c×T0 id up to equivalence 2-cells ξ and ζ′L in V, respectively, in the two right squares above. Here
a2, a3,L are biequivalences from the above Proposition, and ι’s are the corresponding 3-coproduct structure
embeddings. Observe that ξ and ζ′L are given through the 2-cells (8.14) (composed with suitable identity
2-cells).

Now one may draw an analogous diagram to the above one in a parallel plane above it, where now id×◦
induces a 1-cell ◦23 up to an equivalence 2-cell ζR, and ◦23 induces a 1-cell id×T0 c up to an equivalence 2-cell
ζ′R. From the enrichment we have an equivalence 2-cell a† up to which the pentagon for the associativity
of ◦ commutes. One can draw this pentagon transversally to the plane of the paper so that it connects
the two diagrams, in the two planes, at their extreme left edges, adding a fifth edge for the associativity
in the top 0-cell. The latter associativity 1-cell induces an associativity 1-cell b between 3-coproduct 0-cells
by the property of a 3-coproduct and via some equivalence 2-cell β. Similarly, the latter associativity 1-
cell b induces an associativity 1-cell 1 between 3-pullback 0-cells, via the equivalence 1-cells a3,L, a3,R, and
some equivalence 2-cell γ. (We draw below the 1-cells b, 1 and 2-cells β, γ.) Now the 2-cell a† induces an
equivalence 2-cell a, up to which ◦ is associative, so to say. This 2-cell a connects the two diagrams in two
planes transversally at the level of the 3-coproduct vertices. Finally, a induces an equivalence 2-cell a∗ up
to which c is associative, connecting the two diagrams in two planes transversally at their extreme right
edges.

To understand how a and a∗ are defined, observe that the three 2-cells a† and yet-to-be-defined a and a∗

divide this three-dimensional diagram into two horizontal prisms with pentagonal bases in the transversal
direction. These two prisms have the following faces (we draw on the left hand-side first upper, then lower
view of the left prism, and on the right hand-side first the upper, then the lower view of the right prism):
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Now we define a 2-cell:

δ : ◦ ⊗ ◦12 ⊗ ι
4,L
⇒ ◦ ⊗ ◦23 ⊗ b ⊗ ι4,L

as the composition of six of the seven faces of the left prism, seen as (whiskerings of) equivalence 2-cells or
their quasi-inverses, namely: a†, ζL, κA,C,D, κ−1

A,B,D, ζR and β. Then by the second property of the 3-coproduct
there exists a 2-cell a at the desired place, namely such that a ⊗ Idι4,L is isomorphic to the 2-cell δ via an
invertible 3-cell Γ1 : δ ⇛ a ⊗ Idι4,L . The 2-cell a∗ is obtained similarly via an invertible 3-cell Γ2, with the
difference that instead of the 3-coproduct property one uses the fact that all horizontal 1-cells in the right
prism above are equivalences, thus a∗ is given as a suitable composition of the 2-cells α2, a, ξ−1 and (ζ′R)−1

(recall that by (•)−1 we denote the corresponding quasi-inverse 2-cells).
This means that the invertible 3-cell Γ1 connects the upper and lower composition of faces in the left

prism above, and that the invertible 3-cell Γ2 connects the upper and lower composition of faces in the right
prism. Informally, we think of Γ1 as “a prism from a† to a”, and Γ2 as “a prism from a to a∗”.

From the enrichment we have an invertible 3-cell

π† :
Id◦ ⊗(IdidT ×a†)

a† ⊗ Id1×◦×1

Id◦ ⊗(a† × IdidT )
⇛

a† ⊗ Id1×1×◦

Id◦ ⊗Nat(◦×1)(1×1×◦)

a† ⊗ Id◦×1×1

satisfying a septagonal identity (here T stands for 0-cells of the form T (A,B),A,B ∈ V). Let us denote the
domain and the codomain 2-cells of π† by L(a†) and R(a†), respectively. We next show that π† induces a
3-cell π∗ : L(a∗) ⇛ R(a∗), where now L,R have the obvious adjusted meaning. Consider the following two
2-cells in V:

ΩL =

T4 -◦ × id × id

⨿T4
?
ι5

(ζ4
12)−1

(ζ′412)−1

T4
1

-c × id × id
?
a4

?
ι4

?
a3

?
ι3

?
a2

-◦ × id -◦

-◦
4
12 -◦

3
12 -◦

?
ι2

(ζ3
12)−1 κ−1

-c × id -c ?

=(ξ′312)−1 ξ−1

, ΩL =

T4 -id × id × ◦

⨿T4
?
ι5

(ζ4
34)−1

(ζ′434)−1

T4
1

-id × id × c
?
a4

?
ι4

?
a3

?
ι3

?
a2

-id × ◦ -◦

-◦
4
34 -◦

3
23 -◦

?
ι2

(ζ3
23)−1 κ−1

-id × c -c ?

