Filomat 38:8 (2024), 2691-2706

Published by Faculty of Sciences and Mathematics,
https://doi.org/10.2298/FIL2408691 A

University of Ni8, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

A
Wy, @“‘
i axs

2,
%,
e,

¥
5
TIprpor®

Solution of certain stochastic differential equations:
Pseudo S-asymptotically omega periodic solution with measures
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“Faculty of Sciences of Sfax, University of Sfax, Tunisia
b Preparatory Institute for Engineering Studies of Kairouan, University of Kairouan, Tunisia

Abstract. This research paper discusses a mathematical concept known as the w-periodic process, and
displays a new type of function called the doubly measure pseudo S-asymptotically w-periodic function. It
explores the properties of these functions and uses them to examine the solution of a stochastic differential

equation guided by Brownian motion. The main target of the current work is to establish the existence and
uniqueness of this solution.

1. Introduction

The concept of periodicity is highly significant in probability and exhibits outstanding applications
in various fields, such as engineering and statistics. Recently, several research works have been particu-
larly oriented towards investigating periodic solution for stochastic evolution equation, including almost
periodic, pseudo-almost periodic, measure pseudo-almost periodic, almost automorphic, asymptotically
almost periodic, etc, (see [2, 3, 14]).

The study of asymptotically w-periodic solution is an intrinsic area of research in the qualitative theory,
yielding pertinent applications in mathematical biology, control theory, and physics. Asymptotically pe-
riodic functions are a type of approximately periodic functions, and systems described by them are often
more realistic than those that are strictly periodic. Further information on this topic can be found in refer-
ences [1, 22].

There are multiple concepts related to asymptotically w-periodic functions, including asymptotically w-
periodic functions in the Stepanov sense [19], S-asymptotically w-periodic functions [9, 10, 16], and S-
asymptotically w-periodic functions in the Stepanov sense [8, 18].

The S-asymptotically periodicity is a significant generalization of asymptotic periodicity that was first
introduced by Henriquez et al. in [10, 11]. While much attention has been devoted to this concept in the
deterministic case, with many authors contribution to its development, there has been relatively scarce
interest dedicated to the stochastic case, see [5, 9] and the references therein.

In this respect, S. Zhao and M. Song were the first to investigate an S-asymptotically w-periodic solution for
a certain class of stochastic fraction evolution equation driven by Levy noise. They revealed the existence
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of square-mean S-asymptotically w-periodic solution in their works ([20, 21]).

In [7], the concept of S-asymptotically w-periodic in the Stepanov sense was elaborated and the application
to semilinear first-order abstract differential equations was tackled. In [8], the authors demonstrated the
existence of a function which is not S-asymptotically w-periodic, but rather S-asymptotically w-periodic
in the Stepanov sense. In [19], Xie and Zhang characterize the asymptotically w-periodic functions in the
Stepanov sense. They applied a criteria obtained to investigate nthe existence and uniqueness of asymp-
totically w-periodic mild solution to semilinear fractional integro-differential equations with Stepanov
asymptotically w-periodic coefficients. Recently, N'Guérékata and Valmorin have set forward the concept
of asymptotically antiperiodic functions and explored their propositionositionerties in [15].

In this work, the following stochastic equation driven by Brownian motion in a separable Hilbert space
H is considered :

dé(t) = A&(Hdt + F(t, E@))dt + G(t, &(E)dB(t), t=0 ()
&(0) = co,

where A refers to a closed linear operator and
FG:R" xL"(Q,H) - L*(Q,H)

(B(#)): stands for a two-sided one-dimensional Brownian motion with values in H.

In [12], Solym Manou-Abi and William Dimbour addressed the existence of the square-mean asymptotically
w-periodic solution in equation (1) and in [13] they handled the existence, uniqueness and asymptotic
stability of the p-th mean S-asymptotically w-periodic solution for the same equation. The derivation
method used in our paper is the usual derivative. There are other methods, for example with distributions
(See [6]).

Inspired from the above mentioned works, we will integrate the concept of doubly measure pseudo S-
asymptotically w-periodic functions. We will equally provide fundamental propositionositionerties and
investigate the existence, uniqueness of (1, m,)-pseudo S-asymptotically w-periodic solution for equation
(1).

The paper is organized as follows. In Section 2, several notions and preliminary results are presented.
In Section 3, we introduce a new class of function called (11, m,)-S"-pseudo S-asymptotically w-periodic
functions, explore its propositionositionerties and establish its composition theorems. Section 4 is devoted to
corroborate existence and uniqueness of (111, m)-pseudo S-asymptotically w-periodic solution for equation
(1). In Section 5, display certain expressive examples to illustrate our main results.

