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Existence of classical solutions for a class of several types of equations
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Abstract. We study a class of Hamilton-Jacobi equations and a class of incompressible Navier-Stokes
equations. A new topological approach is applied to prove the existence of at least one and at least two
nonnegative classical solutions. The arguments are based upon recent theoretical results.

1. Introduction

In this paper we investigate the following Hamilton-Jacobi equation

ut + u2
x = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
(1)

where

(H1) u0 ∈ C
1(R), 0 ≤ u0 ≤ B on R for some positive constant B.

It has wide applications in optics, mechanics and semi-classical quantum theory.
In this paper, we will inevstigate it for existence of at least one classical solution and existence of at

least two non-negative solutions. Next, we investigate a class of IVP for a class of incompressible Navier-
Stokes equations for existence of global classical solutions. More precisely, we will study the following
incompressible Navier-Stokes equations

ut + uux + vuy + wuz +
1
ρpx − νuxx − νuyy − νuzz = 0

vt + uvx + vvy + wvz +
1
ρpy − νvxx − νvyy − νvzz = 0

wt + uwx + vwy + wwz +
1
ρpz − νwxx − νwyy − νwzz = 0

ux + vy + wz = 0 in (0,∞) ×R3
,

u(0, x, y, z) = u0(x, y, z), v(0, x, y, z) = v0(x, y, z), w(0, x, y, z) = w0(x, y, z), (x, y, z) ∈ R3
,

(2)

where
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Email addresses: svetlingeorgiev1@gmail.com (Svetlin G. Georgiev), gal.davidi11@gmail.com (Gal Davidi)



S. Georgiev, G. Davidi / Filomat 38:9 (2024), 2965–2982 2966

(P1) p,u, v,w : [0,∞) ×R3
→ R are unknown, u0, v0,w0 ∈ C

2(R3) are given functions, 0 ≤ u0, v0,w0 ≤ B on
R3 for some positive constant B.

This is a system of partial differential equations that governs the flow of a viscous incompressible fluid.
Here ρ is the density, u the velocity vector, p is the pressure. The first three equations of (2) are Cauchy’s
momentum equations where the first term is the accelerating time varying term, the second and third are
the convective and the hydrostatic terms respectively. The physical example of the convective term can be
described as a river that is converging, the case where the term is increasing and the river diverging the
case where the term is decreasing. The hydrostatic term describes flow from high pressure to low pressure.
The forth term is the viscosity term with the coefficient ν the kinematical viscosity. This term describes the
ability of the fluid to induce motion of neighboring particles. On the right hand side we have the external
forces density term. This term can include: gravity, magneto-hydrodynamic force, and so on. The fourth
equation of (2) is the nullification of the divergence due to incompressibility condition. Turbulent fluid
motions are believed to be well modeled by the incompressible Navier-Stokes equations. In the case of the
3D version of the NS equations the existence problem is an unsolved issue([10]).

We recall that global existence of weak solutions of the incompressible Navier-Stokes equations is known
to hold in every space dimension. Uniqueness of weak solutions and global existence of strong solutions is
known in dimension two [17]. In dimension three, global existence of strong solutions of the incompressible
Navier-Stokes equations in thin three-dimensional domains began with the papers [19] and [20], where is
used the methods in [13] and [14].

In this paper we propose new method for investigation of equations (2). The proposed method gives
existence of classical solutions for the problem (2).

The paper is organized as follows. In the next section, we give some auxiliary results. In Section 3 we
investigate the equation (1). In Section 4, we investigate the equations (2).

2. Preliminary Results

The first continuation theorems applicable to nonlinear problems were due to Leray and Schauder (1934)
[22, Theorem 10.3.10 ]. This result is the most famous and most general result of the continuation theorems
(see [22, pages 28,29 ]). In [21] (1955), Scheafer formulated a special case of Leray-Schauder continuation
theorem in the form of an alternative, and proves it as a consequence of Schauder fixed point theorem. In
this paper, we will use some nonlinear alternatives, in one hand, to develop a new fixed point theorem
and in another hand to study the existence of solutions for Problem (1). In what follows we recall these
alternatives.

Proposition 2.1. (Leray-Schauder nonlinear alternative [3]) Let C ⊂ E be a convex, closed subset in a Banach space
E, 0 ∈ U ⊂ C where U is an open set. Let f : U → C be a continuous, compact map. Then

(a) either f has a fixed point in U,

(b) or there exist x ∈ ∂U, and λ ∈ (0, 1) such that x = λ f (x).

As a consequence, we obtain

Proposition 2.2. (Schaefer’s Theorem or Leray-Schauder alternative, [7], p.124 or [22], p.29) Let E be a Banach
space and f : E→ E be completely continuous map. Then,

(a) either f has a fixed point in E,

(b) or for any λ ∈ (0, 1), the set {x ∈ E : x = λ f (x)} is unbounded.

Another version of Scheafer’s Theorem is given by:

Proposition 2.3. (Scheafer’s Theorem [21]) Let E be a Banach space and f : E→ E be completely continuous map.
Then
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(a) either there exists for each λ ∈ [0, 1] one small x ∈ E such that x = λ f (x),

(b) or the set {x ∈ E : x = λ f (x), 0 < λ < 1} is bounded in E.

