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Abstract. The goal of the present paper is to deliberate ∗-Ricci-Yamabe soliton, whose potential vector
field is torse-forming on the Kenmotsu manifold. Here, we have shown the nature of the soliton and found
the scalar curvature when the manifold admitting ∗-Ricci-Yamabe soliton on the Kenmotsu manifold.
Next, we have evolved the characterization of the vector field when the manifold satisfies ∗-Ricci-Yamabe
soliton. Also, we have embellished some applications of a vector field as torse-forming in terms of ∗-Ricci-
Yamabe soliton on the Kenmotsu manifold. We have developed an example of ∗-Ricci-Yamabe soliton on
3-dimensional Kenmotsu manifold to prove our findings.

1. Introduction

In 1972, K. Kenmotsu [20] obtained some tensor equations to characterize the manifolds of the third class.
Since then the manifolds of the third class have been called Kenmotsu manifolds. In 1982, R. S. Hamilton
[17] introduced the concept of Ricci flow, which is an evolution equation for metrics on a Riemannian
manifold. The Ricci flow equation is given by:

∂1

∂t
= −2S, (1.1)

on a compact Riemannian manifold M with Riemannian metric 1. A self-similar solution to the Ricci flow
([17], [32]) is called a Ricci soliton [18] if it moves only by a one-parameter family of diffeomorphism and
scaling. The Ricci soliton equation is given by:

£V1 + 2S + 2Λ1 = 0, (1.2)

2020 Mathematics Subject Classification. 53C15, 53C25, 53C44
Keywords. Ricci-Yamabe soliton, ∗-Ricci-Yamabe soliton, torse forming vector field, conformal Killing vector field, Kenmotsu

manifold.
Received: 28 March 2023; Accepted: 26 July 2023
Communicated by Ljubica Velimirović
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where £V is the Lie derivative in the direction of V, S is Ricci tensor, 1 is Riemannian metric, V is a vector
field and Λ is a scalar. The Ricci soliton is said to be shrinking, steady, and expanding accordingly as Λ is
negative zero, and positive respectively. The concept of Yamabe flow was first introduced by Hamilton [18]
to construct Yamabe metrics on compact Riemannian manifolds. On a Riemannian or pseudo-Riemannian
manifold M, a time-dependent metric 1(·, t) is said to evolve by the Yamabe flow if the metric 1 satisfies the
given equation,

∂
∂t
1(t) = −r1(t), 1(0) = 10, (1.3)

where r is the scalar curvature of the manifold M. In 2-dimension the Yamabe flow is equivalent to the
Ricci flow [17] (defined by ∂

∂t1(t) = −2S(1(t)), where S denotes the Ricci tensor). But in dimension, > 2 the
Yamabe and Ricci flows do not agree, since the Yamabe flow preserves the conformal class of the metric
but the Ricci flow does not in general. A Yamabe soliton [2] corresponds to a self-similar solution of the
Yamabe flow, and is defined on a Riemannian or pseudo-Riemannian manifold (M, 1) as:

1
2

£V1 = (r −Λ)1, (1.4)

where £V1 denotes the Lie derivative of the metric 1 along the vector field V, r is the scalar curvature andΛ
is a constant. Moreover, a Yamabe soliton is said to be expanding, steady, and shrinking depending on Λ
being positive, zero, and negative respectively. If Λ is a smooth function then (1.4) is called almost Yamabe
soliton [2]. Many authors ([11], [12], [22], [26], [27], [30], [28], [10], [13], [14], [3], [7], [25]) have studied
Ricci soliton, Yamabe soliton and its generalizations on contact manifolds. Recently in 2019, S. Güler and
M. Crasmareanu [15] introduced a new geometric flow which is a scalar combination of Ricci and Yamabe
flow under the name Ricci-Yamabe map. This flow is also known as the Ricci-Yamabe flow of the type
(α, β1). Let (Mn, 1) be a Riemannian manifold and Ts

2(M) be the linear space of its symmetric tensor fields of
(0, 2)-type and Riem(M) ⫋ Ts

2(M) be the infinite space of its Riemannian metrics. In [15], the authors have
stated the following definition:

Definition 1.1:[15] A Riemannian flow on M is a smooth map:

1 : I ⊆ R→ Riem(M),

where I is a given open interval. We can call it also a time-dependent (or non-stationary) Riemannian metric.

Definition 1.2:[15] The map RY(α1,β1,1) : I→ Ts
2(M) given by:

RY(α1,β1,1) :=
∂
∂t
1(t) + 2α1S(t) + β1r(t)1(t),

is called the (α1, β1)-Ricci-Yamabe map of the Riemannian flow of (Mn, 1), where α, β1 are some scalars. If
RY(α1,β1,1) ≡ 0, then 1(·) will be called an (α1, β1)-Ricci-Yamabe flow.

Also in [15], the authors characterized that the (α1, β1)-Ricci-Yamabe flow is said to be:
• Ricci flow [17] if α1 = 1, β1 = 0.
• Yamabe flow [18] if α1 = 0, β1 = 1.
• Einstein flow ([4], [29]) if α1 = 1, β1 = −1.