2. (mq, my)-pseudo S-asymptotically w-periodic processes

Let’s start by introducing the following notions. (€, 7, P) : the complete probability space.
IL*(Q), H) : indicates the space of all measurable p-th integrable random variables £ : O — H such that

lElléll”=Lllé(w)ll”dl’(w)<oo,

Cp(R*,ILP(QQ, H)) : the set of all bounded continuous functions from R* to IL(QQ, H).
Co(R*, IP(Q, H)) = {& € C(R™, ILP(Q, H)) : limy—, 10 EIIE@®)IIP = 0}.

Definition 2.1. [12]
i) A stochastic process & : Rt — ILP(Q, H) is called continuous in p-th mean sense, whenever

Hm EIE() = E@)IF =0, ¥ t,5 € R™.
—S
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ii) A stochastic process & : R* — ILP(Q, H) is called bounded in p-th mean sense, if there exists a constant K > 0
such that

ElIE@BIF <K, Vi > 0.

We indicate by £, the Lebesgue o-field of R and by #,, the set of all positive measures m on L} satisfying
m(R) = +o00 and m([a, b]) < +oo foralla,be R, a<b.

Definition 2.2. [3] Let my,my € Py,. We state that my and my are equivalent (my ~ my), if there exist positive
constants o, B and a bounded interval I (eventually I = @) such that

ami(A) < my(A) < pmi(A),
for A € Ly satisfying AN = @.
Definition 2.3. For m € P,, and A € R, we define the positive measure m, on (R, L) by
my(A)=m@+A:aeA),Ae Ly

In this research, the following assumption is needed :
For m, m; and m, € $,,, and for all A € R, there exist > 0 such that

(Hy) lim supr_., Ty = @ < oo
(H) my(A) < pm(A), where A € L.

Lemma 2.4. [3] Departing from hypothesis (Hy), it follows that

. m(lc, T +cl)
Ye>0, 1 _
- TSP ([0, TI)

Definition 2.5. Let my,my € Py, and & be a stochastic process in Cp(R*,ILP(Q, H)). & is called (my, my)-pseudo

S-asymptotically w-periodic in p-th mean sense, if there exists w > 0 such that

1 T
lim ———— E|&(t + w) = E@)|Pdma(t) = 0.
fim s [ B+ ) - S0P

We denote the set of such functions by PSAP,,(R*, ILP(Q, H), m1, my).

Proposition 2.6. Departing from (Hy), the space (PSAP,(R*,ILP(Q}, H), m1, my), ||.llo) is a Banach space, with
[€llo = sup, - (ENE®)IP)P.

Proof. To corroborate that the space (PSAP,(R*, L7 (Q), H), m1, my),||.llo) is a Banach space, it is suffi-
cient to prove that PSAP,(R*,ILF(Q, H), my, my) is closed in C(R*, LP(QQ, H)). Let (¢,,), be a sequence in
PSAP,(R*,ILP(Q, H), m1, my) such that lim, 1 [|&, — &llee = 0.

Therefore T > 0, w > 0, we have

1 T]E pd 3p—1 T]E pd
- ~ __ n )
it TD[O e+ o) = cifdm® < 3, J, He @) = et @lfdma()

3p-1 T
m1([0, T]) - p
* m1([0, T]) 0 E||&(t + w) — & (D)|Pdmy(t)
3p-1 T

t o,y J, Elen® = cOFdma(t).
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It follows that

. 1 g
hmsupmfo E||&(t + w)—=E®)|[Pdma(t)

T—o0

1 my([0, T]) _
<3 hr;l_)sgp—ml([o’ T Sup Ell&n(t + w) = &t + @)

—1q: mZ([OI T]) _
+ 37 111;1_)5:;113m tselig E||E,() E(t)”p

Departing from (H;), we obtain

1 T
lim SUP 0, T fo ElIE( + w) = E@)IPdma(t) < 20371, = €l

T—co

Since lim,, 40 ||€ — &llo = 0, we infer that

1 T
. _ 14 —
%1_{{)10 (0, T]) j(; EllE(t + w) — E@OIPdma(t) = 0,

which implies that (PSAP,,(R*, IL7(CQ, H), m1, my), ||.llo) is a Banach space. [ ]

Definition 2.7. Let my,my € Py,. A continuous bounded stochastic process
F: R* x17(Q,H) — I7(Q, H) is called uniformly (my, my)-pseudo S-asymptotically w-periodic in & € K, where
K c ILP(Q, H) is bounded subset, if there exists w > 0 such that

T
Jim s [ BIFG-+ 0,8 = F )Pt =
We designate the set of such functions by :
PSAP,(R* x ILP(Q, H), ILP(Q, H), my, my) =
{F(, &) € PSAP, (R, LP(Q, H), my, my), & € LP(Q, H)}.