To prove our existence result we will use the following fixed point theorem.

Theorem 2.4. Let E be a Banach space, Y a closed, convex subset of E,

U = {x ∈ Y : ∥x∥ < R},

with R > 0. Consider two operators T and S, where

Tx = ε x, x ∈ U,

for ε ∈ R, and S : U→ E be such that

(i) I − S : U→ Y continuous, compact and

(ii) {x ∈ Y : x = s1n(ε)λ(I − S)x, ∥x∥ = R} = ∅, for any λ ∈
(
0, 1
|ε|

)
,

where s1n(ε) is the signum of ε.

Then there exists x∗ ∈ U such that

Tx∗ + Sx∗ = x∗.

Proof. We have that the operator 1
ε (I − S) : U→ Y is continuous and compact.

Suppose that there exist x0 ∈ ∂U and µ0 ∈ (0, 1) such that

x0 = µ0
1
ε

(I − S)x0,

that is
x0 = s1n(ε)

µ0

|ε|
(I − S)x0.

This contradicts the condition (ii). From the Leray-Schauder nonlinear alternative, it follows that there
exists x∗ ∈ U so that

x∗ =
1
ε

(I − S)x∗

or

ε x∗ + Sx∗ = x∗,

or

Tx∗ + Sx∗ = x∗.

Let X be a real Banach space.

Definition 2.5. A mapping K : X → X is said to be completely continuous if it is continuous and maps bounded
sets into relatively compact sets.

The concept for l-set contraction is related to that of the Kuratowski measure of noncompactness which we
recall for completeness.
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Definition 2.6. LetΩX be the class of all bounded sets of X. The Kuratowski measure of noncompactness α : ΩX →

[0,∞) is defined by

α(Y) = inf

δ > 0 : Y =
m⋃

j=1

Y j and diam(Y j) ≤ δ, j ∈ {1, . . . ,m}

 ,
where diam(Y j) = sup{∥x − y∥X : x, y ∈ Y j} is the diameter of Y j, j ∈ {1, . . . ,m}.

For the main properties of the measure of noncompactness we refer the reader to [4].

Definition 2.7. A mapping K : X → X is said to be l-set contraction if it is continuous, bounded and there exists a
constant l ≥ 0 such that

α(K(Y)) ≤ lα(Y),

for any bounded set Y ⊂ X. The mapping K is said to be a strict set contraction if l < 1.

Obviously, if K : X→ X is a completely continuous mapping, then K is 0-set contraction (see [6]).

Definition 2.8. Let X and Y be real Banach spaces. A mapping K : X → Y is said to be expansive if there exists a
constant h > 1 such that

∥Kx − Ky∥Y ≥ h∥x − y∥X

for any x, y ∈ X.

Definition 2.9. A closed, convex set P in X is said to be cone if

1. αx ∈ P for any α ≥ 0 and for any x ∈ P,
2. x,−x ∈ P implies x = 0.

Denote P∗ = P\{0}.
The following result will be used to prove our main result.

Theorem 2.10. ([24]) Let P be a cone of a Banach space E; Ω a subset of P and U1,U2 and U3 three open bounded
subsets of P such that U1 ⊂ U2 ⊂ U3 and 0 ∈ U1. Assume that T : Ω → P is an expansive mapping with
constant h > 1, S : U3 → E is a k-set contraction with 0 ≤ k < h − 1 and S(U3) ⊂ (I − T)(Ω). Suppose that
(U2 \U1) ∩Ω , ∅, (U3 \U2) ∩Ω , ∅, and there exists u0 ∈ P

∗ such that the following conditions hold:

(i) Sx , (I − T)(x − λu0), for all λ > 0 and x ∈ ∂U1 ∩ (Ω+ λu0),

(ii) there exists ϵ ≥ 0 such that Sx , (I − T)(λx), for all λ ≥ 1 + ϵ, x ∈ ∂U2 and λx ∈ Ω,

(iii) Sx , (I − T)(x − λu0), for all λ > 0 and x ∈ ∂U3 ∩ (Ω+ λu0).

Then T + S has at least two non-zero fixed points x1, x2 ∈ P such that

x1 ∈ ∂U2 ∩Ω and x2 ∈ (U3 \U2) ∩Ω

or
x1 ∈ (U2 \U1) ∩Ω and x2 ∈ (U3 \U2) ∩Ω.
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3. Classical Solutions for Hamilton-Jacobi Equations

3.1. Existence of at Least One Classical Solution
The main result in this section is as follows.

Theorem 3.1. Suppose that (H1) holds. Then the Cauchy problem (1) has at least one classical solutions u ∈
C

1([0,∞) ×R).

Proof. Let X = C1([0,∞) ×R) be endowed with the norm

∥u∥ = max
{

sup
(t,x)∈[0,∞)×R

|u(t, x)|, sup
(t,x)∈[0,∞)×R

|ut(t, x)|, sup
(t,x)∈[0,∞)×R

|ux(t, x)|
}
,

provided it exists. For u ∈ X, define the operator

S1u(t, x) = u(t, x) − u0(x) +
∫ t

0
(ux(t1, x))2dt1, (t, x) ∈ [0,∞) ×R.

