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Induced sequences and weaving of g-frames

Xiangchun Xiao**, Guoping Zhao?, Guorong Zhou?, Chenhui Wang?

?School of Mathematics and Statistics, Xiamen University of Technology, Xiamen, Fujian 361024, P.R.China

Abstract. In this paper we use the type I induced sequence {uy : i € Ik € K;} of a given g-Bessel sequence
{A; : i € I} to characterize whether {A; : i € I} are g-Riesz frames, near g-Riesz bases and near exact g-frames,
and vice versa. We also characterize the precise relationship between the synthesis operators of a given
g-Bessel sequence and its type II induced sequence. Finally, we discuss whether the sums A+ Aand I' + ©
are woven, where {A; : i € I} and {I'; : i € I} are woven and A, © are g-Bessel sequences.

1. Introduction

G-frame, which was proposed by sun [19, 20] in 2006, is a more general frame expressed by bounded
linear operators in order to popularize several types of frames such as classical frame, fusion frame, etc.
at that time. After that g-frames have been widely studied by many scholars. For more information on
g-frames the readers can consult [1, 7-9, 12, 14, 16-21, 25-27] and the papers therein.

In [20], the author introduced an induced sequence {uy : i € [,k € K;} of a g-Bessel sequence {A; : i € I}
in U (for more details please see (2.5)), which is called the type I induced sequence in this paper, and
investigated the interrelation between {uy : i € Lk € K;} and {A; : i € I}. In detail, Sun [20] obtained that
{A; : i € I} is a g-frame (respectively g-Bessel sequence, tight g-frame, g-Riesz basis, g-orthonormal basis)
for U if and only if {uy : i € [,k € Kj} is a frame (respectively Bessel sequence, tight frame, Riesz basis,
orthonormal basis) for U. Motivated by this, in this paper we will continue to use the type I induced
sequence {uj : i € I,k € K;} to characterize whether {A; : i € I} is a g-Riesz frame, a near exact g-frame, and a
near g-Riesz basis. From the results obtained we know that in general {A; : i € I} being a near g-Riesz basis
(respectively near exact g-frame), is not equivalent to {u : i € I, k € K;} being a near Riesz basis (respectively
near exact frame).

Let {A; : i € I} be a g-Bessel sequence in U w.r.t. {V; :i € I}. If the orthonormal basis for V; is relaxed to
a Riesz basis {hj}ek,, by the same way as in [20] we introduce the type Il induced sequence {vy : i € I, k € Kj}
of {A; : i € I}. Then we characterize the precise relation between the synthesis operators of the g-Bessel
sequence {A; : i € I} and its type Il induced sequence {vy : i € I, k € K;}.
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Recall that weaving of frames was first introduced by Bemrose, Casazza, Grochenig, et al. in [2] to
simulate a problem in distributed signal processing. Due to the potential applications in wireless sensor
networks and signal preprocessing, etc., the weaving of frames has become a hot topic studied by many
researchers. Later, the weaving principle has been applied to other frame settings, such as weaving g-frames
[6, 13, 15], weaving K-frames [5], weaving Schauder frames [4], etc. For more information on the weaving
of frames, the reader can consult [2, 3, 5, 13, 15, 22, 23]. In this paper we continue to investigate whether
the sums A + A and I' + © are woven on a Hilbert space U, where A, I', A, © are g-Bessel sequences in U.
At the same time, we also consider the case where the sums A + A and I' + ® are woven on U, whether A
and I (or A and ®) are woven on U?

Throughout this paper, we will use such notations. U and V are Hilbert spaces, with inner product
{,),and norm || - ||; L(U, V) is denoted by the collection of all the linear bounded operators from U to V,
if U =V, then L(U, V) is abbreviated to L(U); {Vilie is a sequence of closed subspaces of V, where [ is a
subset of the integer set Z.

2. Preliminaries of g-frames in Hilbert spaces

Let me first recall the definitions of g-frame, weaving of g-frames, (near) g-Riesz basis, g-Riesz frame
and near exact g-frame in Hilbert spaces.

Definition 2.1 [20] A sequence {A; € L(U,V;) : i € I} is called a g-frame for U with respect to (w.r.t.) {V;:i €},
if there exist A, B > 0 such that

AlFIP < Y IAFIP < BIFIP, ¥ f . 1)

iel

We call A, B the lower frame bound and upper frame bound of g-frame {A; : i € I}, respectively. We call
{A; : i € I} the g-Bessel sequence if the right-hand of (2.1) holds. We call {A; : i € I} the tight g-frame if A = B,
the parseval g-frameif A =B = 1.