Lemma 2.8. LetF € PSAP,(R*,1LP(Q, H), my, my),and mq, my € Py, satisfy (Hp). Then, F(-+¢) € PSAP,(R*,1LP(Q, H), my, my)
forall ¢ > 0.

Proof. Let F € PSAP,(R*,ILP(Q), H), mq,m;). We hence have :
1 T
_— E|F(t + c+w) — F(t + ¢)|Pdma(t
T, I )= F+ )

1 T+c
= mj; E|IF(t + w) — F®)|Pdmy(t — <)

my ([0, T + ¢])
= m ([0, TYmi ([0, T + ¢

T+c
- f EIIF(t + w) - F@Pdma(t - <),
0
let’s note that
T+c C T+¢
m1([0, T +¢]) = f dmy (t) = f dmy(t) + f dmy () = mi ([0, c]) + ma([c, T + c]).
0 0 [«

We get that

1 T
(0. T - P
m1([0, T1) fo E||F(t + c+w) — F(t + )|’ dma(t)
< ml([o/g])
= ([0, T m ([0,

my([c, T +¢cl) 1 f
my([0,T]) “my([0,T +<]) Jo

1 T+¢
T+C])f0 E|F(t + ) — O dmy(t - <)

T+c

E[F(t + w) = F@IFdmy(t - c).
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Thus m;, m; satisfy (Hz) and referring to Lemma 2.4, we obtain

. 1 ! _

Hence, for all ¢ > 0, F(- + ¢) € PSAP,(R*,1L(QQ, H), my, my). ]

Theorem 2.9. Let F € PSAP,(R* x ILP(Q, H), ILP(Q), H), mq, my) such that F satisfies the Lipschitz condition, i.e,
if there exists a constant Lg > 0 such that

E|F(t,&1) — F(t, &)IP < LEE|IE; — &P,  teRT, &1, & € LP(Q,H),
then C(-) = F(-,&(¢)) € PSAP,(R*,ILP(Q, H), my, my) if £(-) € PSAP,(R*, ILP(Q, H), mq, my).

Proof. We have the range R(&) of £(-) which is a bounded set. Thus, C is a bounded function. On the other
side, for € > 0, there exists L, > 0 such that, forevery T > L., X € R

1 T
(0. T - p
([0, T]) fo EIIF(t + w, X) — F(t, X)|Pdma(t) < ¢,
. fT]E||§(t+a)) — EDIPdma(t) < €.
ml([or T]) 0

ForT > L., we have
1 T
(10, TN - 14
([0, T)) fo EIIF(t + @, (¢ + @) = F(t, EB)Pdmat)

op-1 T )
S (0, T]) fo ElF(t + @, &(t + @) = F(t, £(t + @))Pdma(t)

zp—l T p
op-1 T )
< (0, T]) fo E|IF(t + w, &(t + w)) — E(t, E(t + w))|Pdma(t)
zp—lLF T
i m 0 E[lE(t + w) = EBIPdma(t)
< 2,
s0 {(-) € PSAP,, (R*, LP(Q, H), m1, my). _

3. (my,m,)-SP-pseudo S-asymptotically w-periodic processes

In this section, we incorporate a new class of functions called (1, m)-SP-pseudo S-asymptotically
w-periodic function, which generalize the concept of asymptotically periodic function.

Definition 3.1. [4]
i) The Bochner transform &t,s),t e R*,s €[0,1], of a stochastic process & : R* — ILP(Q, H) is defined by

&Vt s) == &t + s).

ii) The Bochner transform Fb(t,s,x), t € R*, s €[0,1], x € LP(Q, H), of a function
F:R* xLP(Q,H) — 1/(Q, H) is defined by

Fb(t,s,x) := F(t +5,X)
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for each x € ILP(Q), H).
iii) The space BSP(R*,1L7(Q, H)) of all Stepanov bounded stochastic process consists of all measurable stochastic
process & : R* — 1P(Q, H) such that & € IL°(R*,1L([0, 1], 1L’ (Q, H))). This is a Banach space with the norm

1/p

1 t+1
Illse = 18 o 1) = sup ( f EII&( + s>||f7ds) = sup ( f 1E||5(r)||ﬂd1)
0 t

teR* teR*

1/p

Definition 3.2. Let my, my € Py, and & be a stochastic process in BSP(R*,ILP(Q), H)). & is called (my, my)-pseudo
S-asymptotically w-periodic in the Stepanove sense if there exists w > 0 such that

1/p
p =
T—>oo ma([ 0 m1([0, T) f (f E[l&(s + w) = SO ds) dmy(t) = 0.
We denote the set of such functions by SPPSAP,(R*,1LP(Q, H), my, my).