=(ξ′323)−1 ξ−1

The upper and lower 1-cell of ΩL are the domain of L(a†) and L(a∗), respectively, and the upper and lower
1-cell of ΩL are the codomain of L(a†) and L(a∗), respectively. Analogously, one defines ΩR and ΩR for the
corresponding 2-cells for R(a†) and R(a∗). Then we can consider the following two prisms determined by
invertible 3-cells that we will denote as L(Γ2 · Γ1) and R(Γ2 · Γ1) and refer to informally as a prism “from
L(a†) to L(a∗)” and another prism “from R(a†) to R(a∗)” (recall that · denotes the transversal composition of
3-cells):
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All the vertical 1-cells in the above picture are identities. The top 2-cell of L(Γ2 · Γ1) is ΩL and the bottom
one ΩL, while the top 2-cell of R(Γ2 · Γ1) is ΩR and the bottom one ΩR. The 2-cells L(a†),L(a),L(a∗) and
R(a†),R(a),R(a∗) are meant as vertically transversal faces (of which L(a) devides L(Γ2 · Γ1) into L(Γ1) and
L(Γ2), and similarly R(a) devides R(Γ2 · Γ1) into R(Γ1) and R(Γ2)). The vertical 2-cells with edges 1-cells
ι2, ι5, a4 are meant as the identity 2-cells on these 1-cells. Then π† induces a 3-cell π, and the latter induces
the wanted 3-cell π∗. Namely, consider the following transversal composition of 3-cells that we call χ:

χ :
(
[Idι5 |L(a)]

L(Γ1)−1

⇛ [L(a†)| Idι2 ]
[π† | Id]
⇛ [R(a†)| Idι2 ]

R(Γ1)
⇛ [Idι5 |R(a)]

)
.

Then χ, which is a certain conjugation of [π†| IdIdι2 ], determines a unique 3-cell π, by the third 3-coproduct
property, so that χ = [IdIdι5 |π].

Finally, we define π∗ as the following transversal composition of 3-cells:

π∗ :=
(
L(a∗)

L(Γ2)−1

⇛ [Id(a4)−1 |L(a)]
[Id |π]
⇛ [Id(a4)−1 |R(a)]

R(Γ2)
⇛ R(a∗)

)
.

(Recall that (a4)−1 denotes a quasi-inverse.) Since π† satisfies a septagonal identity, so does π∗ in its desired
form.

This proves the existence of a composition c : T1 ×T0 T1 −→ T1 associative up to an equivalence for a
structure of a category internal in V.

In an analogous way the unit 1-cell IA : I −→ T (A,A) from enrichment induces a unit 1-cell u : T0 −→ T1,
and the 2-cells l†, r† for the unity law in the enrichment induce 2-cells l∗, r∗ for the unity law in an internal
category in V. The induction of the associated 3-cells λ∗ and ρ∗, but also of µ∗ and ε∗, from the 3-cells from
the enrichment λ†, ρ†, µ† and ε†, respectively, goes the analogous way as we proved it above for π†.

Observe that by the construction of T0 in the above proof, if V is an iconic tricategory whose 0-cells are
bicategories, then 0-cells of T0 are the same as 0-cells of T . Moreover, 1-cells of T0 are the identities on its
0-cells and 2-cells are identities on the latter, i.e. the object of objects T0 is discrete.

8.3. Examples of enrichment and internalization in lower dimensions

In the examples where V is some kind of “category of categories”, for the existence of the iterated
n-pullbacks, n = 1, 2, 3, it is sufficient to require that source and target 1-cells s, t be strict functors. We
illustrate this by showing it for the 2-category PsDbl2 of pseudodouble categories, pseudodouble functors
and vertical transformations, [16, 30] (then it also applies to the 2-category Cat2 of categories, functors and
natural transformations). Namely, as in [19, Proposition 2.1], we have:
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Proposition 8.6 The set-theoretical pullback of strict double functors F : A −→ C and G : B −→ C determines on
objects, 1-cells and 2-cells a pseudo double category A ×C B which is the 2-pullback of F and G in PsDbl2. The
projections ontoA and B are strict double functors.