We call {A; : i € I} an exact g-frame for U w.r.t. {V; :i € I} if it ceases to be a g-frame whenever any one
of its elements is removed.

Weaving g-frames were first introduced by combining the weaving principle with g-frames by the
authors in [6, 13, 15].

Definition 2.2 [6, 13, 15] Let {A; : i € I} and {T'; : i € I} be g-frames for U w.r.t. {V; :i € I}. If for any partition
{01‘},2‘:1 of 1, there exist A,B > 0 such that {Aj}ics; U (Tilies, is a g-frame for U with g-frame bounds A, B, then
{A;:ielyand {T; : i € I} are said to be woven on U with universal g-frame bounds A, B, each {Ai}ics, U {Tilico, is
called a weaving.

Suppose that {A; : i € I} is a g-frame for U w.r.t. {V; : i € I}. If there exists a g-Bessel sequence {I’; : i € I}
in U wrt. {V;:i € I} such that

f=Y Tinf=) ATf, Ve, (2.2)

iel iel

then {T; : i € I} is called an alternate dual of {A; : i € I}. In fact, {I; : i € I} satisfying (2.2) is also a g-frame for
U.

Definition 2.3 [20] A sequence {A; € L(U,V;) : i € I} is called a g-Riesz basis for U w.rt. {V; :i € 1}, if the
following two conditions hold:

(1) {A;: i€ I} is g-complete, namely {f : Aif =0,i eI} ={0};
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(if) There exist two positive constants A, B such that forany | C I, and g; € ‘V;,i € ],

AY lgiP < || Y Ags < BY lgilP.

ie] i€] i€]

Definition 2.4 [1, 17] A sequence {A; € L(U,V;) : i € I} is called a g-Riesz frame for U w.r.t. {V; : i € I}, if for
any subset | C I, {A; : i € ]} is a g-frame for Uy w.r.t. {V; i € [} with uniform g-frame bounds A and B, where

U = {Z Aigi Vg e Viie ]}. 2.3)
ie]

Definition 2.5 [11] Let f; € U, Vi € 1. If there exists a finite subset ¢ C I such that {f; : i € I\o} is a Riesz basis for
U, then {f; : i € I} is called a 0— near Riesz basis for U.

Since a Riesz basis is also an exact frame, Definition 2.5 can be expressed in another way.

Definition 2.6 Let f; € U, Vi € L. If there exists a finite subset o C I such that {f; : i € I\o} is an exact frame for U,
then {f; : i € 1} is called a o— near exact frame for U.

Now we recall the definition of near g-Riesz basis.

Definition 2.7 [1] Let A; € L(U,V;), Vi € L. If there exists a finite subset o C I such that {A; : i € I\c} is a g-Riesz
basis for U, then {A; : i € 1} is called a o— near g-Riesz basis for U w.r.t. {V;:iel}.

Since an exact g-frame is not a g-Riesz basis in general, it's necessary to introduce the definition of near
exact g-frame.

Definition 2.8 Let A; € L(U,V;), Vi € L. If there exists a finite subset 0 C I such that {A; : i € I\o} is an exact
g-frame for U, then {A; : i € 1} is called a 0— near exact g-frame for U w.rt. {V;:i€l}.

Since a g-Riesz basis is an exact g-frame, a near g-Riesz basis must be a near exact g-frame, but the
converse is not true in general.

Remark 2.9 Note that for a near g-Riesz basis (resp. near exact g-frame, near Riesz basis, near exact frame), we
mean that we can only delete finite elements from {A; : i € I} such that the left is a g-Riesz basis (resp. an exact
g-frame, a Riesz basis, an exact frame).

Let {A; : i € I} be a g-Bessel sequence in U w.r.t. {V; :i € I}. The synthesis operator Ty of {A; : i € I} is
defined as follows

Ta s P((Vihie) = U, Tgiken) = Y Nigi (2.4)
i€l

where P({V;}ie1) is a Hilbert space, and is defined as follows:

P({Viliear) = {{gi}iel cgi€eVyiel andz llgill* < +00},
i€l
with the inner product {{fi}ier, {gi}icr) = Lier{fir 9i)-

Let {A; : i € I} be a g-Bessel sequence in U w.r.t. {V; :i € I} and for any i € I, let {ej}ek, be an orthonormal
basis for V;, and {hi}rek, be a Riesz basis for V; with Riesz bounds C;, D;, where 0 < C = inf;/{C;},
D = sup,,{D;} < oo, and K; is a subset of Z. In [20] Sun introduced a sequence {uy : i € Lk € Kj}
corresponding to {A; : i € I} with {eg}rex,, Vi € I in the following

Ui = A;Eik, VielkeK,. (25)
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By the same way we define {vj : i € [, k € K;} corresponding to {A; : i € I} and {hj}iex,, Vi € I as follows
Ojx = A:]’lik, VielkeK,. (26)

Obviously {uj : i € Ik € K;} is a special case of {vj : i € [,k € K;}. In the rest of this paper {uy : i € [k € Kj}
and {vy : i € I, k € K;} are respectively called type I and type II induced sequences of {A; : i € I}.
At the end of this section we recall several results obtained by Sun, Zhu.