Lemma 3.3. For my,myp € P, satisfying (Hi). As a result,
PSAP,(R*,ILP(Q, H), my, mp) € SPPSAP,(R*,ILP(Q, H), my,m3), 1 < p < co.

Proof. Let& € PSAP,(R*,IL7(Q, H), m;, m,). Therefore, grounded on lemma 2.8,
&(- +5) € PSAP,(R*, ILP(Q, H), my, my) for s € [0.1]. Referring to Holder’s inequality, we have

1/p

T f+1
m fo ( f 1E||5<s+w)—5<s)||f’ds) dma(t)

1 T i+l 1/p T
<m(fo f E"5<S+w>—c€<s>w’dsdmz<t>) ( fo dmz(t))

Y - s )W
< (0, T \Jy (0,71 Js E||&(t+ s+ w) — &E(t + s)|Pdma(t)ds|

and relying on (H;), we obtain

1 T t+1 1/p
_— E||&(s + w) — &(s pds) dmy(t) < aV/7elP,
m1<[o,T]>f0 (ft I£(s + @) — £6)I ()
where 1/p + 1/q = 1. Hence, & € SPPSAP,, (R*,1L7(Q, H), m;, my) , which completes the proof.

1/q

Definition 3.4. Let my, my € Py, and F € BSP(R* x ILP(Q), H), LP(Q), H)). F is called uniformly (my, my)-pseudo
S-asymptotically w-periodic on bounded sets in the Stepanov sense if for every bounded subset K C ILP(Q), H), there
exists a positive function gx € BSP(R*, R") such that, for t e R*, & € LP(Q, H), E||F(t, E)IIP < gr(t) and

. 1 T +1 1p
711_]?)1:)10 m jo‘ (jt‘ sup IE”F(S + w, é) — F(S, (S)”pdS] dmz(t) =0

llEll<r

forallr > 0,5 > 0.
We denote the set of such functions by S"PSAP,(R* x ILP(QQ, H), ILP(Q, H), my, my).

Theorem 3.5. Let F € SPPSAP,(R* x ILP(Q), H), LP(Q, H), my1, my), p 2 1 satisfying the Lipschitz condition, i.e,
if there exists a constant Ly > 0 such that

E|F(t, &) = E(t, &)IP < LEE(E = &P, &1, & € P(Q,H), t € R,
If £ € SPPSAP,(R*, ILP(Q, H), my1, my) and R(E) is a bounded set, then
C() = F(-,&() € SPPSAP,,(R",ILP(Q, H), 1, my).
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Proof. Assume that F € S’ PSAP,(R* x IL’(QQ, H), ILP(QQ, H), m1, m,). With reference on Definition 3.4, for
K = R(&), there exists gk € BSP(R*, R") such that [E||F(t, E)IIF < gk(t)’, t € R*, & € K. We have

1/p 1/p

t+1 t+1 f+1
( ft 1E||c<s>||pds) =( ft 1E||F(s,cs<s>>||Pds) <( ft gK(S)”dS) <llgells, teR".

Therefore C(-) € BSP(R*, ILP(Q, H)). Additionally, for € > 0, there exists L, > 0 such that
1 T +1 1/p
_ sup E|F(s + w, X) — F(s, X)|[Pds| dma(t) < ¢
my ([0, TT) f [f; HX||52 ’

1/p
mi([0, T])f (f Ell&(s + w) - (S)Ilpds) dms(t) < €

for every T > L, R > 0. Relying on the Minkowski inequality, for T > L., we have

T f+1 1p
mfo (f E||F(s + w, &(s + w)) — F(s, g(s))”nds) dmy ()

1/p

2}7—1 T t+1 1p
S (@10 Jy (f EIFGs + @, £(s + @) = F(5, &5 + w))||pds) diis(t)
2pr= 1 1/p
(0, 1) ( ElIE(s, &(s + @) = F(5, é(s»upds) dimy(t)
2r= 1 1/p
P
S (0, T]) m1([0, T]) ( f ”i‘ﬁi E||F(s + w, X) — F(s, X)|| ds] dmy(t)
1 1/p
m?Z[OL;" 0 ( Ell&(s + w) — cf(s)ll”ds) dma(t)

< (1+Lp)e2r,

then {(-) € S’ PSAP,(R*, ILP(Q, H), m, m»). n

4. (my, my)-pseudo S-asymptotically w-periodic solution

The basic aim of this section is to investigate the existence and the uniqueness of (1, m;)-pseudo
S-asymptotically w-periodic solution for the following stochastic differential equation :

dé(t) = A&(H)dt + F(t, E())dt + G(t, E()dB(t), t=0 %)
5(0) = Co,

where : (B(t)); corresponds to two-sided one-dimensional Brownian motion #;-adapted with value in H,
where F; = {B(u) — B(v)/u,v < t} and ¢g € ILP(QQ, H).