A soliton to the Ricci-Yamabe flow is called Ricci-Yamabe soliton if it moves only by one parameter
group of diffeomorphism and scaling. The metric of the Riemannian manifold (Mn, 1), n > 2 is said to admit
(α1, β1)-Ricci-Yamabe soliton or simply Ricci-Yamabe soliton (RYS) (1,V,Λ, α1, β1) if it satisfies the equation:

£V1 + 2α1S + [2Λ − β1r]1 = 0, (1.5)
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where £V1 denotes the Lie derivative of the metric 1 along the vector field V, S is the Ricci tensor, r is the
scalar curvature and Λ, α1, β1 are real scalars.

In the above equation if the vector field V is the gradient of a smooth function f (denoted by D f , D
denotes the gradient operator) then the equation (1.5) is called gradient Ricci-Yamabe soliton (GRYS) and
it is defined as:

Hess f + α1S +
[
Λ −

1
2
β1r
]
1 = 0, (1.6)

where Hess f is the Hessian of the smooth function f . Moreover, the Ricci-Yamabe soliton and gradient
Ricci-Yamabe soliton are said to be expanding, steady, or shrinking according to Λ is positive, zero, and
negative respectively. Also if Λ, α1, β1 become smooth functions then (1.5) and (1.6) are called almost
Ricci-Yamabe soliton and gradient almost Ricci-Yamabe soliton respectively. The concept of ∗-Ricci tensor
on almost Hermitian manifolds and ∗-Ricci tensor of real hypersurfaces in non-flat complex space were
introduced by Tachibana [31] and Hamada [16] respectively where the ∗-Ricci tensor is defined by:

S∗(V1,V2) =
1
2

(Tr{φ ◦ R(V1, φV2)}), (1.7)

for all vector fields V1,V2 on Mn, φ is a (1,1)-tensor field and Tr denotes Trace. If S∗(V1,V2) = λ1(V1,V2) +
νη(V1)η(V2) for all vector fields V1,V2 and λ, ν are smooth functions, then the manifold is called ∗-η-Einstein
manifold. Further if ν = 0 i.e S∗(V1,V2) = λ1(V1,V2) for all vector fields V1,V2 then the manifold becomes
∗-Einstein. In 2014, Kaimakamis and Panagiotidou [19] introduced the notion of ∗-Ricci soliton which can
be defined as:

£V1 + 2S∗ + 2Λ1 = 0, (1.8)

for all vector fields V1,V2 on Mn and Λ being a constatnt. In [33], authors have considered ∗-Ricci solitons
and gradient almost ∗-Ricci solitons on Kenmotsu manifolds and obtained some beautiful results. Very re-
cently, Ali et al. [23] and Dey et al. [9, 21, 26, 28] have studied ∗-Ricci solitons and their generalizations in the
framework of almost contact geometry. Using (1.8) and (1.5), we can introduce ∗-Ricci-Yamabe soliton [8] as:

Definition 1.3: A Riemannian or pseudo-Riemannian manifold (M, 1) of dimension n is said to admit
∗-Ricci-Yamabe soliton if

£V1 + 2α1S∗ + [2Λ − β1r∗]1 = 0, (1.9)

where £V1 denotes the Lie derivative of the metric 1 along the vector field V, S∗ is the ∗-Ricci tensor,
r∗ = Tr(S∗) is the ∗- scalar curvature and Λ, α1, β1 are real scalars. The ∗-Ricci-Yamabe soliton is said to be
expanding, steady, and shrinking depending on Λ being positive, zero, and negative respectively. If the
vector field V is of gradient type i.e. V = 1rad( f ), for f is a smooth function on M, then the equation
(1.9) is called gradient ∗-Ricci-Yamabe soliton. On the other hand, a nowhere vanishing vector field τ on a
Riemannian or pseudo-Riemannian manifold (M, 1) is called torse-forming [36] if

∇V1τ = ψV1 + ω(V1)τ, (1.10)

where ∇ is the Levi-Civita connection of 1, ψ is a smooth function and ω is a 1-form. Moreover The vector
field τ is called concircular ([5], [35]) if the 1-form ω vanishes identically in the equation (1.10). The vector
field τ is called concurrent ([24], [34]) if in (1.10) the 1-form ω vanishes identically and the function ψ = 1.
The vector field τ is called recurrent if in (1.10) the function ψ = 0. Finally if in (1.10) ψ = ω = 0, then
the vector field τ is called a parallel vector field. In 2017, Chen [6] introduced a new vector field called a
torqued vector field. If the vector field τ satisfies (1.10) with ω(τ) = 0, then τ is called torqued vector field.
Also in this case, ψ is known as the torqued function and the 1-form ω is the torqued form of τ.
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The outline of the article goes as follows: In section 2, after a brief introduction, we have discussed some
needful results, which will be used in the later section. In section 3, we have contrived ∗-Ricci-Yamabe
soliton admitting Kenmotsu manifold and obtained the nature of soliton, Laplacian of the smooth function.
We have also proved that the manifold is η-Einstein when the manifold satisfies ∗-Ricci-Yamabe soliton
and the vector field is conformal Killing. Next, we have demonstrated some properties of vector fields on
∗-Ricci-Yamabe soliton. Section 5 deals with some geometrical and physical motivation of ∗-Ricci-Yamabe
soliton. In section 6, we have constructed an example to illustrate the existence of ∗-Ricci-Yamabe soliton
on 3-dimensional Kenmotsu manifold.