Lemma 2.10 [20] Let {uj}ierkek, be defined as in (2.5). Then {A; : i € I} is a g-frame (resp. g-Riesz basis) for U
w.r.t. {V; 1 i € I} with g-frame bounds A and B, if and only if its type I induced sequence {uy : i € I,k € K;} is a frame
(resp. Riesz basis) for U with frame bounds A and B.

Lemma 2.11 [27]{A; : i € I} is a g-frame for U w.r.t {V; 1 i € 1}, if and only if the corresponding synthesis operator
T defined as in (2.4) is bounded and surjective on U.

3. Characterizations of kinds of g-frames by type I and type II induced sequences

Let {A; : i € I} be a g-Bessel sequence in U w.rt. {V;:i € I}, with type I induced sequence {uj : i €
Ik € K;}. In [20] the author studied the relationship between {A; : i € I} and its type I induced sequence
{ui : i € Lk € K;}, and obtained some important results (see Lemma 2.10). Motivated by sun [20] in this
paper we continue to investigate such problems: If {A; : i € I} are near g-Riesz bases (resp. near exact
g-frames, g-Riesz frames) for U, can we deduce that its type I induced sequence {uj : i € I, k € K;} are near
Riesz bases (resp. near exact frames, Riesz frames) for U, and vice versa? In fact, if {A; : i € I} is a near
g-Riesz basis for U, then {uy : i € I,k € K;} is not a near Riesz basis for U in general. The reader can check
the following counterexample.

Example 3.1 Suppose that {e;};°, is an orthonormal basis for U, and V1 = U, V, = spanfey, e}, V3 = spanies, es},
Vi = spanfeis1},1 = 4. Now for any f € U, define

2
Mf=(fes)es, Maf =2 (f.ede,
i=1

4
Naf =Y (frede, Aif =(f eidein, i 4.
i=3

We first show that {A;}:2, is a g-Riesz basis for U. For any f € U, we have

AP < ) IAAIP < 4llfIP,
i=2

hence { A}, is a g-frame for U, and consequently {A;}22, is g-complete on U. For any f € U, g, € V>, there exist
c1, ¢ such that g, = Zle c;e;, now we have

ciei, Z(f, €i)€i>

2 2
i=1 i=1

2 2
ZZ ci{f,e) = <ZZ Ciei,f> = (295, f).
i=1 i=1

Since f € U is arbitrary, hence A5g, = 2g,. Similarly we can get A%g; = gi, i > 3. And since {g;}:", is orthogonal,
for any subset ] C1=1{2,3,---}, we have

Y lgi? < | Y Asg < 4 llgilP

i€] ief ief

(Ar92,f) (g2, Mof) = 2<
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Therefore {\}2, is a g-Riesz basis for U, and {A;}2, is a near g-Riesz basis for U.
Next we show that the type I induced sequence {uy}2; xex; of {Ai}32; is not a near Riesz basis for U. By direct
calculations we get

uis = Ajes = es, uyp = Ajex = 0,k # 5, up = Ajer = 2e,,k=1,2,
Uz = Ajern = €0, k= 1,2, ujy = Alejg = ejp1,i 2 4.

Obviously {ua1, uzo, Uz, Uz, Ui, i = 4} and {ux, unp, us1, uzz, Uis, Uit i > 6} are Riesz bases for U. But both cases we

have to erase infinite elements from {uy}2, kek., hence {ui}? ) ek of {Ai}2, is not a near Riesz basis for U. O

The following counterexample tells us that if the type I induced sequence {uj : i € I,k € K;} is a near
Riesz basis for U, then in general {A; : i € I} is not a near g-Riesz basis for U.

Example 3.2 Let {ei}li’il be an orthonormal basis for U, and let V; = spanie;, ei11),1 = 1,2,3, Vi = spanfe;},i > 4.
Now for any f € U, define

2
Aif = Z(f/€i>€i/ Aif =(f,eei, i >2.
i-1

By direct calculations we get

N gi = cie;,Vg; = cie; + ciyreip1 € V3,1 =2,3, Ajgi = g;,Vg9; € Vi,i=1,4,5,-- .
Now we have

ugp = Ne=e,i 21, upp = ey, up = Ajejy1 =0,i=2,3.