The construction in the proposition from the last subsection can be carried out in 2-categories: consider
3-cells to be identities, and consider equivalence 2-cells to be bijective. Then we obtain:

Corollary 8.7 Let V be a Cartesian monoidal 2-category with a terminal object I, finite 2-products and small 2-
coproducts preserved by the pseudofunctors − × X,X × − : V −→ V for every X ∈ V. Let T be a category enriched
over V, set T0 = ⨿A∈TIA and T1 = ⨿A,B∈TT (A,B), suppose that the iterated 2-pullbacks T(n)0

1 exist and that the
pseudofunctors⨿B1,...,Bn−1 map the 2-products:

(
⨿A T (A,B1)

)
×T (B1,B2)× · · · × T (Bn−2,Bn−1)×

(
⨿C T (Bn−1,C)

)
to iterated 2-pullbacks: T1 ×T0 · · · ×T0 T1︸              ︷︷              ︸

n

. Then T is a particular case of a category internal to V.

Example 8.8 A category enriched over the 2-category V = Cat2 is a bicategory, and it is well-known that a
bicategory embeds into a pseudodouble category, which is a category internal in Cat2.

Example 8.9 A category enriched over PsDbl2 is a locally cubical bicategory from [16, Definition 11]. A
category internal to PsDbl2 is a version of an intercategory. Corollary 8.7 applied to V = PsDbl2 uses the
argumentation similar to [21, Section 3.5], where a locally cubical bicategory is shown to be a particular
case of an intercategory.

Truncating the result of Corollary 8.7 to 1-categories one recovers a version of the results in [11, Appendix]
and [7]. As a particular case of this we have the following. A Gray-category is a category enriched over
the monoidal category Gray with the Gray monoidal product. This product is defined as an image of a
cubical functor defined on the Cartesian product of two 2-categories. In [21, Section 5.2] it is shown how
a Gray-category can be seen as an intercategory, a category internal in LxDbl. As an intermediate step one
can see how a Gray-category is made a category internal in Gray.

In the above three examples we can embed the 1-category Gray and the 2-categories Cat2 and PsDbl2 to
our tricategory DblPs and we get three examples of categories internal in DblPs.

9. Tricategory of tensor categories: enrichment and internalization

Apart from our search for an alternative framework to intercategories and what we developed in
Section 7, we had another motivating example to introduce internal categories in a tricategory in Section 6.
Namely, analogously to the double category of rings, in one dimension higher we have a (1 × 2)-category
of tensor categories (for this name see e.g. [30]). It is an internal category in a suitable tricategory V, so
that the category of objects consists of tensor categories, tensor functors and tensor natural transformations
(thus the vertical direction is strictly associative and unital), while the category of morphisms consists of
bimodule categories, bimodule functors, and bimodule natural transformations. Since the associativity
for the relative tensor product of bimodule categories is an equivalence (and not an isomorphism!), the
horizontal direction of this (1× 2)-category is tricategorical in nature. Clearly, the tricategory Tens of tensor
categories, with 0-cells tensor categories, 1-cells bimodule categories, 2-cells bimodule functors, and 3-cells
bimodule natural transformations lies in this (1 × 2)-category.

In the first subsection below we will show that the tricategory Tens is enriched over the tricategory
2Catwk, of 2-categories, pseudofunctors, weak natural transformations and modifications. Recall from
Subsection 6.1 that 2- Catwk is iconic. In the second subsection we will present an internal category structure
for Tens in 2Catwk richer than the one coming from Proposition 8.5, that is, where the object of objects T0 is
not discrete.
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9.1. Tens as an enriched category

Let us recall and discuss the structure of a tricategory Tens of tensor categories.

1. For every two tensor categories C anDwe have a 2-category Bimod(C,D);

2. given two C-D-bimodule categories M,N there is a category Bimod(C,D)
(
M,N

)
= CFunD(M,N)

whose composition of morphisms is given by the vertical composition of C-D-bimodule natural
transformations, which we denote by · (this is the transversal composition of 3-cells in Tens);

3. given a third C-D-bimodule category L there is a functor ◦ : CFunD(N ,L) × CFunD(M,N) −→
CFunD(M,L) given by the composition of C-D-bimodule functors and C-D-bimodule natural trans-
formations; thus the horizontal composition of 2-cells in Bimod(C,D) is given by the usual hori-
zontal composition of natural transformations (this is the vertical composition of 2- and 3-cells in
Tens); by the functor properties of ◦, on this 2-category level we have the strict interchange law:
(ζ′ · ω′) ◦ (ζ · ω) = (ζ′ ◦ ζ) · (ω′ ◦ ω) for accordingly composable natural transformations ω,ω′, ζ, ζ′;

4. given a third tensor category E there is a pseudofunctor ⊠D : Bimod(D,E) × Bimod(C,D) −→
Bimod(C,E), so the composition of 1-cells and the horizontal composition of 2- and 3-cells in Tens is
given by the relative tensor product of bimodule categories. Let (M,N), (M′,N ′) ∈ Bimod(D,E) ×
Bimod(C,D), then set for the hom-set