To examine (2), the following assumptions are considered :

(H3) A : D(A) c LP(Q,H) — I7(Q, H) refers to the infinitesimal generator of an exponentially stable
Co-semi-group (S,())=0 such that there exist constants M > 0 and 6 > 0 with

IS, (DIl < Me™®, t>0.

(Hy) F € SPPSAP,(R* x LP(Q, H), LV (Q, H), m1, my), my,myp € P, and satisfies the Lipschitz condition, i.e,
if there exists a constant Lr > 0 such that

]E”F(t/ él) - F(t, 52)”}’7 < LFIE”(Sl - 52”7]/ 61/ 52 € ]Lp(Q/ H)/t € ]R+-
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(Hs) G € SPPSAP,(R* x ILP(QQ, H), ILP(Q, H), my, my), my, mp € Py, and satisfies the Lipschitz condition, i.e,
if there exists a constant Lg > 0 such that

E|IG(t &1) — G(t, E)IP < LGE[IE — &P, &1,& € P(Q,H),t € RT.
(Hg) @ = fooo e PO dmy(t) < 0.

Definition 4.1. Let {&(t), t > 0} be a Fy-progressively measurable stochastic process. E(t) is said to be a mild solution
of equation (2), if it satisfies the following stochastic integral equation for t € R* :

t

t
&(t) = Sy(t)co + f(; Sy(t — s)F(s, &(s))ds + j(; Sy(t = 5)G(s, &(s))dB(s).

Remark:
We recall a function u € C(R*, LF(Q), H) is called a mild solution of equation (4.1), if it satisfies the equation
(4.1), that’s to say:
du(t) = Au(t) + F(t, u(t))dt + G(t, u(t))dB(t), t = 0.

Let £ € C(R*, LP(Q), H) a mild solution of equation (4.1), we pose:
h(s) = S,(t — 5)&(s). Then for all t € R*, 1 is of class C' on [0,t], and for all s € [0, t] we have:

d
2(5) = —AS,(t = $)E(s) + Syt = 5)-E(s).
Since ¢ is the mild solution for equation (4.1), then we have:

—ASy(t = 5)E(5) + 5,(t = S)IAL(s) + F(5, &(5)) + G, 5(5»@1

s
dB(s)
ds

dh
d_s(s)

Syt = s)[F(s, £(s)) + G(s, £(5)) 1

We integrate on [0, ], then we obtain:

h(t) — h(0)

5(t‘) - Sg(t)CO
t
fo Sy(t = $)[F(s, () + G(s, 5(5))%]%

¢ ¢
f Sy(t = s)F(s, &(s))ds + f Sy(t —5)G(s, &(s))dB(s).
0 0

Therefore, we deduce the Definition 4.1:

t

¢
E(t) = Sy(t)co + f Sy(t = 8)F(s, &(s))ds + f Sy(t —5)G(s, &(s))dB(s).
0 0
In order to demonstrate the relevance of our results, we need the following lemmas :

Lemma 4.2. [17] Let ¢ : [0, T] x Q — I(ILP(Q, H)) be an F—adapted measurable stochastic process satisfying

T
f Ellp®)|Pdt < o as,
0

where I(ILP(Q, IH)) stands for the space of all continuous linear operators from ILF(Q), H) to itself. From this perspective,
¥ p > 1 and there exists a constant C, > 0 such that

T 14 T p/2
E sup f @(s)dB(s)|| <C,E ( f ||(p(s)||2ds) , T>0.
0 0

0<t<T
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Lemma 4.3. Assuming that (H3), (He) hold, if ¢ € SP'PSAP,(R*, LF(Q), H), m1, my),
my, My € Py, then

t
(A)(D) = fo 5yt — )p(s)ds

lies in PSAP,(R*,ILP(Q), H), my, my).

Proof. Forte€ [n,n+ 1], we get
¢ p
Ell(Ap)B)IF < IE[ f Me‘g(t_s)ll¢(5)lld5]
0

n k+1 4
Y[ Me-9<"-s>||¢<s>||ds}
k=0

k

n P k+1
Z Me—e(n—k—l)l f ]E||¢(s)||pds
k

k=0

Me@ p
<( - ) llpll%,-

1-—e?

<E

N

Hence, A1¢ is bounded. In the same regard, we state that

t+e t
Ell(A19)(t + &) — (Mp)BIF = E Hﬁ Syt +¢— s)cj)(s)ds—jo‘ Sy(t = 8)P(s)ds

¢ ¢
=E Hfo‘ Sy(t + € —s)Pp(s)ds + fo‘ Syt = 9)[P(s + €) — P(s)]ds

e p
<2E ( fo ISyt + ¢ — s)||||<z><s)||ds)
t p
+2r1E ( f Me %o + €) - <P(S)I|ds)
0

. p
<2 'E (fo ISt + & — s)IIIICP(S)IIdS)

¢ £ ¢
+2P‘1M'7( [ e—qﬂ<t—s>ds) x [ Eots + 0 - o
0 0

-0, —-0.