Lemma 3.2. Suppose (H1). If u ∈ X satisfies the equation

S1u(t, x) = 0, (t, x) ∈ [0,∞) ×R, (3)

then it is a solution of the IVP (1).

Proof. Let u ∈ X be a solution of the equation (3).

0 = u(t, x) − u0(x) +
∫ t

0 (ux(t1, x))2dt1 (t, x) ∈ [0,∞) ×R. (4)

We differentiate (4) with respect to t and we find

ut(t, x) + (ux(t, x))2 = 0, (t, x) ∈ [0,∞) ×R.

i.e., u satisfies the first equation of (1). Now, we put t = 0 in (4) and we arrive at

0 = u(0, x) − u0(x), x ∈ R.

Therefore u satisfies (1). This completes the proof.

Let

B1 = max
{
2B,B2

}
.

Lemma 3.3. Suppose (H1). For u ∈ X with ∥u∥ ≤ B, we have

|S1u(t, x)| ≤ B1(1 + t), (t, x) ∈ [0,∞) ×R.

Proof. We have

|S1u(t, x)| =
∣∣∣∣∣u(t, x) − u0(x) +

∫ t

0
(ux(t1, x))2dt1

∣∣∣∣∣
≤ |u(t, x)| + |u0(x)| +

∫ t

0
(ux(t1, x))2dt1

≤ 2B + tB2

≤ B1(1 + t), (t, x) ∈ [0,∞) ×R.

This completes the proof.
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Suppose that

(H2) there exists a nonnegative function 1 ∈ C([0,∞) × R) so that 1(0, x) = 1(t, 0) = 0, (t, x) ∈ [0,∞) × R,
1(t, x) > 0 for (t, x) ∈ (0,∞) × (R\{0}), and a positive constant A for which

2(1 + t + t2)(1 + |x|)
∫ t

0

∣∣∣∣∣ ∫ x

0
1(t1, x1)dx1

∣∣∣∣∣dt1 ≤ A.

In the last section, we will give an example for a function 1 and a constant A that satisfy (H2). For u ∈ X,
define the operator

S2u(t, x) =
∫ t

0

∫ x

0
(t − t1)(x − x1)1(t1, x1)S1u(t1, x1)dx1dt1,

(t, x) ∈ [0,∞) ×R.

Lemma 3.4. Suppose (H1) and (H2). For u ∈ X, ∥u∥ ≤ B, we have

∥S2u∥ ≤ AB1.

Proof. We have

|S2u(t, x)| =
∣∣∣∣∣ ∫ t

0

∫ x

0
(t − t1)(x − x1)1(t1, x1)S1u(t1, x1)dx1dt1

∣∣∣∣∣
≤

∫ t

0

∣∣∣∣∣ ∫ x

0
(t − t1)|x − x1|1(t1, x1)|S1u(t1, x1)|dx1

∣∣∣∣∣dt1

≤ B1

∫ t

0

∣∣∣∣∣ ∫ x

0
(t − t1)(1 + t1)|x − x1|1(t1, x1)dx1

∣∣∣∣∣dt1

≤ 2B1(1 + t)t|x|
∫ t

0

∣∣∣∣∣ ∫ x

0
1(t1, x1)dx1

∣∣∣∣∣dt1

≤ AB1, (t, x) ∈ [0,∞) ×R,

and ∣∣∣∣∣ ∂∂tS2u(t, x)
∣∣∣∣∣ = ∣∣∣∣∣ ∫ t

0

∫ x

0
(x − x1)1(t1, x1)S1u(t1, x1)dx1dt1

∣∣∣∣∣
≤

∫ t

0

∣∣∣∣∣ ∫ x

0
|x − x1|1(t1, x1)|S1u(t1, x1)|dx1

∣∣∣∣∣dt1

≤ B1

∫ t

0

∣∣∣∣∣ ∫ x

0
(1 + t1)|x − x1|1(t1, x1)dx1

∣∣∣∣∣dt1

≤ 2B1(1 + t)|x|
∫ t

0

∣∣∣∣∣ ∫ x

0
1(t1, x1)dx1

∣∣∣∣∣dt1

≤ AB1, (t, x) ∈ [0,∞) ×R,

and ∣∣∣∣∣ ∂∂xS2u(t, x)
∣∣∣∣∣ = ∣∣∣∣∣ ∫ t

0

∫ x

0
(t − t1)1(t1, x1)S1u(t1, x1)dx1dt1

∣∣∣∣∣
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≤

∫ t

0

∣∣∣∣∣ ∫ x

0
(t − t1)1(t1, x1)|S1u(t1, x1)|dx1

∣∣∣∣∣dt1

≤ B1

∫ t

0

∣∣∣∣∣ ∫ x

0
(t − t1)(1 + t1)1(t1, x1)dx1

∣∣∣∣∣dt1

≤ B1(1 + t)t
∫ t

0

∣∣∣∣∣ ∫ x

0
1(t1, x1)dx1

∣∣∣∣∣dt1

≤ AB1, (t, x) ∈ [0,∞) ×R.

Consequently

∥S2u∥ ≤ AB1.

This completes the proof.