Since we can erase w1y, Uxo, Uz from {uy : i € N,k € K;} such that the left is an orthonormal basis for U, hence
{ui : 1 € N, k € Kj} is a near Riesz basis for U. Next we show that {A\;}, is not a near g-Riesz basis for U. For that
we divide two cases as follows.

Case I The subset o in Definition 2.7 is an empty set. It means that we can delete no elements from {A;}2,. We
show that {A\;}2, is not a g-Riesz basis for U. If we take go = e3 € V3, g3 = es € V3, otherwise g; = 0 € V;, then
we have

550
i=1

and Y21 |gill* = llesl* + lleal* = 2. So the condition (ii) in Definition 2.3 doesn’t hold, and {A;}, is not a g-Riesz
basis for U.

Case I The subset ¢ in Definition 2.7 is not empty. Note that we can only delete Ay such that the left {A1}U{A;}72,
is a g-frame for U. But {A1} U {A;}22, is not a g-Riesz basis for U. In fact, if we take g3 = ey € V3, otherwise
gi = 0 € V;, then we have

[5,x0
=1

and Y21 lgill* = llgsl* = llesl* = 1. So the condition (ii) in Definition 2.3 doesn’t hold, hence {A1} U {A;}
g-Riesz basis for U.
In conclusion there are no g-Riesz bases contained in {\;};°,, therefore {\;};°| is not a near g-Riesz basis for U. O

1

2
= IA392 + Asgsll” = IAses + Asesl” = 0,

2
= A351 = llAzeal” = 0,

518 not a

We first use the type I induced sequence of {A; : i € I} to characterize {A; : i € I} to be a near g-Riesz
basis.
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Theorem 3.3 Let A; € L(U,V)),i € L, and {uy : i € I, k € K;} be the type I induced sequence of {A\; : i € I}. Suppose
that forany i € I, dimV; = 1. If {uy : i € Ik € K;} is a near Riesz basis for U, then {/A; : i € I} is a near g-Riesz
basis for U.

Proof. Suppose that {uj : i € [,k € K;} is a near Riesz basis for U. For the trivial case, if {uy : i € I,k € Kj}
is a Riesz basis for U, by Lemma 2.10 we obtain that {A; : i € I} is a g-Riesz basis for U. Next we show
the nontrivial case. Assume that there exist @ # 0 C I, 0 # 7; C K;,i € 0 with ) ;. |7i| < oo, such that
{ug i€ \o, k € Ki} U {uy : i € 0,k € Ki\1;} is a Riesz basis for U. Forany i € I, dimV; =1,s0|Kj| = 1,i € L.
Andsince® # 1; C K;,i € 0, {ujy : i € I\o,k € K;}U{uy : i € 0,k € K;\1;} canbe rewritten as {uy : i € I\o, k € K;}.
Hence {uj : i € I\o, k € Kj} is a Riesz basis for Y. Again by Lemma 2.10 then {A; : i € I\o} is a g-Riesz basis
for U. Since ) ;c, |Til < 00, we have |o| < co. Therefore {A; : i € I} is a near g-Riesz basis for U. O

We also obtain a result as follows.

Theorem 3.4 Let A; € L(U,V;),i € I, and {uy : i € Lk € Kj} be the type I induced sequence of {A; : i € I}. If
{ui i € Lk € Ki} is a UjesKi-near Riesz basis for U, then {A,; : i € I} is a o-near g-Riesz basis for U.

Proof. {uy :i€ Ik € Ki} is a Uje,Ki-near Riesz basis for U, so Y, |Kil < oo and {uy : i € I\o,k € Kj} is
a Riesz basis for U. By Lemma 2.10 {A; : i € I\o} is a g-Riesz basis for U. Since } ;. |Ki| < o0, we obtain
lo] < co. Hence {A; : i € I\o} is a g-Riesz basis for U by deleting |o|(< o0) elements from {A; : i € I}. Therefore
{A; 1 i €1} is a o-near g-Riesz basis for U. m]

We then use {A; : i € I} to characterize its type I induced sequence to be a near Riesz basis.

Theorem 3.5 Let A; € L(U,V)),i € I, and {uy : i € Lk € Kj} be the type I induced sequence of {A; : i € I}. If
{A; 21 € 1} is a o-near g-Riesz basis for U, and for any i € o, dim V; < oo, then {uy : i € Ik € K;} is a Uje,Ki-near
Riesz basis for U.