2. Preliminaries

Let M be a (2n+1) dimensional connected almost contact metric manifold with an almost contact metric
structure (ϕ, ξ, η, 1) where ϕ is a (1, 1) tensor field, ξ is a vector field, η is a 1-form and 1 is the compatible
Riemannian metric such that

ϕ2(V1) = −V1 + η(V1)ξ, η(ξ) = 1, η ◦ ϕ = 0, ϕξ = 0, (2.1)

1(ϕV1, ϕV2) = 1(V1,V2) − η(V1)η(V2), (2.2)

1(V1, ϕV2) = −1(ϕV1,V2), (2.3)

1(V1, ξ) = η(V1) (2.4)

for all vector fields V1,V2 ∈ χ(M).
An almost contact metric manifold is said to be a Kenmotsu manifold [20] if

(∇V1ϕ)V2 = −1(V1, ϕV2)ξ − η(V2)ϕV1, (2.5)

∇V1ξ = V1 − η(V1)ξ, (2.6)

where ∇ denotes the Riemannian connection of 1. In a Kenmotsu manifold the following relations hold
([1], [30]):

η(R(V1,V2)V3) = 1(V1,V3)η(V2) − 1(V2,V3)η(V1), (2.7)

R(V1,V2)ξ = η(V1)V2 − η(V2)V1, (2.8)

R(V1, ξ)V2 = 1(V1,V2)ξ − η(V2)V1, (2.9)

where R is the Riemannian curvature tensor.

S(V1, ξ) = −2nη(V1), (2.10)

S(ϕV1, ϕV2) = S(V1,V2) + 2nη(V1)η(V2), (2.11)

(∇V1η)V2 = 1(V1,V2) − η(V1)η(V2), (2.12)

for all vector fields V1,V2,V3 ∈ χ(M). Now we know

(£ξ1)(V1,V2) = 1(∇V1ξ,V2) + 1(V1,∇V2ξ), (2.13)

for all vector fields V1,V2,∈ χ(M). Then using (2.6) and (2.13), we get

(£ξ1)(V1,V2) = 2[1(V1,V2) − η(V1)η(V2)]. (2.14)
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Proposition 2.1. [33] On a (2n + 1)- dimensional Kenmotsu manifold, the ∗-Ricci tensor is given by,

S∗(V1,V2) = S(V1,V2) + (2n − 1)1(V1,V2) + η(V1)η(V2). (2.15)

Also we take V1 = ei, V2 = ei in the above equation, where ei’s are a local orthonormal frame and
summing over i = 1, 2, ...., (2n + 1), to infer

r∗ = r + 4n2, (2.16)

where r∗ is the ∗- scalar curvature of M.

3. Main Results

Let M be a (2n+1) dimensional Kenmotsu manifold. Now, we take V = ξ into the identity (1.9) on M to
yield

(£ξ1)(V1,V2) + 2α1S∗(V1,V2) + [2Λ − β1r∗]1(V1,V2) = 0 (3.1)

for all vector fields V1,V2,∈ χ(M).We utilize the identities (2.14) and (2.15) into the above equation to yield

α1S(V1,V2) + [Λ + α1(2n − 1) + 1 −
β1r∗

2
]1(V1,V2) + [α1 − 1]η(V1)η(V2) = 0. (3.2)

We set V2 = ξ in the above equation and making the use of (2.1), (2.10) to obtain

[Λ −
β1r∗

2
]η(V1) = 0. (3.3)

Since η(V1) , 0, the previous equation takes the form

Λ =
β1r∗

2
. (3.4)

Now with the help of (2.16), we acquire

Λ =
β1(r + 4n2)

2
. (3.5)

This leads to the following:

Theorem 3.1. If the metric 1 of a (2n+1) dimensional Kenmotsu manifold satisfies the ∗-Ricci-Yamabe soliton
(1, ξ,Λ, α1, β1), where ξ is the Reeb vector field, then the soliton is expanding, steady, shrinking according as
β1(r + 4n2) ⪌ 0.

Also we have, if the manifold M becomes flat i.e r = 0 then (3.5) becomes, Λ = 2β1n2. So we can state

Corollary 3.2. If the metric 1 of a (2n+1) dimensional Kenmotsu manifold, which is flat, satisfies the ∗-Ricci-Yamabe
soliton (1, ξ,Λ, α1, β1), where ξ is the Reeb vector field, then the soliton is expanding, steady, shrinking according as
β1 ⪌ 0.