Lemma 3.5. Suppose (H1) and (H2). If u ∈ X satisfies the equation

S2u(t, x) = 0, (t, x) ∈ [0,∞) ×R, (5)

then u is a solution to the IVP (1).

Proof. We differentiate two times with respect to t and two times with respect to x the equation (5) and we
find

1(t, x)S1u(t, x) = 0, (t, x) ∈ [0,∞) ×R,

whereupon

S1u(t, x) = 0, (t, x) ∈ (0,∞) × (R\{0}).

Since S2u(·, ·) is a continuous function on [0,∞) ×R, we have

0 = lim
t→0

S2u(t, x) = S2u(0, x) = lim
x→0

S2u(t, x) = S2u(t, 0)

= lim
t,x→0

S2u(t, x) = S2u(0, 0), (t, x) ∈ [0,∞) ×R.

Therefore

S2u(t, x) = 0, (t, x) ∈ [0,∞) ×R.

Hence and Lemma 3.2, we conclude that u is a solution to the IVP (1). This completes the proof.

Below, suppose

(H3) ϵ ∈ (0, 1), A and B satisfy the inequalities ϵB1(1 + A) < 1 and AB1 < 1.

Let Ỹ denote the set of all equi-continuous families in X with respect to the norm ∥ · ∥. Let also, Y = Ỹ be the
closure of Ỹ,

U = {u ∈ Y : ∥u∥ < B}.

For u ∈ U and ϵ > 0, define the operators

T(u)(t, x) = ϵu(t, x),
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S(u)(t, x) = u(t, x) − ϵu(t, x) − ϵS2(u)(t, x), (t, x) ∈ [0,∞) ×R.
For u ∈ U, we have

∥(I − S)(u)∥ = ∥ϵu + ϵS2(u)∥

≤ ϵ∥u∥ + ϵ∥S2(u)∥

≤ ϵB + ϵAB1.

Thus, S : U→ X is continuous and (I − S)(U) resides in a compact subset of Y. Now, suppose that there is a
u ∈ Y so that ∥u∥ = B and

u = λ(I − S)(u)

or

u = λϵ (I + S2)(u), (6)

for some λ ∈
(
0, 1
ϵ

)
. Note that (Y, ∥ · ∥) is a Banach space. Assume that the set

A = {u ∈ Y : u = µ(I + S2)(u), 0 < µ < 1}

is bounded. By (9), it follows that the setA is not empty set. Then, by Schaefer’s Theorem, it follows that
there is a u∗ ∈ Y such that

u∗ = (I + S2)(u∗), (7)

or
S2(u∗) = 0,

i.e., u∗ is a solution to the problem (1). Assume that the setA is unbounded. Then, by Schaefer’s Theorem,
it follows that the equation

u = µ(I + S2)(u), u ∈ Y,

has at least one small solution u∗ ∈ Y for any µ ∈ [0, 1]. In particular, for µ = 1, there is a u∗ ∈ Y such that
(10) holds and then it is a solution to the problem (1). Let now,

{u ∈ Y : u = λ1(I − S)(u), ∥u∥ = B} = ∅

for any λ1 ∈
(
0, 1
ϵ

)
. Then, from Theorem 2.4, it follows that the operator T + S has a fixed point u∗ ∈ Y.

Therefore

u∗(t, x) = T(u∗)(t, x) + S(u∗)(t, x)

= ϵu∗(t, x) + u∗(t, x)

−ϵu∗(t, x) − ϵS2(u∗)(t, x), (t, x) ∈ [0,∞) ×R,
whereupon

S2(u∗)(t, x) = 0, (t, x) ∈ [0,∞) ×R.
From here, u∗ is a solution to the problem (1). From here and from Lemma 3.5, it follows that u is a solution
to the IVP (1). This completes the proof.
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3.2. Existence of at Least Two Classical Solutions

The main result in this section is as follows.

Theorem 3.6. Suppose that (H1) holds. Then the Cauchy problem (1) has at least two non-negative classical solutions
u1,u2 ∈ C

1([0,∞) ×R).

Proof. Let X be the space used in the previous section. Suppose

(H4) Let m > 0 be large enough and A, B, r, L, R1 be positive constants that satisfy the following conditions

r < L < R1, ϵ > 0, R1 >
( 2

5m
+ 1

)
L,

AB1 <
L
5
.

Let

P̃ = {u ∈ X : u ≥ 0 on [0,∞) ×R}.

With Pwe will denote the set of all equi-continuous families in P̃. For v ∈ X, define the operators

T1v(t) = (1 +mϵ)v(t) − ϵ
L
10
,

S3v(t) = −ϵS2v(t) −mϵv(t) − ϵ
L
10
,

t ∈ [0,∞). Note that any fixed point v ∈ X of the operator T1 + S3 is a solution to the IVP (1). Define

U1 = Pr = {v ∈ P : ∥v∥ < r},

U2 = PL = {v ∈ P : ∥v∥ < L},

U3 = PR1 = {v ∈ P : ∥v∥ < R1},

R2 = R1 +
A
m

B1 +
L

5m
,

Ω = PR2 = {v ∈ P : ∥v∥ ≤ R2}.