Proof. Suppose that {A; : i € I} is a o-near g-Riesz basis for U. Then {A; : i € I\o} is a g-Riesz basis for U. By
Lemma 2.10 {uj : i € I\o, k € K;} is a Riesz basis for U. Since |K;| = dim V; < o, i € ¢, and |o| < o0, we have
Yies IKil < 00. It means that by deleting ., IKi| elements from {uj : i € I,k € K;} the left {uy : i € I\o, k € K;}
is a Riesz basis for U. Therefore {u; : i € I,k € K;} is a near Riesz basis for U. O

The next result is easily followed by Theorem 3.5.

Corollary 3.6 Let A; € L(U,V)),i € I, and {uy : i € I,k € K;} be the type I induced sequence of {A; : i € I}. Suppose
that for any i € I, dimV; < oo. If {A; : i € I} is a near g-Riesz basis for U, then {uy : i € I,k € K;} is a near Riesz
basis for U.

Combing with Theorems 3.3 and 3.5 we can obtain the following corollary.

Corollary 3.7 Let A; € L(U, V), i € I, and {uy : i € I, k € K;} be the type I induced sequence of {A; : i € I}. Suppose
that for any i € I, dimV; = 1. Then {A; : i € I} is a near g-Riesz basis for U, if and only if {uy i € Lk e Ki} isa
near Riesz basis for U.

Next we use the type I induced sequence of {A; : i € I} to characterize {A; : i € I} to be a near exact
g-frame.

Theorem 3.8 Let A; € L(U,V)),i € I, and {uy : i € Lk € Kj} be the type I induced sequence of {A; : i € I}. If
{ui : i € Ik € K;} is a near exact frame for U, then {A; : i € I} is a near exact g-frame for U.
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Proof. Suppose that {uy : i € [k € K;} is a near exact frame for U. So {uy : i € I,k € Kj} is also a frame for
U, by Lemma 2.10 we obtain that {A; : i € I} is a g-frame for U. By contradiction we assume that {A; : i € I}
is not a near exact g-frame for U. Then there exists a subset o C I with |o| = oo such that {A; : i € I\o} is a
g-frame for U. Again by Lemma 2.10 {uy : i € I\o, k € K;} is a frame for U. Since o] = o0, s0 Z]’Ea K| = o0.
{uig : i € \o, k € K;} being a frame for U, means that we can delete infinite elements from {uy : i € [, k € K;}
such that the left is a frame for Y. We can also delete infinite elements from {uy : i € I,k € K;} such that
the left is an exact frame for U. By Remark 2.9 {uy : i € I,k € K;} is not a near exact frame for Y. Hence
{A; 1i € l}isindeed a near exact g-frame for U. O

An exact frame is also a Riesz basis, so a near exact frame is a near Riesz basis. Suppose that {A; : i € I}
is a near exact g-frame for U, Example 3.1 also implies that {1 : i € I, k € K;} is not a near exact frame for
U. But if we make some restrictions on dim V;, i € I, {A; : i € I} is a near exact g-frame for U can deduce
that {u; : i € Ik € K;} is a near exact frame for U.

Theorem 3.9 Let A; € L(U,V)),i € I, and {uy : i € I, k € K;} be the type I induced sequence of {A\; : i € I}. Suppose
that for any i € I, dimV; = 1. If {A; : i € I} is a near exact g-frame for U, then {uy : i € Ik € Kj} is a near exact
frame for U.

Proof. Assume that {A; : i € I} is a near exact g-frame for Y. Then there exists a subset ¢ C [ with
lo] < oo such that {A; : i € I\o} is an exact g-frame for Y. By Lemma 2.10 {uy : i € I\o,k € K;} is a
frame for U. Next we show that {uy : i € I\o,k € K;} is an exact frame for Y. By contradiction we
assume that {u; : i € I\o,k € K;} is not exact. Then there exist ® # © € I\o, @ # x; C K;, i € 7, such that
{ug : 1€ \o\t, k € Ki} U{uy : i € 7,k € Ki\k;} is a frame for U. Since |[K;| =dimV;=1,i€l,and 0 # x; C K,
i€1,50K\x; =0 forany i € 7. Hence {uy : i € I\o\7,k € K;} is a frame for U. Again by Lemma 2.10
{A; 1 i € \o\1} is a g-frame for U. It contradicts that {A; : i € I\o} is an exact g-frame for U. Therefore
{ui : i € I\o, k € K;} is an exact frame for Y. It implies that {uy : i € [,k € K;} is a near exact frame for U
since Y e, IKi| = |o] < 0. O

The following result can be obtained by combining the Theorems 3.8 and 3.9.

Corollary 3.10 Let A; € L(U,V;),i € I, and {uy : i € I,k € K;} be the type I induced sequence of {A; : i € I}.
Suppose that for any i € I, dim“V; = 1. Then {uy : i € I, k € K;} is a near exact frame for U, if and only if {A; : i € I}
is a near exact g-frame for U.