Now, we consider a ∗-Ricci-Yamabe soliton (1,V,Λ, α1, β1) on M as:

(£V1)(V1,V2) + 2α1S∗(V1,V2) + [2Λ − β1r∗]1(V1,V2) = 0 (3.6)

for all vector fields V1,V2,∈ χ(M). We plug V1 = ei, V2 = ei in the equation (3.6), where ei’s are a local
orthonormal frame and summing over i = 1, 2, ...., (2n + 1) and using (2.16) to arrive

divV + (r + 4n2)
[
α1 −

β1(2n + 1)
2

]
+ Λ(2n + 1) = 0. (3.7)
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If we take the vector field V is of gradient type i.e V = 1rad( f ), for f is a smooth function on M, then the
equation (3.7) becomes

∆( f ) = −(r + 4n2)
[
α1 −

β1(2n + 1)
2

]
−Λ(2n + 1), (3.8)

where ∆( f ) is the Laplacian equation satisfied by f . So, we can state the following theorem:

Theorem 3.3. If the metric 1 of a (2n+1) dimensional Kenmotsu manifold satisfies the ∗-Ricci-Yamabe soliton
(1,V,Λ, α1, β1), where V is the gradient of a smooth function f , then the Laplacian equation satisfied by f is,

∆( f ) = −(r + 4n2)
[
α1 −

β1(2n + 1)
2

]
−Λ(2n + 1).

Now ifα1 = 1, β1 = 0, (1.9) reduces to ∗-Ricci soliton and (3.8) takes the form,∆( f ) = −(r+4n2)−Λ(2n+1). If
α1 = 0, β1 = 2, (1.9) reduces to ∗-Yamabe soliton and (3.8) takes the form,∆( f ) = [r+4n2

−Λ](2n+1). Moreover
ifα1 = β1 = 1, (1.9) reduces to ∗-Einstein soliton and (3.8) takes the form∆( f ) = −(r+4n2)

[
1− (2n+1)

2

]
−Λ(2n+1).

Then we have

Remark 3.4. Case-I: If the metric 1 of a (2n+1) dimensional Kenmotsu manifold satisfies the ∗-Ricci soliton
(1,V,Λ), where V is the gradient of a smooth function f , then the Laplacian equation satisfied by f is

∆( f ) = −(r + 4n2) −Λ(2n + 1).

Case-II: If the metric 1 of a (2n+1) dimensional Kenmotsu manifold satisfies the ∗-Yamabe soliton (1,V,Λ),
where V is the gradient of a smooth function f , then the Laplacian equation satisfied by f is

∆( f ) = [r + 4n2
−Λ](2n + 1).

Case-III: If the metric 1 of a (2n+1) dimensional Kenmotsu manifold satisfies ∗-Einstein soliton (1,V,Λ),
where V is the gradient of a smooth function f , then the Laplacian equation satisfied by f is

∆( f ) = −(r + 4n2)
[
1 −

(2n + 1)
2

]
−Λ(2n + 1).

Also if we consider the vector field V as solenoidal i.e., divV = 0, then (3.7) reads

r = −
Λ(2n + 1)[
α1 −

β1(2n+1)
2

] − 4n2, (3.9)

provided
[
α1−

β1(2n+1)
2

]
, 0. Again if r takes the form of (3.9), then from (3.7), we obtain divV = 0. This leads

to the following:

Theorem 3.5. Let the metric 1 of a (2n+1) dimensional Kenmotsu manifold admits the ∗-Ricci-Yamabe soliton
(1,V,Λ, α1, β1). Then the vector field V is solenoidal iff the scalar curvature takes the form − Λ(2n+1)[

α1−
β1(2n+1)

2

] − 4n2,

provided
[
α1 −

β1(2n+1)
2

]
, 0.

A vector field V is said to be a conformal Killing vector field if the following relation holds:

(£V1)(V1,V2) = 2Ω1(V1,V2), (3.10)

whereΩ is some function of the co-ordinates(conformal scalar). Moreover, ifΩ is not constant the conformal
Killing vector field V is said to be proper. Also when Ω is constant, V is called a homothetic vector field
and when the constant Ω becomes non-zero, V is said to be a proper homothetic vector field. If Ω = 0 in
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the above equation, then V is called a Killing vector field. Let (1,V,Λ, α1, β1) be a ∗-Ricci-Yamabe soliton on
a (2n+1) dimensional Kenmotsu manifold M, where V is a conformal Killing vector field. Then from (1.9),
(2.15) and (3.10), we have,

α1S(V1,V2) = −
[
α1(2n − 1) + Λ +Ω −

β1r∗

2

]
1(V1,V2) − α1η(V1)η(V2), (3.11)

which leads to the fact that the manifold is η-Einstein, provided α1 , 0.
This leads to the following:

Theorem 3.6. If the metric 1 of a (2n+1) dimensional Kenmotsu manifold endows the ∗-Ricci-Yamabe soliton
(1,V,Λ, α1, β1), where V is a conformal Killing vector field, then the manifold becomes η-Einstein, provided α1 , 0.