Bimod(D,E) × Bimod(C,D)
(
(M,N), (M′,N ′)

)
= CFunD-bal

E

(
(M,N), (M′,N ′)

)
,

which is the category ofD-balanced C-E-bimodule functors and natural transformations. Then there
is a functor˜ : CFunD-bal

E

(
(M,N), (M′,N ′)

)
−→ CFunE(N ⊠D M,N ′ ⊠D M′) and there are natural

isomorphisms G̃ ◦ F̃ � G̃ ◦ F and IdN⊠DM � ˜Id(M,N) for all F ∈ CFunD-bal
E

(
(M,N), (M′,N ′)

)
and

G ∈ CFunD-bal
E

(
(M′,N ′), (M′′,N ′′)

)
(this corresponds to the bimodule case of [29, Proposition 3.3.2]). In

particular, the latter natural isomorphisms imply that we have the interchange law at this level holding
up to an isomorphism: (F ′ ⊠DG′) ◦ (F ⊠DG) � (F ′ ◦F )⊠D (G′ ◦G) for according bimodule functors,
and also: IdN⊠DM � IdN ⊠D IdM. The above functor property implies in particular: (ζ′◦ω′)⊠D (ζ◦ω) =
(ζ′ ⊠D ζ) ◦ (ω′ ⊠D ω) for according bimodule natural transformations, and IdG⊠DF = IdG ⊠D IdF ;

5. for 0-, 1- and 2-cells C,M and F respectively there are identity 1-, 2- and 3-cells C, idM and IdF ,
respectively;

6. there are pseudonatural equivalences a, l, r so that concretely for the corresponding bimodule cate-
gories one has equivalence functors: aM,N ,L : (M ⊠C N) ⊠D L

�
−→ M ⊠C (N ⊠D L), lN : C ⊠C N

�
−→ N

and rN : N ⊠D D
�
−→ N (observe that the respective naturalities hold up to natural isomorphisms);

7. there are modifications π, µ, λ and ρ which evaluated at bimodule categories give natural isomor-
phisms

π : (idK ⊠C aN ,M,L) ◦ aK ,N⊠DM,L ◦ (aK ,N ,M ⊠E idL)⇛ aK ,N ,M⊠EL ◦ aK⊠CN ,M,L,

µM,D,L : rM ⊠D idN ⇛ (idM ⊠D lN ) ◦ aM,DN ,

λC,M,N : lM ⊠D idN ⇛ lM⊠DN ◦ aC,M,N ,

ρC,M,E : (idM ⊠D rN ) ◦ aM,N ,E ⇛ rM⊠DN ,

similar to those in (vi)-(ix) of [29, Theorem 3.6.1] and they satisfy three axioms analogous to those in
(x) of loc.cit..
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Remark 9.1 To see that the functors on the two sides in the isomorphism (F ′⊠DG′)◦(F ⊠DG) � (F ′◦F )⊠D
(G′ ◦G) are a priori not equal, observe the following. As functors acting on the relative tensor product, they
both are given up to an isomorphism by the defining functors (F ′ × G′) ◦ (F × G) and (F ′ ◦ F ) × (G′ ◦ G),
respectively, which are clearly equal between themselves. Since both functors are determined up to an
isomorphism by the same functor, they only can be isomorphic between themselves, and one can not claim
that they are equal. This applies to the point 4. above. By the same reason naturalities in the point 6. above
hold only up to an isomorphism.

Remark 9.2 For a fixed tensor category C it was proved in [24] that Bimod(C,C) forms a monoidal 2-
category in the sense of [26], which is a non-semistrict monoidal bicategory, namely, it is weaker than a
Gray monoid. Though, [24] follows the approach of [12] where the relative tensor product of bimodule
categories is defined in such a way that a functor from such tensor product is defined uniquely by a balanced
functor, whereas in [9] it is defined up to a unique isomorphism. This has for a consequence that many of the
structure isomorphisms in Bimod(C,C) in [24] result to be identities (coherence 3-cells: π for the associativity
constraint, [24, Proposition 4.9], and λ and ρ for the left and right unity constraints [24, Proposition 4.11]),
and moreover the associativity constraint a itself is an isomorphism instead of being an equivalence (see
the proof of [24, Proposition 4.4]). Substituting tensor categories by fusion categories (semisimple tensor
categories), in [29] it was proved that these form a tricategory (in a weaker sense than in [24], as we just
pointed out). Semisimplicity does not influence the arguments of the proof, so we may take it as a proof
that Tens is a tricategory. Note that the author uses the term “2-functor” for a pseudofunctor, [29, Definition
A 3.6].