The following result tells us that the type I induced sequence of {A; : i € I}, which is a Riesz frame, can
infer that {A; : i € I} is a g-Riesz frame.

Theorem 3.11 Let {A; : i € I} be a g-Bessel sequence in U w.r.t. {V; :i € I}, with the type I induced sequence
{ug 1 i€ Lk e Ki}. If {uyg : 1 € Lk € K} is a Riesz frame for U, then {A; : i € I} is a g-Riesz frame for U w.r.t.
{Vilier.

Proof. Suppose that {uy : i € Ik € Kj} is a Riesz frame for U with uniform frame bounds A and B. Then
for any subset | C I, {uj : i € ]k € Ki} is a frame for ‘W; with frame bounds A and B, where

W] = {Z Zcikuik :VYie ],k € K,‘}.
i€] keK;
By Lemma 2.10 {A,; : i € ]} is a g-frame for ‘W) with g-frame bounds A and B. It follows that U; = R(T}) = W,
by Lemma 2.11, where Tj is the synthesis operator of {A; : i € [}, U is defined by (2.3). Hence we obtain
that for any | C I, {A; : i € J} is a g-frame for U} with uniform g-frame bounds A and B. Hence {A; : i € I} is
a g-Riesz frame for U. ]

Let {A; : i € I} be a g-Bessel sequence in U w.rt. {V; : i € I}, with the type I induced sequence
{ug : i € Lk € K;}. At the moment we can’t answer, if {A; : i € I} is a g-Riesz frame for U, whether
{ui 2 i € Lk € K;}is a Riesz frame for U. We can only get such a result under the conditiondim V; =1,Vi € L.
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Theorem 3.12 Let {A; : i € I} be a g-Bessel sequence in U w.r.t. {V; :i € I}, with the type I induced sequence
{ui i € Lk € Ki}. Suppose that for anyi €I, dimV; = 1. If {A; : i € I} is a g-Riesz frame for U w.r.t. {Vi}ie1, then
{ui 2 i € 1,k € K;} is a Riesz frame for U.

Proof. Assume that {A; : i € I} is a g-Riesz frame for U with uniform g-frame bounds A and B. For any
0+0cCl0#1 CKieo, weneed to show that {j}iesker, is a frame for ‘W, with uniform frame bounds,
where

ng = {ZZCikuik :Vie G,kG Ti}.

ieo ket;

Since for any i € I, dimV; = 1,s0 |Ki| = 1,i € I. And since @ # t; C K;, i € 0, hence t; = K;, i € 0. Therefore

{Uik}icoker; can be rewritten as {uj}icokek,, and W, can be rewritten as {}.;c, Y ke, Cikttix : Vi € 0,k € Kj}. Since
{A; 1 i € I} is a g-Riesz frame for U with uniform g-frame bounds A and B, so {A; : i € o} is a g-frame for
Us = {Lieo N1gi - Vgi € Vi i € 0} with g-frame bounds A and B, by Lemma 2.10 {uix}ieqkek; is a frame for U,
with frame bounds A and B. We can also have W, = R(T,;) = U,, where T, is the synthesis operator of
{tic}ieo ek, Hence {Ui}ieoker; is @ frame for ‘W, with uniform frame bounds A and B. And ¢ C I, 7; C K;,
i € 0 are arbitrary, therefore {uy : i € I, k € K;} is a Riesz frame for U. O

Combining with Theorems 3.11 and 3.12 we can obtain the following result.

Corollary 3.13 Let {A; : i € I} be a g-Bessel sequence in U w.r.t. {V;:1i € I}, with the type I induced sequence
{ui 1 i € Lk € Ki}. Suppose that for any i € I, dimV; = 1. Then {A,; : i € I} is a g-Riesz frame for U, if and only if
{ui : i € I,k € K} is a Riesz frame for U.

At the end of this section, we give the exact relationship between the synthesis operators of {A; : i € I}
and its type II induced sequence.

Theorem 3.14 Let {A; : i € I} be a g-Bessel sequence in U w.r.t. {V; :i € I} and for any i € I, {hy}kex, be a Riesz
basis for V; with Riesz bounds C;, D;, where 0 < C = infi;{C;}, D = sup,{D;} < oco. Let {vy : i € I,k € K;} be
the type 11 induced sequence of {A\; : i € I}. Then there exists an invertible operator Q € L(?({'Vi}ie1), 12), such that
Ta = T,Q, where T and T, are respectively the synthesis operators of {A; : i € I} and {vy 11 € Lk € Kj}.