We take V2 = ξ into identity (3.11) and using (2.1), (2.10) to achieve[
2α1n − α1(2n − 1) −Λ −Ω+

β1r∗

2
− α1

]
η(V1) = 0. (3.12)

Since η(V1) , 0, we obtain

Ω =
β1r∗

2
−Λ. (3.13)

Then making the use of (2.16), the above equation becomes

Ω =
β1(r + 4n2)

2
−Λ. (3.14)

Hence we can state

Theorem 3.7. Let the metric 1 of a (2n+1) dimensional Kenmotsu manifold satisfy the ∗-Ricci-Yamabe soliton
(1,V,Λ, α1, β1), where V is a conformal Killing vector field. Then V is
(i)proper vector field if β1(r+4n2)

2 −Λ is not constant.

(ii)homothetic vector field if β1(r+4n2)
2 −Λ is constant.

(iii) proper homothetic vector field if β1(r+4n2)
2 −Λ is non-zero constant.

(iv) Killing vector field if Λ = β1(r+4n2)
2 .

Using the property of Lie derivative we can write

(£V1)(V1,V2) = 1(∇V1 V,V2) + 1(∇V2 V,V1) (3.15)

for any vector fields V1,V2.
Then from the identities (2.10), (2.15), (2.16) and (3.15), (1.9) takes the form

1(∇V1 V,V2) + 1(∇V2 V,V1) + 2α1[−2n1(V1,V2) + (2n − 1)1(V1,V2) + η(V1)η(V2)]

+ [2Λ − β1(r + 4n2)]1(V1,V2) = 0, (3.16)

which leads to

1(∇V1 V,V2) + 1(∇V2 V,V1) +
[
2Λ − β1(r + 4n2) − 2α1

]
1(V1,V2) + 2α1η(V1)η(V2) = 0. (3.17)

Suppose θ is a 1-form, which is metrically equivalent to V and is given by θ(V1) = 1(V1,V) for an arbitrary
vector field V1. Then the exterior derivative dθ of θ can be written as:

2(dθ)(V1,V2) = 1(∇V1 V,V2) − 1(∇V2 V,V1). (3.18)
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As dθ is skew-symmetric, so if we define a tensor field F of type (1,1) by,

(dθ)(V1,V2) = 1(V1,FY), (3.19)

then F is skew self-adjoint i.e. 1(V1,FV2) = −1(FV1,V2). So (3.19) can be written as:

(dθ)(V1,V2) = −1(FV1,V2) (3.20)

We feed the equation (3.18) into (3.20) to arrive

1(∇V1 V,V2) − 1(∇V2 V,V1) = −21(FV1,V2). (3.21)

Now, we add the equations (3.21) and (3.17) side by side and factoring out V2 to infer

∇V1 V = −FV1 −
[
Λ −

β1(r + 4n2)
2

− α1

]
V1 − α1η(V1)ξ. (3.22)

Substituting the above equation in R(V1,V2)V = ∇V1∇V2 V − ∇V2∇V1 V − ∇[V1,V2]V, we have

R(V1,V2)V = (∇V2 F)V1 − (∇V1 F)V2 + β1
V2

2
(V1r) − β1

V1

2
(Yr)

+ η(V1)V2 − η(V2)V1. (3.23)

Noting that dθ is closed, we obtain

1(V1, (∇V3 F)V2) + 1(V2, (∇V1 F)V3) + 1(V3, (∇V2 F)V1) = 0. (3.24)

Making inner product of (3.23) with respect to V3, we acquire

1(R(V1,V2)V,V3) = 1((∇V2 F)V1,V3) − 1((∇V1 F)V2,V3) + η(V1)1(V2,V3)

− η(V2)1(V1,V3) + β1
Xr
2
1(V2,V3) − β1

V2r
2
1(V1,V3). (3.25)

As F is skew self-adjoint, then ∇V1 F is also skew self-adjoint. Then using (3.24), (3.25) takes the form

1(R(V1,V2)V,V3) = 1((∇V3 F)V2,V1) + η(V1)1(V2,V3) − η(V2)1(V1,V3)

+ β1
1(V1,Dr)

2
1(V2,V3) − β1

1(V2,Dr)
2

1(V1,V3). (3.26)

We put V1 = V3 = ei in the above equation, where ei’s are a local orthonormal frame and summing over
i = 1, 2, 3, .., (2n + 1) to find

S(V2,V) = −2nη(V2) − (divF)V2 − β1n1(V2,Dr), (3.27)

where divF is the divergence of the tensor field F. Using (2.10), the previous equation becomes

(divF)V2 = 2n[1(V2,V) − η(V2)] − β1n1(V2,Dr). (3.28)

Now we compute the covariant derivative of the squared 1-norm of V using (3.22) as follows:

∇V1 | V |
2 = 21(∇V1 V,V)