Therefore, A1¢ € Cp(R*,ILP(Q), H)). Further more,

W t
Ell(A19)(f + w) — (M1d)BIF = E ”]0‘ Sy(t + w — s)Pp(s)ds + fo Sy(t = 9)[P(s + w) — P(s)]ds

= Bl + J(OIF < 27BN + 27 Bl @)IP,

where
p

||1<t>||P:H fo Syt +w—s)pEds| W =

t
fo Sy(t = 9)[P(s + w) — P(s)]ds|| .

2699
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p
dmy(t)

Sy(t + @ — s)Pp(s)ds

1 T 1 T
[ 14 [
ml([o,TDfo Ellf@Fam(t) < m1<[o,T1>fo E

0
<L f TIE( f Me‘e(”“"s)II(P(S)IIdS)pdmz(t)
m1([0, T1) Jo 0

Mpe—pﬁw

T 6 () 6 p
Mreroe (T s
S @1 Jy © 15( fo e II¢<s>||ds) dmt)

@MPePOv ( f Y )p
< ————FE e”llp@G)lds| =0, T — oo,
(0,77 S\, i@l

then

. 1 T
lim s fo ENIPdmat) = 0. ()

In the same respect, since ¢ € SPPSAP,(R*,LF(Q, H), my,my), there exists € > 0, € IN such that

1 T t+1 1/p
- — 14
700,11 f(; (I Ellp(s + w) — p(s)ll ds) dmy(t) <e forT > 1.

Sincel<n<T<n+1,then0<t<T<n+1. LetK > 0be a constant such that E||¢(t + w) — ¢(#)IIF < K for
all t > 0. We therefore have

1 T 1 T f p
T fo B O dna(®) <~ fo JE( fo ||sg(s>||||<z><t—s+w>—<¢>(t—s>||ds) dma(t)

1 g ' p-t 1 p
< m1([0, T]) ‘fo ]E( ) ||Sg(5)|| 4 ||Sg(5)||"”¢(t -5+ w)—P(t— s)||ds) dmy(t)

x

p-1 1\/
1 T g 3 ! 1 I
o ), JE[[ | ||sg<s>||ds] x[ [ 150106 =5+ @)= gt ) ds] ] it

1 Tr rt o p-1 t o
m]{; J; Me ds] x‘ﬁMe Ellp(t — s + w) — ¢(t — s)IPdsdmy(t)

1 Tr ,n+l s 1P~ n+1 s .
mﬁ _l; Me dsJ XL Me™E||p(t — s + w) — ¢(t — s)|Pdsdmy(t)

N

N

N

N

1 Tr i+l . -1 n k+1 .
- —Us —Us — — — 4
0T fo fo Me%ds xZ | Me Ell(t — s + w) — (t — s)|Pdsdm(t)

k=0

N

—1 g Os N 'Y —0k o _ o .
0T, f | Xfo L MBI =5 ~k+0) = 6 = =Rl dsdma(®)
Os - ok____ 1+ o o
U Me dS] XZME ml([o T]) f f Ellg(t — s — k+ w) — (t — s — K)|Pdsdmy(t)

) ) ok_ KNP K7 . W
[f Me™ sds] X ZM@ (0, 1] (f Ellgp(s + w) — p(s)IIPds | dm(t)

t—k-1

1 M”KT
XX _GP—l —1 — e_e E.
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Thus,

. 1 ! _
Jim s [ B =0 @

Referring to (3), (4), we have

. 1 '
Jim s [ B0+ @) = i) = 0.

Hence, A1¢ € PSAP,(R*,ILP(Q, H), my,my). The proof is therefore complete. [ ]
Lemma 4.4. Assume that (Hz), (He) hold, if ¢ € SPPSAP,(R*,1LP(Q), H), m;, my),
mi, my € Py,. As a matter of fact, t
(2)0) = [ ,(t=96B
lies in PSAP,(R*,ILP(QQ, H), my, my).
Proof. Forte€ [n,n+1],n € N and according to Lemma 4.2, we obtain
14

Ell(A20)(OIP =1E||f0 Sy(t = 5)¢(s)dB(s)