Proof. Define Q € L(I2({Vi}ic), I?) as follows

QUgitier) = g1, S; M ierkex, (3.1)

where S; is the frame operator of {hj}iex,, i € L.
We first show that Q is a bounded operator on P({Vi}ier). For any i € I, {hi}kek, is a Riesz basis for
V; with Riesz bounds C;, D;, so {Sflhik}kek, is also a frame for V; with frame bounds D%’ cl, Now for any

{gitier € P({Vi}ier), we have

IQUg:ienI? 114g:, S7 i) iet kerc I

Y Y Kgi, ST P

iel keK;

1 2 1 2 1 2
Mag:l? < N = =|l{g:}: .
z CZ,Ilyzll < ?EI cllgill” = =lligidiel

i€l

Hence Q € L(P({V}ier), ).
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We then calculate Q*. For any {g;}icr € P({Vi}ic1), {cik}icirex; € I, we obtain

Ugitier, Q" (eiierkex)) = (QUibien), {citier kek;)
((gi, S; hiYiet kek, (Cikier kek,)

YY) 905 how

iel keK;
= ZE(gi,Ciksflhw
i€l keK;
= Z<!]i/ZCiksi_lhik>
iel keK;
= <{gi}ieb{zciks,‘_1hik}' >
kek; iel

It follows that Q*({ciclierkek,) = {Xkex, CikS;  hilier since {gilier € P({Vi}icr) is arbitrary.

Next we prove that Q is invertible on PV Yien). Suppose that there exists some g = {gi}ier € P{Vi}ie1)
such that 0 = Qg = Q({gilier) = {(gi, ST hic))iet kek,- Then {g;, S7'hy) = 0,Vi € Ik € K;. Since for any i € I,
{Si‘lhik}ke x; is a frame for V;, it follows that g; = 0, Vi € I and g = 0. Hence Q is injective. Suppose that there
exists ¢ = {cixlierke, € I* such that 0 = Q'c = Q" ({cirierkex,) = {Lkek, CikS;  hikbier. It follows that for any i € I,
0 = Yek, kS hix = S (Lgex, Cikhix)- Since S is invertible on Vi, we get Yex. cichix = 0. It follows that
cir = 0,Vi € Lk € K; since {hy}iex, is a Riesz basis for V;, i € I. Hence Q" is injective on 2 and consequently
Q is surjective on *({V}ie1). Therefore Q is invertible on P({V}er).

It suffices to show that Tx = T, Q. In fact, for any {g;}ie1 € lz({(Vi},-d), we obtain

T,QUgidier) = To({gi, S; " hidhierkex:)

Z Z(gi, S hiyoi

iel kekK;

= Z Z(!]i/ S iy A hik
i€l kekK;

= Z /\l( Z(gi, Si_lhik>hik)
iel keK;

= Z N gi = Ta({gitier)-
iel

It follows that Ty = T,,Q since {g;}ie1 € P({Viliel) is arbitrary. ]

4. Weaving of g-frames in Hilbert spaces

In this section we mainly discuss the weaving of the sums {A; + A;}ier and {I'; + ©;};c; whether are woven
on U, where U is a Hilbert space and {Aj}ics, {I'i}ier, {Ai}iel, {®i}icr are g-Bessel sequences in U.

Theorem 4.1 Suppose that {A; : i € I} and {I; : i € I} are woven on U with universal g-frame bounds A, B. Let
T1,T, € L(U) and {A; i € I}, {O; : i € I} be g-Bessel sequences in U with g-Bessel bounds By, Be, respectively. If
A > 2(BA|IT1|I? + Bel|T2l1?), then {A; + AT i€ 1} and {T; + ©;T, : i € I} are woven on U with universal g-frame
bounds

1
E[A — 2(BAllIT1|* + BelIT2l*)], 2(B + BallT1|* + Bel|T2l[*).
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Proof. For any partition {Gj}]z,:1 of I, and any f € U, we have

Y IR

YA+ ATYf = AT IR

i€0q i€0q
< 2) A+ ATDAR+2 ) IAT AP
icoy i€y
< 2) A+ ATDAR +2 ) IAT; fIP
i€oq iel
< 2) A+ AT)AIP + 2BAlIT; £IP

i€0q

IA

22 (A + AT AP + 2BAITH I - 11,

i€oq
Similarly we obtain

YLAR = YT+ OTy)f - OT3 1P

iEOz iEUZ

2 Z I(T; + ©;Ty) fI? + 2Bol| ol - Il f1.

i€0y

IN

For any partition {aj}? , of I'and any f € U, combing with (4.2) and (4.3) we have

YA+ ATDAR + Y I+ O TP

i€oy i€oy

%(Z IAGfIP + Y ITfIP) = BalITiIP + Bal TP fIP

i€oy i€oy

A
> EIIfII2 ~ (BalITlP* + BallT2P)IIfIP

v

1
= 7lA- 2(BlIT1IP + BellT2IP)IfIP,

where the second inequality is deduced by that {A; : i € I} and {T'; : i € I} are woven on U.