From the items 1, 4, 5, 6 and 7 above it is clear that Tens is a category enriched over the tricategory of
2-categories, pseudofunctors, weak natural transformations and modifications, which we denoted earlier
by 2- Catwk.

9.2. Internal category structure for Tens

Now let us explain the (1×2)-category structure for tensor categories, i.e. of a category internal in 2- Catwk.
To do so we will give 2-categories C0 and C1, pseudofunctors s, t,u and c, weak natural equivalences α∗, λ∗

and ρ∗ and modifications π∗, µ∗, λ∗, ρ∗, ε∗. As we announced at the beginning of this section, let C0 be
the 2-category of tensor categories, tensor functors and tensor natural transformations, and let C1 be the
2-category of bimodule categories, bimodule functors and bimodule natural transformations. Fix tensor
categoriesC andD. To give a source and target 2-functors s, t : C1 −→ C0, letM be a C-D-bimodule category,
F a C-D-bimodule functor, and ω a C-D-bimodule natural transformation. Set s(M) = C, t(M) = D, s(F ) =
idC, t(F ) = idD and s(ω) = IdidC and t(ω) = IdidD - the identity functors on C and D are obviously tensor
functors, and the identity natural transformations on these two identity functors are obviously tensor ones.
It is also clear that thus defined source and target functors are strict 2-functors. To define the identity
2-functor u : C0 −→ C1, take tensor categories C,D, tensor functors F,G : C −→ D and a tensor natural
transformation ζ : F −→ G, and for C,C′,C′′ ∈ C let C▷ C′ denote the left action of C on C′ and C′◁ C′′ the
right action of C′′ on C′. Set u(C) = C as a C-bimodule category, u(F) = F as a C-bimodule functor whereD
is a C-bimodule category through F, that is: C▷ D◁ C′ = F(C) ⊗ D ⊗ F(C′) for an object D ∈ D and where ⊗
denotes the tensor product inD (a well-known fact), then F is clearly C-bilinear. Finally, set u(ζ) = ζ, then
similarly as for functors, ζ is a C-bilinear natural transformation. To see that u is indeed a 2-functor, take a
further tensor category E and a tensor functor G : D −→ E, then it is clear that GF as a C-bimodule functor
is equal to the composition of G as aD-bimodule functor and F as a C-bimodule functor.

The rest of the structure (a pseudofunctor c, pseudonatural equivalences α∗, λ∗, ρ∗ and modifications
π∗, µ∗, λ∗, ρ∗, ε∗) are given as in Proposition 8.5. That c is a pseudofunctor and not a 2-functor follows from
Remark 9.1. For this reason the tricategory Tens is an internal category in the iconic tricategory 2- Catwk,
rather than in the Gray 3-category 2CATnwk, as conjectured in [10, Example 2.14] (1-cells in 2CATnwk are
2-functors, while in 2- Catwk these are pseudofunctors).
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Observe that the tricategory of 2-categories 2- Catwk embeds into the tricategory DblPs. Thus the (1× 2)-
category of tensor categories is also an example of our alternative notion to intercategories (with non-trivial
3-cells involved in the internalization).
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[13] B. Femić, Alternative notion to intercategories: part I. A tricategory of double categories, https://arxiv.org/pdf/2010.06673.pdf.
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Appendix: tricategories

We summarize now the definition of a tricategory from [17] with slight changes (in the direction of r in
(TD6) and accordingly in µ and ρ in (TD8) ).

A tricategory T consists of the following data (TDi) and axioms (TAj):
(TD1) a set ObT of objects of T ;
(TD2) a bicategory T (p, q) for objects p, q of T ;
(TD3) a pseudofunctor ⊗ : T (q, r) × T (p, q) −→ T (p, r), for p, q, r ∈ ObT , called composition;
(TD4) a pseudofunctor Ip : 1 −→ T (p, p), for p ∈ ObT , where 1 is the unit bicategory;
(TD5) a pseudo natural equivalence a : ⊗ ◦ (⊗ × 1) ⇒ ⊗ ◦ (1 × ⊗), where the respective pseudofunctors

act between bicategories T (r, s) × T (q, r) × T (p, q) −→ T (p, s), for p, q, r, s ∈ ObT ;
(TD6) pseudo natural equivalences l : ⊗ ◦ (Iq × IdT (p,q)) −→ IdT (p,q) and r : ⊗ ◦ (IdT (p,q) ×Ip) −→ IdT (p,q) for

objects p, q in T ;
(TD7) an invertible modification π up to which the pentagon for a commutes;
(TD8) invertible modifications µ, λ and ρ relating a with l and r, then a with l and a with r, respectively;
(TA1) non abelian 4-cocycle condition for π;
(TA2) left normalization for the 4-cocycle π, and
(TA3) right normalization for the 4-cocycle π.