1. For v1, v2 ∈ Ω, we have

∥T1v1 − T1v2∥ = (1 +mε)∥v1 − v2∥,

whereupon T1 : Ω→ X is an expansive operator with a constant h = 1 +mε > 1.

2. For v ∈ PR1 , we get

∥S3v∥ ≤ ε∥S2v∥ +mε∥v∥ + ε
L
10

≤ ε
(
AB1 +mR1 +

L
10

)
.

Therefore S3(PR1 ) is uniformly bounded. Since S3 : PR1 → X is continuous, we have that S3(PR1 ) is
equi-continuous. Consequently S3 : PR1 → X is a 0-set contraction.
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3. Let v1 ∈ PR1 . Set

v2 = v1 +
1
m

S2v1 +
L

5m
.

Note that S2v1 +
L
5 ≥ 0 on [t0,∞). We have v2 ≥ 0 on [t0,∞) and

∥v2∥ ≤ ∥v1∥ +
1
m
∥S2v1∥ +

L
5m

≤ R1 +
A
m

B1 +
L

5m

= R2.

Therefore v2 ∈ Ω and

−εmv2 = −εmv1 − εS2v1 − ε
L
10
− ε

L
10

or

(I − T1)v2 = −εmv2 + ε
L
10

= S3v1.

Consequently S3(PR1 ) ⊂ (I − T1)(Ω).
4. Assume that for any u0 ∈ P

∗ there exist λ ≥ 0 and x ∈ ∂Pr∩ (Ω+λu0) or x ∈ ∂PR1 ∩ (Ω+λu0) such that

S3x = (I − T1)(x − λu0).

Then

−ϵS2x −mϵx − ϵ
L
10
= −mϵ(x − λu0) + ϵ

L
10

or

−S2x = λmu0 +
L
5
.

Hence,

∥S2x∥ =
∥∥∥∥∥λmu0 +

L
5

∥∥∥∥∥ > L
5
.

This is a contradiction.
5. Suppose that for any ϵ1 ≥ 0 small enough there exist a x1 ∈ ∂PL and λ1 ≥ 1 + ϵ1 such that λ1x1 ∈ PR1

and

S3x1 = (I − T1)(λ1x1). (8)

In particular, for ϵ1 > 2
5m , we have x1 ∈ ∂PL, λ1x1 ∈ PR1 , λ1 ≥ 1 + ϵ1 and (8) holds. Since x1 ∈ ∂PL and

λ1x1 ∈ PR1 , it follows that( 2
5m
+ 1

)
L < λ1L = λ1∥x1∥ ≤ R1.
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Moreover,

−ϵS2x1 −mϵx1 − ϵ
L
10
= −λ1mϵx1 + ϵ

L
10
,

or

S2x1 +
L
5
= (λ1 − 1)mx1.

From here,

2
L
5
≥

∥∥∥∥∥S2x1 +
L
5

∥∥∥∥∥ = (λ1 − 1)m∥x1∥ = (λ1 − 1)mL

and

2
5m
+ 1 ≥ λ1,

which is a contradiction.

Therefore all conditions of Theorem 2.10 hold. Hence, the IVP (1) has at least two solutions u1 and u2 so
that

∥u1∥ = L < ∥u2∥ < R1

or

r < ∥u1∥ < L < ∥u2∥ < R1.

3.3. An Example
Below, we will illustrate our main results. Let

R1 = B = 10, L = 5, r = 4, m = 1050, A =
1

10B1
, ϵ =

1
5B1(1 + A)

.

Then

B1 = 102

and

AB1 =
1

10
< B, ϵB1(1 + A) < 1,

i.e., (H3) holds. Next,

r < L < R1, ϵ > 0, R1 >
( 2

5m
+ 1

)
L, AB1 <

L
5
.

i.e., (H4) holds. Take

h(s) = log
1 + s11

√
2 + s22

1 − s11
√

2 + s22
, l(s) = arctan

s11
√

2
1 − s22 , s ∈ R, s , ±1.

Then

h′(s) =
22
√

2s10(1 − s22)

(1 − s11
√

2 + s22)(1 + s11
√

2 + s22)
,
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l′(s) =
11
√

2s10(1 + s20)
1 + s40 , s ∈ R, s , ±1.

Therefore

−∞ < lim
s→±∞

(1 + s + s2)h(s) < ∞,

−∞ < lim
s→±∞

(1 + s + s2)l(s) < ∞.

Hence, there exists a positive constant C1 so that

(1 + s + s2)3

(
1

44
√

2
log

1 + s11
√

2 + s22

1 − s11
√

2 + s22
+

1

22
√

2
arctan

s11
√

2
1 − s22

)
≤ C1,

s ∈ R. Note that lim
s→±1

l(s) = π2 and by [18] (pp. 707, Integral 79), we have

∫
dz

1 + z4 =
1

4
√

2
log

1 + z
√

2 + z2

1 − z
√

2 + z2
+

1

2
√

2
arctan

z
√

2
1 − z2 .

Let

Q(s) =
s10

(1 + s44)(1 + s + s2)2 , s ∈ R,

and

11(t, x) = Q(t)Q(x), t ∈ [0,∞), x ∈ R.