= −21(FV1,V) −
[
2Λ − β1(r + 4n2) − 2α1

]
1(V1,V)

− 2α1η(V1)η(V). (3.29)

Again making the use of (3.15), (3.17) provides

(£V1)(V1,V2) = −
[
2Λ − β1(r + 4n2) − 2α1

]
1(V1,V2) − 2α1η(V1)η(V2). (3.30)

Then we fetch the identity (3.29) into (3.30) to yield

∇V1 | V |
2 +21(FV1,V) − (£V1)(V1,V) = 0. (3.31)

So we can state
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Theorem 3.8. If the metric 1 of a (2n+1) dimensional Kenmotsu manifold endows the ∗-Ricci-Yamabe soliton
(1,V,Λ, α1, β1) then the vector V and its metric dual 1-form θ satisfies the relation

(divF)V2 = 2n[1(V2,V) − η(V2)] − β1n1(V2,Dr),

and
∇V1 | V |

2 +21(FV1,V) − (£V1)(V1,V) = 0.

4. Application of torse forming vector field on Kenmotsu manifold admitting ∗-Ricci-Yamabe soliton

Let (1, τ,Λ, α1, β1) be a ∗-Ricci-Yamabe soliton on a (2n+1) dimensional Kenmotsu manifold M, where τ
is a torse-forming vector field. Then from (1.9), (2.15) and (2.16), we have,

(£τ1)(V1,V2) + 2α1[S(V1,V2) + (2n − 1)1(V1,V2) + η(V1)η(V2)]

+ [2Λ − β1(r + 4n2)]1(V1,V2) = 0, (4.1)

where £τ1 denotes the Lie derivative of the metric 1 along the vector field τ.
Now with the help of the identity (1.10), we obtain

(£τ1)(V1,V2) = 1(∇V1τ,V2) + 1(V1,∇V2τ)
= 2ψ1(V1,V2) + ω(V1)1(τ,V2) + ω(V2)1(τ,V1), (4.2)

for all V1,V2 ∈M. Then making use of (4.2) and (4.1), we get

[β1(r + 4n2)
2

−Λ − ψ − α1(2n − 1)
]
1(V1,V2) − α1S(V1,V2) − α1η(V1)η(V2)

=
1
2

[
ω(V1)1(τ,V2) + ω(V2)1(τ,V1)

]
. (4.3)

We contract the equation (4.3) over V1 and V2 to find

[β1(r + 4n2)
2

−Λ − ψ − α1(2n − 1)
]
(2n + 1) − α1r − α1 = ω(τ), (4.4)

which leads to

Λ =
β1(r + 4n2)

2
− ψ − α1(2n − 1) −

α1r + α1 + ω(τ)
(2n + 1)

. (4.5)

So, we can state the following theorem:

Theorem 4.1. If the metric 1 of a (2n+1) dimensional Kenmotsu manifold admits the ∗-Ricci-Yamabe soliton
(1, τ,Λ, α1, β1), where τ is a torse-forming vector field, thenΛ = β1(r+4n2)

2 −ψ−α1(2n−1)− α1r+α1+ω(τ)
(2n+1) and the soliton

is expanding, steady, shrinking according as β1(r+4n2)
2 − ψ − α1(2n − 1) − α1r+α1+ω(τ)

(2n+1) ⪌ 0.

Now in (4.5), if the 1-form ω vanishes identically then Λ = β1(r+4n2)
2 − ψ − α1(2n − 1) − α1r+α1

(2n+1) . If the

1-form ω vanishes identically and the function ψ = 1 in (4.5), then Λ = β1(r+4n2)
2 − 1 − α1(2n − 1) − α1r+α1

(2n+1) .

In (4.5), if the function ψ = 0, then Λ = β1(r+4n2)
2 − α1(2n − 1) − α1r+α1+ω(τ)

(2n+1) . If ψ = ω = 0 in (4.5), then

Λ =
β1(r+4n2)

2 − α1(2n− 1)− α1r+α1
(2n+1) . Finally in (4.5), if ω(τ) = 0, then Λ = β1(r+4n2)

2 −ψ− α1(2n− 1)− α1r+α1
(2n+1) . Then

we have
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Corollary 4.2. Let the metric 1 of a (2n+1) dimensional Kenmotsu manifold endows the ∗-Ricci-Yamabe soliton
(1, τ,Λ, α1, β1), where τ is a torse-forming vector field, then if τ is
(i) con-circular, thenΛ = β1(r+4n2)

2 −ψ−α1(2n− 1)− α1r+α1
(2n+1) and the soliton is expanding, steady, shrinking according

as β1(r+4n2)
2 − ψ − α1(2n − 1) − α1r+α1

(2n+1) ⪌ 0.

(ii) concurrent, then Λ = β1(r+4n2)
2 − 1 − α1(2n − 1) − α1r+α1

(2n+1) and the soliton is expanding, steady, shrinking ac-

cording as Λ = β1(r+4n2)
2 − 1 − α1(2n − 1) − α1r+α1

(2n+1) ⪌ 0.