¢ r2
<CE ( fo IS4t - s)||2||¢<s)||2ds)

n k+1 pi2
< Cp]E (Z M2€26(nk1)]k‘ ||(P(S)||2d5]

k=0
CyMper?
< ——5775 191,
(1 _ e—ze)p/z s2

Thus, Ay¢ is bounded. Besides, lets’ = s — ¢ and B(s’) = B(s’ + ¢) — B(¢). We therefore have
Ell(A2p)(t + €) = (M) =

t+e t
= || ](; Sy(t + & — 5)P(s)dB(s) — fo Sy(t = s)P(s)dB(s)IIP
& t+e t
=IE|| fo Syt + & —s)Pp(s)dB(s) + f Syt + & —s)Pp(s)dB(s) — [) Sy(t = s)P(s)dB(s)IIP

t

& t

= || fo Syt + & —s)P(s)dB(s) + fo Sy(t =5 )P(s" + e)dB(s" + €) — j(; Sy(t = s)P(s)dB(s)IIP
& t t

=IE|| jo‘ Sy(t + & = s)Pp(s)dB(s) + jo‘ Syt — 5)(s + €)dB(s) — f(; Syt — 5)p(s)dB(s)IIP

3 t 5
= | j; Sy(t + & = 5)p(s)dB(s) + j; Sg(t —s)[P(s + €) — P(s)|dB(s)IF

p/2

3 r/2 ¢
<C2'E ( f ISy(t + & — s)||2||q>(s)||2ds) +C,2'E ( f M2 209 |gh(s + &) — ¢(s)|Pds
0 0

& p/2
< szp_l]E (f 1Sy(t + & = S)||2||¢(S)||2ds)
0

t
+MPC,20 ! ( f e‘ze(t’s)ds)
0

p=2
2

t
o f e 20IE|d(s + €) — dE)|Pds  — 0, — 0.
0
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As aresult, Ay¢ € Cp(R*, LF(Q), H)). In addition, we obtain

t

f+w
(M)t + ) — (As)(t) = fo Syt + @ — S)p(s)ABs) - fo S,(t - )(EB(E) = I'(0) + (),

where
t
I't = fow Sy(t + w — s)p(s)dB(s), J'(t) = fo Syt = 9)p(s + w) — ¢p(s)1dB(s).
As
1 T 1 T @
- 4 14 _ v
T, EWOrin < o [TE1 [ 5,00+ - so0aneiran)
< L fT]E(fw Mze26(”‘”5)||(,‘b(s)||2ds)p/2 dm (t)
h ml([orT]) 0 0 2
MPCe™ (T e ( Y sy 2 )”/2
S 0T Jy © E fo ellp@s)IIFds | dma()
@C,Mpe 0@ v ) )p/z = ~
S m1([O,T]) IE‘(](; € H(P(S)“ ds 0, T ,
then
. 1 T
fim s [ EI @) . 5

In this vein, as ¢ € SPPSAP,(R*,ILP(Q2, H), my, my), there exists € > 0,1 € IN, such that

1/p

T t+1
m]; (f Ellp(s + w) — p(s)IPds)  dmy(t) <e  forT > 1.

Sincel<n<T<n+1then0<t<T<n+1 Let K> 0be a constant such that E||l¢(t + @) — ¢()|IP < K for
all t > 0. It follows that

1
ml([or T])
1
 ——
ml([ol T])

Cp T t g
<D, ]E(fo IS/EIRIGE = s + @) = (¢ = )Pds | dma(t)

T
fo EI () dmat

T f _
f E| f S,(t = (s + @) — EBE)Pdm(t)
0 0
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<m1([OT) [ ([ 1ssras)” x [ isso0PEip0-s +a) - o0 - pasins0)

n+1 % n+1
2 ,~26s 2 ,-26s _ _ 3
S 0, 1D ml([O T1) f ( f Me ds) x fo M2 2P E|Pp(t — s + w) — P(t — s)|Pdsdmy(t)

p-2

n+1 2 n k+1
 ——— MZ —ZGSd ) X f —ZQS]E F—s+ _ Fo P dsd ¢
m1([0 T f e ; . © Pp(t =5 + @) = Pt = s)lPdsdm(t)
M?C, 5 )
 — MZ 295d) ZGIE F—s—k+ f_s— pdd ¢
m1([0, T]) (f s OkZO llp(t —s w) = Pt — s — k)|Pdsdmy(t)
n+1 !T n M C K p %
2 —20s 20k~ P v
<(f0 M?e ds) xZ 0T f (f Ell(s + w) — p(s)|Pds | dmy(t)
1 MCKT
< p2 —26 &
SO
1 T
lim ———— | E||J'(#)[Pdmy(t) = 0. 6
lim fo I (Pt ©)

With reference to (5), (6), we get

. 1 '
fim s [ BN + ) - (s s = 0.
Thus, Ax¢p € PSAP,(R*, LF(QQ, H), mq, my). [ ]

Theorem 4.5. Let my,my € Py, satisfying (Hy), (Hz). Assuming that (Hy), ..., (He) hold, then if

op- 1MP( C”Lf)<1,
o (20):

(2) has a unigue solution &(t) € PSAP,(R*,ILP(QQ, H), mq, my).
q

Proof. Define the operator ¥ : PSAP,(R*, LF(QQ, H), m1, my) — PSAP,(R*,ILP(QQ, H), my, my) by

t

t
(FENt) = Sy(t)co + fo Sg(t — $)F(s, &(s))ds + L Sy(t — 5)G(s, &(s))dB(s).