We unpack now the conditions (TD2) – (TD8). Observe that in (TD5-TD8) we give a description more
detailed than in [25, Section 4.4].

(TD2): That L := T (p, q) is a bicategory for every p, q ∈ ObT comprises the following items:

1) 1-cells A,B... acting from p to q (which we will write as horizontal simple arrows, straight or arched

p A
−→ q, p

B
��
q );

2) 2-cells F,G... (we will denote them by a double arrow in the vertical direction: p

A
��

⇓F

A′

__ q , or in the form

of a rectangular diagram whose vertical arrows are identities), 3-cells α, β... (we will think them in the
direction perpendicular to the plane of the paper, in the transversal direction, and will denote them by
a triple arrow);

a strictly associative transversal composition of 3-cells denoted by ·, and an identity 3-cell IdF (which is the
strict unit for ·);

3) vertical composition of 2- and 3-cells denoted by ⊙ such that:

IdG ⊙ IdF = IdG⊙F and (β′ · β) ⊙ (α′ · α) = (β′ ⊙ α′) · (β ⊙ α);

4) for each 1-cell A of T the identity 2-cell idA;

5) associativity isomorphism 3-cell α : (H ⊙ G) ⊙ F ⇛ H ⊙ (G ⊙ F) for the vertical composition of 2-cells,
natural in them;

6) left and right unity isomorphism 3-cells λF : idB⊙F⇛ F and ρF : F⊙ idA ⇛ F, natural in any 2-cell A F
⇒ B;

7) the pentagon constraint for α and triangle constraint for α-λ-ρ commute;

(TD3): That ⊗ : T (q, r) × T (p, q) −→ T (p, r) is a pseudofunctor, for every p, q, r ∈ ObT , it comprises the
following items:
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1) for 1-cells p A
−→ q B

−→ r there is a composition 1-cell p B⊗A
−→ r;

2) horizontal composition of 2- and 3-cells denoted by⊗ such that (a) IdG ⊗ IdF = IdG⊗F and (b) (β′⊙β)⊗(α′⊙α) =

(β′⊗α′)⊙(β⊗α) (concretely, for two 2-cells F,G between two composable pairs of 1-cells p

A
��

⇓F

A′

__ q

B
��

⇓G

B′

@@ r

there is a horizontal composition 2-cell p ⇓F⊗G

A⊗B

""

A′⊗B′

<< r and for two 3-cellsα, β between two horizontally

composable pairs of 2-cells p

A
��

⇓F

A′

__ q

B
��

⇓G

B′

@@ r and p

A
��

⇓F′

A′

__ q

B
��

⇓G′

B′

@@ r there is a horizontal composition 3-

cell β ⊗ α : G ⊗ F⇛ G′ ⊗ F ′);

3) for 2-cells in T composable pairwise horizontally and vertically:

p
⇓F

A

��//

⇓F ′

A′′

BB q
⇓G

B

��//

⇓G

B′′

CC r

there are natural isomorphism 3-cells

ξ : (G′ ⊗ F ′) ⊙ (G ⊗ F)⇛ (G′ ⊙ G) ⊗ (F ′ ⊙ F)

ξ0 : idB⊗A ⇛ idB ⊗ idA,

so that the corresponding hexagonal constraint for ξ, the square for ξ-ξ0-λ and the square for ξ-ξ0-ρ
commute;

Remark 9.3 By the coherence Theorem 1.5 of [17] the items 5)-7) in TD2) can be ignored. This justifies
the assumption that the 2-cells compose striclty associatively and unitary in the vertical direction. When
convenient, in the equations we adopt the notation α

β for the vertical composition β ⊙ α of 2- and 3-cells.
The hexagonal and two square constraints in item 3) of TD3) can be ignored by the coherence Theorem

1.6 of [17].

(TD4): states that for each 0-cell p in T there is a 1-cell Ip and a 2-cell ιP : Ip −→ Ip so that there is an
isomorphism 3-cell IdIp � ιp;

(TD5): states that we have associativity of ⊗ on the levels of 1-, 2- and 3-cells;
for three horizontally composable 1-cells C,B,A there are 2-cells aC,B,A : (C ⊗ B) ⊗ A ⇒ C ⊗ (B ⊗ A) and its
quasi-inverse a′C′,B′,A′ so that there are invertible 3-cells aC,B,A⊙a′C,B,A ⇛ Id(C⊗B)⊗A and IdC⊗(B⊗A) ⇛ a′C,B,A⊙aC,B,A;
for each pair of triples of composable 1-cells C,B,A and C′,B′,A′ and three 2-cells acting between them
H,G,F, there are invertible 3-cells (natural in H,G,F):

aC′,B′,A′ ⊙
(
(H ⊗ G) ⊗ F

) aH,G,F

⇛
(
H ⊗ (G ⊗ F)

)
⊙ aC,B,A

a′C′,B′,A′ ⊙
(
H ⊗ (G ⊗ F)

) a′H,G,F
⇛
(
(H ⊗ G) ⊗ F

)
⊙ a′C,B,A;
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for three horizontally composable 3-cells γ, β, α the following diagram of (the transversal composition of)
3-cells commutes:

p q-A q r-B s-C

p
?