(iii) recurrent, then Λ = β1(r+4n2)
2 − α1(2n − 1) − α1r+α1+ω(τ)

(2n+1) and the soliton is expanding, steady, shrinking ac-

cording as Λ = β1(r+4n2)
2 − α1(2n − 1) − α1r+α1+ω(τ)

(2n+1) ⪌ 0.

(iv) parallel, then Λ = β1(r+4n2)
2 − α1(2n − 1) − α1r+α1

(2n+1) and the soliton is expanding, steady, shrinking according

as Λ = β1(r+4n2)
2 − α1(2n − 1) − α1r+α1

(2n+1) ⪌ 0.

(v) torqued, then Λ = β1(r+4n2)
2 −ψ− α1(2n− 1)− α1r+α1

(2n+1) and the soliton is expanding, steady, shrinking according as

Λ =
β1(r+4n2)

2 − ψ − α1(2n − 1) − α1r+α1
(2n+1) ⪌ 0.

5. Geometrical and physical motivation of ∗-Ricci-Yamabe soliton

The notion of ∗-Ricci-Yamabe soliton is replaced by Ricci-Yamabe soliton as a kinematic solution of
Ricci-Yamabe flow, whose profile develops a characterization of spaces of constant sectional curvature
along with the locally symmetric spaces. Also, a geometric phenomenon of ∗-Ricci-Yamabe solitons can
evolve an aqueduct between a sectional curvature inheritance symmetry of space-time and the class of
Ricci-Yamabe solitons. As an application to relativity, there are some physical models of perfect fluid Ricci-
Yamabe soliton space times which generates a curvature inheritance symmetry. Here, we can find some
physical and geometrical models of perfect ∗-Ricci-Yamabe soliton space-time and that will give the physical
significance, to the concept of ∗-Ricci-Yamabe soliton. As an application to cosmology and general relativity
by investigating the kinetic and potential nature of relativistic space-time, we present a physical model
of 3-class namely, shrinking, steady, and expanding of perfect and dust fluid solution of ∗-Ricci-Yamabe
soliton space-time. The first case shrinking (Λ < 0) which exists on a minimal time interval −α1 < t < b
where b < α1, steady (Λ = 0) that exists for all time or expanding (Λ > 0) which exists on maximal time
interval a < t < α1, a > −α1. These three classes give an example of ancient, eternal, and immortal solutions.

6. Example of a 3-dimensional Kenmotsu manifold admitting ∗-Ricci-Yamabe soliton

We consider the three-dimensional manifold M = {(x1, y1, z1) ∈ R3, (x1, y1, z1) , (0, 0, 0)}, where (x1, y1, z1)
are standard coordinates in R3. The vector fields

e1 = z1
∂
∂x1

, e2 = z1
∂
∂y1

, e3 = −z1
∂
∂z1

are linearly independent at each point of M. Let 1 be the Riemannian metric defined by

1(e1, e2) = 1(e2, e3) = 1(e3, e1) = 0,

1(e1, e1) = 1(e2, e2) = 1(e3, e3) = 1.

Let η be the 1-form defined by η(V3) = 1(V3, e3), for any V3 ∈ χ(M), where χ(M) is the set of all differentiable
vector fields on M and ϕ be the (1, 1)-tensor field defined by

ϕe1 = −e2, ϕe2 = e1, ϕe3 = 0.
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Then using the linearity of ϕ and 1, we have,

η(e3) = 1, ϕ2V3 = −V3 + η(V3)e3, 1(ϕV3, ϕW) = 1(V3,W) − η(V3)η(W),

for any V3,W ∈ χ(M). Thus for e3 = ξ, (ϕ, ξ, η, 1) defines an almost contact metric structure on M. Let ∇ be
the Levi-Civita connection with respect to the Riemannian metric 1. Then we have

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2.

The connection ∇ of the metric 1 is given by,

21(∇V1 V2,V3) = V11(V2,V3) + V21(V3,V1) − V31(V1,V2)
− 1(V1, [V2,V3]) − 1(V2, [V1,V3]) + 1(V3, [V1,V2]),

which is known as Koszul’s formula. Using Koszul’s formula, we can easily calculate,

∇e1 e1 = −e3, ∇e1 e2 = 0, ∇e1 e3 = e1,

∇e2 e1 = 0, ∇e2 e2 = −e3, ∇e2 e3 = e2,

∇e3 e1 = 0, ∇e3 e2 = 0, ∇e3 e3 = 0.

From the above it follows that the manifold satisfies ∇V1ξ = V1 − η(V1)ξ, for ξ = e3. Hence the manifold is
a Kenmotsu Manifold. Also, the Riemannian curvature tensor R is given by

R(V1,V2)V3 = ∇V1∇V2 V3 − ∇V2∇V1 V3 − ∇[V1,V2]V3.