Then there exists a constant C > 0 such that

2
(
1 + t + t2

)
(1 + |x|)

∫ t

0

∣∣∣∣∣ ∫ x

0
11(t1, x1)dx1

∣∣∣∣∣∣dt1 ≤ C, (t, x) ∈ [0,∞) ×R.

Let

1(t, x) =
A
C
11(t, x), (t, x) ∈ [0,∞) ×R.

Then

2
(
1 + t + t2

)
(1 + |x|)

∫ t

0

∣∣∣∣∣ ∫ x

0
1(t1, x1)dx1

∣∣∣∣∣∣dt1 ≤ A, (t, x) ∈ [0,∞) ×R,

i.e., (H2) holds. Therefore for the IVP

ut + u2
x = 0, t > 0, x ∈ R,

u(0, x) = 1
(1+x2)8 , x ∈ R,

are fulfilled all conditions of Theorem 3.1 and Theorem 3.6.



S. Georgiev, G. Davidi / Filomat 38:9 (2024), 2965–2982 2977

4. Classical Solutions for Incompressible Navier-Stokes Equations

4.1. Existence of at Least One Classical Solution
Without loss of generality, suppose that ρ = ν = 1. Our result in this section is as follows.

Theorem 4.1. Suppose that (P1) holds. Then the equations (2) has at least one solution (u, v) ∈ (C1([0,∞),C2(R3)))4.

Proof. Let X1 = C1([0,∞),C2(R3)) be endowed with the norm

∥u∥X1 = max
{

sup
(t, x, y, z) ∈ [0,∞) ×R3

|u(t, x, y, z)|, sup
(t, x, y, z) ∈ [0,∞) ×R3

|ut(t, x, y, z)|,

sup
(t, x, y, z) ∈ [0,∞) ×R3

|ux(t, x, y, z)|, sup
(t, x, y, z) ∈ [0,∞) ×R

|uxx(t, x, y, z)|,

sup
(t, x, y, z) ∈ [0,∞) ×R3

|uy(t, x, y, z)|, sup
(t, x, y, z) ∈ [0,∞) ×R

|uyy(t, x, y, z)|,

sup
(t, x, y, z) ∈ [0,∞) ×R3

|uz(t, x, y, z)|, sup
(t, x, y, z) ∈ [0,∞) ×R

|uzz(t, x, y, z)|
}
,

provided it exists. Let X = X1
× X1

× X1
× X1 be endowed with the norm

∥(u, v,w, p)∥ = max{∥u∥X1 , ∥v∥X1 , ∥w∥X1 , ∥p∥X1 }, (u, v,w, p) ∈ X,

provided it exists. For (u, v,w, p) ∈ X, we will write (u, v,w, p) ≥ 0 if u(t, x, y, z) ≥ 0, v(t, x, y, z) ≥ 0,
w(t, x, y, z) ≥ 0, p(t, x, y, z) ≥ 0 for any (t, x, y, z) ∈ [0,∞) ×R3. For (u, v,w, p) ∈ X, define the operators

S1
1(u, v,w, p)(t, x, y, z) = u(t, x, y, z) − u0(x, y, z) +

∫ t

0

(
u(s, x, y, z)ux(s, x, y, z)

+v(s, x, y, z)uy(s, x, y, z) + w(s, x, y, z)uz(s, x, y, z) + px(s, x, y, z)

−uxx(s, x, y, z) − uyy(s, x, y, z) − uzz(s, x, y, z)
)
ds,

S2
1(u, v,w, p)(t, x, y, z) = v(t, x, y, z) − v0(x, y, z) +

∫ t

0

(
u(s, x, y, z)vx(s, x, y, z)

+v(s, x, y, z)vy(s, x, y, z) + w(s, x, y, z)vz(s, x, y, z) + py(s, x, y, z)

−vxx(s, x, y, z) − vyy(s, x, y, z) − vzz(s, x, y, z)
)
ds,

S3
1(u, v,w, p)(t, x, y, z) = w(t, x, y, z) − w0(x, y, z) +

∫ t

0

(
u(s, x, y, z)wx(s, x, y, z)

+v(s, x, y, z)wy(s, x, y, z) + w(s, x, y, z)wz(s, x, y, z) + pz(s, x, y, z)

−wxx(s, x, y, z) − wyy(s, x, y, z) − wzz(s, x, y, z)
)
ds,

S4
1(u, v,w, p)(t, x, y, z) = ux(t, x, y, z) + vy(t, x, y, z) + wz(t, x, y, z),
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S1(u, v,w, p)(t, x, y, z) =
(
S1

1(u, v,w, p)(t, x, y, z),S2
1(u, v,w, p)(t, x, y, z),

S3
1(u, v,w, p)(t, x, y, z),S4

1(u, v,w, p)(t, x, y, z)
)
, (t, x, y, z) ∈ [0,∞) ×R3.

As in Section 3, one can prove the following lemmas.

Lemma 4.2. Suppose (P1). If (u, v,w, p) ∈ X satisfies the equation

S1(u, v,w, p)(t, x, y, z) = 0, (t, x, y, z) ∈ [0,∞) ×R3,

then it is a solution of the IVP (2).

Let

B1 = 3B2 + 4B.