For é(t) € PSAP,(R*, ILP(Q), H), my, my), resting upon Theorems 2.9, 3.5 and Lemma 3.3, we get F(-, £(+)), G(-, £(+)) €
SPPSAP,(R*,ILP(Q), H), m1, my). Thus, ¥ is well defined by Lemmas 4.3 and 4.4. In the same line, assuming
that &, & € PSAP,(R*,ILP(Q, H), m1, my), it follows that

t
E|[(F () ~ (F )M < 27 Ell j(; Sy(t = $)[F(s, &(s)) — F(s, &2(s)))dsll”

t
+ 271K j; Sy(t = 9)[G(s, £1(9)) — G(s, &2(5)1dB(s)IIP

<2P7L + D).
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Firstly, departing from Lipschitz conditions and Holder’s inequality, we get

f
I = E fo S,(t — SEGs, £1(5)) — E(s, Ex(s)dsIF

' p-1 1 p
< lE(fo 1Sg(t = S 7 1Syt — )1 IE(s, E1(s)) — E(s, gz(s)mds)

( fo t(||sg(t—s>||”f)”pl

t p-1 t
<Mt ( f e-9<f-5>ds) X ML f e " IE(E1(s) — Eals)IPds
0 0

r

p-1 , 177
<E ds) ><( fo (||sg<t—s>||5||P(s,csl(s))—F(s,az(s»n)pds) ]

MP
< —Lpsup E|&1(t) — 2001,
or teR*
SO
MP
I < —LpsupE||&1(s) — E(s)IP. ()
OF " jer

On the other side, relying on Lemma 4.2, Holder’s inequality, and the Lipschitz condition, we obtain

L = ]Ellf(; Sy(t = 9)[G(s, £1(5)) — G(s, &2(5)JdB(s)IIP

t :
<GE (L IS4(t = s)IPIIG(s, &1(5)) — G(s, 52(8))||2ds)

t
<C, ( f IISg(t—s)||2ds)
0
f
< CMP? ( f e‘ze(t‘s)ds)
0

x f 15, = S)IPEIGE, £1(5)) — G, Ex(s))IPds
0

P2
2

t
x M? f e 29U9E||G(s, &1(s)) — G(s, E(5))|IPds
0

¢, e sup EllEs(t) - O
< . u - ,
T
SO
MP
L < C,—— .Lgsup Ell&1(t) — E()IP. (8)
(20)2 teR+
Grounded on (7), (8), we get
L C,L
E|[(F&)®) - (FE) @I <2P—1MP(—F+ - f)uél—éznﬁo.
" (20)>

As a result, ¥ has a unique fixed point in PSAP,(R*, IL(Q3, H), m;,m;). Therefore, based on the Banach
fixed point theorem, equation (2) has a unique solution in PSAP,(R*, L(Q, H), m, my).
]

5. Application
Let’s consider the following equation

d&(t,x) = S-&(t, x)dt + F(t, &(t, x)dt + G(t, &(t, x))dB(D),
(t,x) e R* x [0,1], )
&(t,0) = &(t,1) = 0 for t € R*.
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Suppose that m; is the Lebesgue measure and m; is a positive measure, where its Radon-Nkodym derivative

1S

el ift<0

£ =
D=1 it o0.

Hence, with reference to [3], m; and m, satisfy (H;) and (H»). In order to write (9) in the same way as (2),
the following linear operator is considered

A :D(A) c1L2(0,1) — L0, 1).

It is provided by

D(A) = {5 continuous /&” absolutely continuous on [0,1], & € L?(0,1) and &(0) = &(1) = O} ,

A& = &" forall £ € D(A).

It is well known that A produces a Cy semi-group (S,(t)):>0 such that [|S,(#)]| < e % fort,0 > 0. Let

F(t, &) = (sint + sin 21 V24)E,

G(t, &) = (sin 2t + sint)&.

We have F,G € PSAP,(R* x ILP(Q,1.2(0, 1)), ILP(Q, IL2(0, 1)), m1, my). It is simple to check that F and G satisfy
the Lipschitz conditions in Theorem 4.5, where M = 1, Ly = 27, and L¢ = 2*. Departing from Theorem 4.5,
we infer that equation (9) has a unique (111, m;)-pseudo S-asymptotically w-periodic mild solution. ]
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