Hence,
R(e1, e2)e2 = −e1, R(e1, e3)e3 = −e1, R(e2, e1)e1 = −e2,

R(e2, e3)e3 = −e2, R(e3, e1)e1 = −e3, R(e3, e2)e2 = −e3,

R(e1, e2)e3 = 0, R(e2, e3)e1 = 0, R(e3, e1)e2 = 0.

Then, the Ricci tensor S is given by

S(e1, e1) = −2, S(e2, e2) = −2, S(e3, e3) = −2. (6.1)

Also the scalar curvature becomes

r =
3∑

i=1

S(ei, ei) = −6. (6.2)

Using (2.15) and (6.1), we have

S∗(e1, e1) = −1, S∗(e2, e2) = −1, S∗(e3, e3) = 0. (6.3)

Hence

r∗ = Tr(S∗) = −2. (6.4)

Let us take the the potential vector field as V = 2x1
∂
∂x1
+ 2y1

∂
∂y1
+ z1

∂
∂z1
. Then (£V1)(e1, e1) = −21(£Ve1, e1) = 2.

Similarly, (£V1)(e2, e2) = 2, (£V1)(e3, e3) = 0. Hence we have,

3∑
i=1

(£V1)(ei, ei) = 4. (6.5)

Now putting V1 = V2 = ei in the (1.9), summing over i = 1, 2, 3 and using (6.4) and (6.5), we obtain

Λ =
2α1 − 3β1 − 2

3
. (6.6)

As this Λ, defined as above satisfies (3.7), so 1 defines a ∗-Ricci-Yamabe soliton on the 3-dimensional
Kenmotsu manifold M. Also we can state
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Remark 6.1. Case-I: When α1 = 1, β1 = 0, (6.6) gives Λ = 0 and hence (1,V,Λ) is a ∗-Ricci soliton which is
steady.

Case-II: When α1 = 0, β1 = 2, (6.6) gives Λ = − 8
3 and hence (1,V,Λ) is a ∗-Yamabe soliton which is

shrinking.

Case-III: When α1 = 1, β1 = 1, (6.6) gives Λ = −1 and hence (1,V,Λ) is a ∗-Einstein soliton which is
also shrinking.

7. Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University
for funding this work through a research group program under Grant No: R.G.P1/90/44.

References

[1] C. S. Bagewadi and V. S. Prasad, Note on Kenmotsu manifolds, Bull. Cal. Math. Soc.(1999), 91, pp-379-384.
[2] E. Barbosa and E. Ribeiro Jr., On conformal solutions of the Yamabe flow, Arch. Math.(2013), Vol. 101, pp-79–89.
[3] H. D. Cao, Xiaofeng Sun and Yingying Zhang, On the structure of gradient Yamabe solitons, arXiv:1108.6316v2 [math.DG] (2011).
[4] G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal(2016). Vol. 132, pp-66–94.
[5] B. Y. Chen, A simple characterization of generalized Robertson-Walker space-times, Gen. Relativity Gravitation(2014), 46 , no. 12, Article

ID 1833.
[6] B. Y. Chen, Classification of torqued vector fields and its applications to Ricci solitons, Kragujevac J. of Math.(2017), 41(2) , pp-239-250.
[7] J. T. Cho, Makoto Kimura,Ricci solitons and real hypersurfaces in a complex space form, Tohoku Mathematical Journal, Second

Series(2009), Vol. 61, Isu. 2, pp. 205-212.
[8] D. Dey.: ∗-Ricci-Yamabe Soliton and Contact Geometry, arXiv preprint arXiv:2109.04220v1 [math.DG](2021).
[9] S. Dey and S. Roy, ∗-η-Ricci Soliton within the framework of Sasakian manifold, Journal of Dynamical Systems & Geometric Theories,

(2020), Vol-18(2), pp-163-181.
[10] S. Dey, S. Sarkar and A. Bhattacharyya.:∗-η-Ricci soliton and contact geometry, appear to Ricerche di Matematica, Springer-

Verlag(2021), https://doi.org/10.1007/s11587-021-00667-0.
[11] S. Dey and S. Uddin.: Conformal η-Ricci almost solitons on Kenmotsu manifolds, International Journal of Geometric Methods in

Modern Physics, Vol. 19, No. 08, 2250121(2022),, https://doi.org/10.1142/S0219887822501213 (2022).
[12] S. Dey and S. Roy.:Characterization of general relativistic spacetime equipped with η-Ricci-Bourguignon soliton, Journal of Geometry

and Physics, 178(2022), 104578, https://doi.org/10.1016/j.geomphys.2022.104578.
[13] D. Ganguly, S. Dey, A. Ali and A. Bhattacharyya.: Conformal Ricci soliton and Quasi-Yamabe soliton on generalized Sasakian space form,

Journal of Geometry and Physics, Vol. 169 (2021) 104339, https://doi.org/10.1016/j.geomphys.2021.104339.
[14] A. Ghosh, Yamabe soliton and Quasi-Yamabe soliton on Kenmotsu manifold, Mathematica Slovaca(2020), Vol.70(1), pp-151-160.
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