=

s
?

=

q-
A

r-
B

r -
C

aC,B,A

?
=

q

?
=

?
=

?
=

?
=

p q-
A′

r-
B′

r s-
C′

F G H

⇓

(
γ ⊗ (β ⊗ α)

)
⊙ Id

aH,G,F

⇛

p q-A q r-B s-C

p
?

=
?

=
?

=
?

=

s
?

=

q-A′ q -B′ r -C′

aC′,B′,A′
?

=
?

=

p q-
A′

r-
B′

r s-
C′

F G H

⇓ Id⊙
(
(γ ⊗ β) ⊗ α

)
p q-A q r-B s-C

p
?

=

s
?

=

q-
A

r-
B

r -
C

aC,B,A

?
=

q

?
=

?
=

?
=

?
=

p q-
A′

r-
B′

r s-
C′

F ′ G′ H′
aH′ ,G′ ,F ′

⇛

p q-A q r-B s-C

p
?

=
?

=
?

=
?

=

s
?

=

q-A′ q -B′ r -C′

aC′,B′,A′
?

=
?

=

p q-
A′

r-
B′

r s-
C′

F ′ G′ H′

(in terms of equation: aH′,G′,F ′ ·
((
γ ⊗ (β ⊗ α)

)
⊙ Id

)
=
(

Id⊙
(
(γ ⊗ β) ⊗ α

))
· aH,G,F );

(TD6): gives unity laws for ⊗;
for a 1-cell A : p −→ q there are 2-cells lA : Iq ⊗ A⇒ A and rA : A ⊗ Ip ⇒ A and their quasi-inverses l′A and r′A
so that there are invertible 3-cells lA ⊙ l′A ⇛ idA, idIq⊗A ⇛ l′A ⊙ lA, rA ⊙ r′A ⇛ idA, idA⊗Ip ⇛ l′A ⊙ lA;
moreover, for any 2-cell F : A⇒ B there are invertible 3-cells (natural in F):

lB ⊙ (IdIq ⊗F)
lF
⇛ F ⊙ lA, l′B ⊙ F

l′F
⇛ (IdIq ⊗F) ⊙ l′A ,

rB ⊙ (F ⊗ IdIp )
rF
⇛ F ⊙ rA, r′B ⊙ F

r′F
⇛ (F ⊗ IdIp ) ⊙ r′A;

for a 3-cell α : F⇛ G one has the identities:

lG ·
(

IdlB ⊙(IdIdIq
⊗α)
)
= (α ⊙ IdlA ) · lF

rG ·
(

IdrB ⊙(α ⊗ IdIdIp
)
)
= (α ⊙ IdrA ) · rF;

(TD7): for every four composable 1-cells D,C,B,A there is an invertible 3-cell

-A ( -B -C )-D

?
=

?
=

-
A

( -
B

-
C

)-
D

aD,C,B ⊗ idA

?
=

?
=

( -
A

-
B

)-
C

-
D

?
=

?
=

aD,CB,A

idD ⊗ aC,B,A

( -
A

-
B

)-
C

-
D

π
⇛

-A ( -B -C )-D

?
=

?
=aDC,B,A

-A -B ( -C )-D

?
=

?
=aD,C,BA

( -
A

-
B

)-
C

-
D.

so that for four horizontally composable 2-cells

A

��
⇓F

A′

CC

B

��
⇓G

B′

CC

C

��
⇓H

C′

CC

D

��
⇓J

D′

CC the following two transversal

compositions of 3-cells coincide:
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a ⊗ id
a•,••,•
id ⊗ a

J ⊗ (H ⊗ (G ⊗ F))

π
Id
⇛

a••,•,•
a•,•,••

J ⊗ (H ⊗ (G ⊗ F))