Lemma 4.3. Suppose (P1). For (u, v,w, p) ∈ X with ∥(u, v,w, p)∥ ≤ B, we have

|S1
1(u, v,w, p)(t, x, y, z)| ≤ B1(1 + t),

|S2
1(u, v,w, p)(t, x, y, z)| ≤ B1(1 + t),

|S3
1(u, v,w, p)(t, x, y, z)| ≤ B1(1 + t),

|S4
1(u, v,w, p)(t, x, y, z)| ≤ B1(1 + t), (t, x, y, z) ∈ [0,∞) ×R3.

Suppose

(P2) 1 ∈ C([0,∞) ×R3), 1(t, x, y, z) > 0 for (t, x, y, z) ∈ (0,∞) × (R\{{x = 0} ∪ {y = 0} ∪ {z = 0}}),

1(0, x, y, z) = 1(t, 0, y, z) = 1(t, x, 0, z) = 1(t, x, y, 0) = 0,

(t, x, y, z) ∈ [0,∞) ×R3, and

8(1 + t)2
(
1 + |x| + x2

) (
1 + |y| + y2

) (
1 + |z| + z2

)
×

∫ t

0

∣∣∣∣∣ ∫ x

0

∫ y

0

∫ z

0
1(t1, x1, y1, z1)dx1dy1dz1

∣∣∣∣∣∣dt1 ≤ A,

(t, x, y, z) ∈ [0,∞) ×R3, for some constant A > 0.

For (u, v,w, p) ∈ X, define the operators

S1
2(u, v,w, p)(t, x, y, z) =

∫ t

0

∫ x

0
(t − t1)(x − x1)2(y − y1)2(z − z1)21(t1, x1, y1, z1)

S1
1(u, v,w, p)(t1, x1, y1, z1)dx1dy1dz1dt1,

S2
2(u, v,w, p)(t, x, y, z) =

∫ t

0

∫ x

0
(t − t1)(x − x1)2(y − y1)2(z − z1)21(t1, x1, y1, z1)
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S2
1(u, v,w, p)(t1, x1, y1, z1)dx1dy1dz1dt1,

S3
2(u, v,w, p)(t, x, y, z) =

∫ t

0

∫ x

0
(t − t1)(x − x1)2(y − y1)2(z − z1)21(t1, x1, y1, z1)

S3
1(u, v,w, p)(t1, x1, y1, z1)dx1dy1dz1dt1,

S4
2(u, v,w, p)(t, x, y, z) =

∫ t

0

∫ x

0
(t − t1)(x − x1)2(y − y1)2(z − z1)21(t1, x1, y1, z1)

S4
1(u, v,w, p)(t1, x1, y1, z1)dx1dy1dz1dt1,

S2(u, v,w, p)(t, x) =
(
S1

2(u, v,w, p)(t, x, y, z),S2
2(u, v,w, p)(t, x, y, z),

S3
2(u, v,w, p)(t, x, y, z),S4

2(u, v,w, p)(t, x, y, z)
)
, (t, x, y, z) ∈ [0,∞) ×R3,

(t, x, y, z) ∈ [0,∞) ×R3.

Lemma 4.4. Suppose (P1) and (P2). For (u, v,w, p) ∈ X, ∥(u, v,w, p)∥ ≤ B, we have

∥S2(u, v,w, p)∥ ≤ AB1.

Next,

Lemma 4.5. Suppose (P1) and (P2). If (u, v,w, p) ∈ X satisfies the equation

S2(u, v,w, p)(t, x, y, z) = 0, (t, x, y, z) ∈ [0,∞) ×R3,

then (u, v,w, p) is a solution to the IVP (2).

Below, suppose

(P3) ϵ ∈ (0, 1), A, B and B1 satisfy the inequalities ϵB1(1 + A) < 1 and AB1 < B.

Let
˜̃̃
Y denote the set of all equi-continuous families in X with respect to the norm ∥ · ∥. Let also, ˜̃Y = ˜̃̃

Y be the

closure of
˜̃̃
Y, Ỹ = ˜̃Y ∪ {(u0, v0,w0)},

Y = {(u, v) ∈ Ỹ : (u, v,w, p) ≥ 0, ∥(u, v,w, p)∥ ≤ B}.

Note that Y is a compact set in X. For (u, v,w, p) ∈ X, define the operators

T(u, v,w, p)(t, x, y, z) = −ϵ(u, v,w, p)(t, x, y, z),

S(u, v,w, p)(t, x, y, z) = (u, v,w, p)(t, x, y, z) + ϵ(u, v,w, p)(t, x, y, z)

+ϵS2(u, v,w, p)(t, x, y, z), (t, x, y, z) ∈ [0,∞) ×R3.

Let Ỹ denote the set of all equi-continuous families in X with respect to the norm ∥ · ∥. Let also, Y = Ỹ be the
closure of Ỹ,

U = {(u, v,w, p) ∈ Y : ∥(u, v,w, p)∥ < B}.
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For (u, v,w, p) ∈ U and ϵ > 0, define the operators

T(u, v,w, p)(t, x, y, z) = ϵ(u, v,w, p)(t, x, y, z),

S(u, v,w, p)(t, x, y, z) = (u, v,w, p)(t, x, y, z) − ϵ(u, v,w, p)(t, x, y, z) − ϵS2(u, v,w, p)(t, x, y, z),

(t, x, y, z) ∈ [0,∞) ×R3. For (u, v,w, p) ∈ U, we have

∥(I − S)(u, v,w, p)∥ = ∥ϵ(u, v,w, p) + ϵS2(u, v,w, p)∥

≤ ϵ∥(u, v,w, p)∥ + ϵ∥S2(u, v,w, p)∥

≤ ϵB + ϵAB1.