On the other hand, we have

YA+ ATDAR + Y T+ O Ty fIP

i€oy i€oy
< 2 Y IASP+ Y ITAIR) 42 Y INT AP +2 ) 0T3P
i€oq iEOZ iEOl iEUz
< 2(B+BAllT1I? + Bal T2IPIIfIP.

Therefore {A; + AT :i € I} and {I; + ©;T} : i € I} are woven on U.

If Ty = T, = I¢y in Theorem 4.1, the following corollary is followed by Theorem 4.1.

2744

4.1)

4.2)

(4.3)

Corollary 4.2 Suppose that {A; : i € I} and {T; : i € I} are woven on U with universal g-frame bounds A, B. Let
{A; i €1}, {O; : i € I} be g-Bessel sequences in U with g-Bessel bounds By, Be, respectively. If A > 2(Ba + Be), then
{Ai+A; i€ yand (T';+©; : i € I} are woven on U with universal g-frame bounds %[A—Z(BA+B@)], 2(B+Ba+Beg).

Moreover, if {A; : i € I} and {©; : i € I} are also woven on U, from the proof of Theorem 4.1 we can obtain

another corollary as follows.
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Corollary 4.3 Suppose that {A; :i € I} and {T; :i € I}, {A; 1 i € I} and {©; : i € I} are woven on U with universal
g-frame bounds A, B and C, D, respectively. If A > 2D, then {A; + A; i € I} and {I'; + ©; : i € I} are woven on U
with universal g-frame bounds ‘% -D, 2(B+D).

Proof. For any partition {aj}]z, ,of land any f € U, similar to (4.1) we have

Y ILAR = Y I+ ©)f - OfIP

i€oy i€ay
< 2) T +O)fIF+2) ) 1O:f1P. (44)
iEO‘z iEUz

Combing with (4.1) and (4.4) we obtain

YA+ AFIR + Y T + O fIP

i€y i€y
1
> S Y uafiE+ Y)Y 18P + Y 1eifIe)
i€oq i€0y i€oq i€0y
A
> (5 -DIfI”

The upper bound of each weaving is trivial. Hence {A; + A; :i € I} and {I'; + ©; : i € I} are wovenon Y. O

Next we consider the converse of the Corollary 4.3. Thatis, if {A;+A; ;i € [Jand (I;+©; i € I}, {A;:i € ]}
and {I; : i € I} are woven on U, can we deduce that the g-Bessel sequences {A; : i € I} and {®; : i € I} are
whether woven on U? We give a sufficient condition for this question as follows.

Theorem 4.4 Suppose that {A; :i €I}, {I; i el}, {A;:i€l}, and {©; : i € I} are g-Bessel sequences in U. If
ANjcielyand(T; i€}, {Ai+ A; i€ l}and (T; + ©; : i € I} are woven on U with universal g-frame bounds A, B
and C, D, respectively, and C > B, then {A; : i € I} and {®; : i € I} are woven on U with universal g-frame bounds

(VC - VBY, (VB + VD)

Proof. For any partition {G]‘}jz , of I'and any f € U, we obtain

(Y i+ Y ||®if||2);

i€0q i€0y

I{A; flico, +1{Oiflico,llvn

= {Aif + Aiflica, +{Oif +Tif}ico,

~({Aiflico, + (LifYico)llegviye 4.5)
HAif + Aiflico, +{Oif + Tiflicallegeviye)

=({Aiflico, + {Ti flico)l2qvine

= (X Iai+ AfIF + Y @+ TofIR)

i€oy i€0y

SOV ||rz-f||2)%

> (VC- VBl

where the last inequality is deduced by that {A; ;i€ I}and {I;:i € I}, {Aj + A; i € [} and {I; + ©; : i € I} are
woven on U. It follows that

Y IR+ Y IO = (VC = VBYIfIR,

iEOl f€(72

[\
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On the other hand, from (4.5) we have

(Y + Y ||®if||2)%

iEOl i€oy

< MAf + Aiflico, +{Oif +Tiflico,lpqviye + 1EAi flico, + T flico)llpevipie
= (Yha+ a0f+ Y W@+ TfR) +( Y Iacfie + Y Irofie)
< (VB+ VD)IIfll

It follows that

Y IAfIR + ) 10:fIP < (VB + VDYIIfI.

iEOl 1602

Therefore {A; : i € I} and {®; : i € I} are woven on U. O
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