Id
aJ,H,GF
⇛

a••,•,•
(J ⊗H) ⊗ (G ⊗ F)

a•,•,••

aJH,G,F

Id
⇛

((J ⊗H) ⊗ G) ⊗ F
a••,•,•
a•,•,••

⇓

Id
Id

id ⊗ a
9

a ⊗ id
a•,••,•

J ⊗ ((H ⊗ G) ⊗ F)
id ⊗ a

Id
a•,••,•

Id
⇛

a ⊗ id
(J ⊗ (H ⊗ G)) ⊗ F

a•,••,•
id ⊗ a

Id
Id
π∗
⇛

a ⊗ id
(J ⊗ (H ⊗ G)) ⊗ F

a−1
⊗ id

a••,•,•
a•,•,••

aJ,H,G ⊗ id
Id≡
⇛

((J ⊗H) ⊗ G) ⊗ F
a ⊗ id

a−1
⊗ id

a••,•,•
a•,•,••

where the fractions denote vertical compositions of both 2- and 3-cells and the 2-cells a•,•,• are evaluated at
1-cells A,B,C,D;

(TD8): for composable 1-cells p A
−→ q B

−→ r there exist 3-cells:

-A ( -Id )-B

?
=

?
=rB ⊗ id

-A -B

µB,A
⇛

-A ( -Id )-B

?
=

?
=aB,Id,A

( -
A

)-
Id

-
B

?
=

?
=id ⊗ lA

-A -B

-A ( -B )-Id

?
=

?
=lB ⊗ id

-A -B

λB,A
⇛

-A ( -B )-Id

?
=

?
=aId,B,A

( -
A

)-
B

-
Id

?
=

?
=lBA

-A -B

-Id ( -A )-B

?
=

?
=aB,A,Id

( -
Id

)-
A

-
B

?
=

?
=id ⊗ rA

-A -B

ρB,A
⇛

-Id ( -A )-B

?
=

?
=rBA

-A -B

so that for two horizontally composable 2-cells

A

��
⇓F

A′

CC

B

��
⇓G

B′

CC the following three pairs of transversal com-

positions of 3-cells coincide, the first one involving µ:
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{
(G ⊗ Id) ⊗ F

rB′ ⊗ idA′

} Id
µB′,A′
⇛


(G ⊗ Id) ⊗ F

a•,id,•
idB′ ⊗ lA′


a−1

G,Id,F

Id
⇛


a•,id,•

G ⊗ (Id⊗F)
idB′ ⊗ lA′


Id
ξ
⇛

 a•,id,•
[ G

idB′
] ⊗ [ Id⊗F

lA′
]


⇓ ξ ⇓

Id
ωG ⊗ lF

{
[
G ⊗ Id

rB′
] ⊗ [

F
idA′

]
} rG ⊗ ωF
⇛

{
[
rB

G
] ⊗ [

idA

F
]
}
ξ−1

⇛

{
rB ⊗ idA

G ⊗ F

} µB,A

Id
⇛


a•,id,•

idB ⊗ lA
G ⊗ F


Id
ξ
⇛

 a•,id,•
[ idB

G ] ⊗ [ lA
F ]


the second one involving λ:


aid,•,•

Id⊗(G ⊗ F)
a−1

id,•,•
lB′ ⊗ idA′


aId,G,F

Id=
⇛


(Id⊗G) ⊗ F

aid,•,•

a−1
id,•,•

lB′ ⊗ idA′


≡
⇛

{
(Id⊗G) ⊗ F

lB′ ⊗ idA′

}
ξ
⇛

{
[
Id⊗G

lB′
] ⊗ [

F
idA′

]
}

⇓
Id=
λ∗B′A′

⇓ lG ⊗ ωF


aid,•,•

Id⊗(G ⊗ F)
lB′A′


Id
lGF
⇛


aid,•,•

a−1
id,•,•

lB ⊗ idA
G ⊗ F

 ≡

{
lB ⊗ idA

G ⊗ F

}
ξ
⇛

{
[
lB
G

] ⊗ [
idA

F
]
}

the third one involving ρ:


(G ⊗ F) ⊗ Id

a•,•,id
idB′ ⊗ rA′


a−1

G,F,Id

Id
⇛


a•,•,id

G ⊗ (F ⊗ Id)
idB′ ⊗ rA′


Id
ξ
⇛

 a•,•,id
[ G

idB′
] ⊗ [ F⊗Id

rA′
]


⇓

Id
ρB′A′

⇓
Id

ωG ⊗ rF

{
(G ⊗ F) ⊗ Id
rB′A′

} rGF
⇛

{ rBA

G ⊗ F

} ρ−1
BA

Id
⇛


a•,•,id

idB ⊗ rA
G ⊗ F


Id
ξ
⇛

 a•,•,id
[ idB

G ] ⊗ [ rA
F ]

 ,
here ω is the appropriate composition of unity constraints for the vertical composition mapping ωF : F

idA′

−→
idA
F and similarly for G.
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