Thus, S : U→ X is continuous and (I − S)(U) resides in a compact subset of Y. Now, suppose that there is a
(u, v,w, p) ∈ Y so that ∥(u, v,w, p)∥ = B and

(u, v,w, p) = λ(I − S)(u, v,w, p)

or

(u, v,w, p) = λϵ (I + S2)(u, v,w, p), (9)

for some λ ∈
(
0, 1
ϵ

)
. Note that (Y, ∥ · ∥) is a Banach space. Assume that the set

A = {(u, v,w, p) ∈ Y : (u, v,w, p) = µ(I + S2)(u, v,w, p), 0 < µ < 1}

is bounded. By (9), it follows that the setA is not empty set. Then, by Schaefer’s Theorem, it follows that
there is a (u∗, v∗,w∗, p∗) ∈ Y such that

(u∗, v∗,w∗, p∗) = (I + S2)(u∗, v∗,w∗, p∗), (10)

or
S2(u∗, v∗,w∗, p∗) = 0,

i.e., (u∗, v∗,w∗, p∗) is a solution to the problem (1). Assume that the setA is unbounded. Then, by Schaefer’s
Theorem, it follows that the equation

(u, v,w, p) = µ(I + S2)(u, v,w, p), (u, v,w, p) ∈ Y,

has at least one small solution (u∗, v∗,w∗, p∗) ∈ Y for any µ ∈ [0, 1]. In particular, for µ = 1, there is a
(u∗, v∗,w∗, p∗) ∈ Y such that (10) holds and then it is a solution to the problem (1). Let now,

{(u, v,w, p) ∈ Y : (u, v,w, p) = λ1(I − S)(u, v,w, p), ∥(u, v,w, p)∥ = B} = ∅

for any λ1 ∈
(
0, 1
ϵ

)
. Then, from Theorem 2.4, it follows that the operator T+S has a fixed point (u∗, v∗,w∗, p∗) ∈

Y. Therefore

(u∗, v∗,w∗, p∗)(t, x, y, z) = T(u∗, v∗,w∗, p∗)(t, x, y, z) + S(u∗, v∗,w∗, p∗)(t, x, y, z)

= ϵ(u∗, v∗,w∗, p∗)(t, x, y, z) + (u∗, v∗,w∗, p∗)(t, x, y, z)

−ϵ(u∗, v∗,w∗, p∗)(t, x, y, z) − ϵS2(u∗, v∗,w∗, p∗)(t, x, y, z),

(t, x, y, z) ∈ [0,∞) ×R3, whereupon

S2(u∗, v∗,w∗, p∗)(t, x, y, z) = 0, (t, x, y, z) ∈ [0,∞) ×R3
.

From here, (u∗, v∗,w∗, p∗) is a solution to the problem (1).
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4.2. Existence of at Least Two Non-Negative Solutions
The main result in this section is as follows.

Theorem 4.6. Suppose that (P1) holds. Then the IVP (2) has at least two non-negative solutions in (C1([0,∞),C2(R3)))4.

Proof. Let X be the space used in the previous section. Suppose

(P4) Let m > 0 be large enough and A, B, r, L, R1 be positive constants that satisfy the following conditions

r < L < R1 ≤ B, ϵ > 0, R1 >
( 2

5m
+ 1

)
L,

AB1 <
L
5
.

Let

P̃ = {(u, v,w, p) ∈ X : (u, v,w, p) ≥ 0 on [0,∞) ×R3
}.

With Pwe will denote the set of all equi-continuous families in P̃. For (u, v,w, p) ∈ X, define the operators

T1(u, v,w, p)(t, x, y, z) = (1 +mϵ)(u, v,w, p)(t, x, y, z) −
(
ϵ

L
10
, ϵ

L
10

)
,

S3(u, v,w, p)(t, x, y, z) = −ϵS2(u, v,w, p)(t, x, y, z) −mϵ(u, v,w, p)(t, x, y, z) −
(
ϵ

L
10
, ϵ

L
10

)
,

(t, x, y, z) ∈ [0,∞) × R3. Note that any fixed point (u, v,w, p) ∈ X of the operator T1 + S3 is a solution to the
IVP (2). Define

U1 = Pr = {(u, v,w, p) ∈ P : ∥(u, v,w, p)∥ < r},

U2 = PL = {(u, v,w, p) ∈ P : ∥(u, v,w, p)∥ < L},

U3 = PR1 = {(u, v,w, p) ∈ P : ∥(u, v,w, p)∥ < R1},

R2 = R1 +
A
m

B1 +
L

5m
,

Ω = PR2 = {(u, v) ∈ P : ∥(u, v,w, p)∥ ≤ R2}.

Now, the proof repeats the proof of Theorem ??.

4.3. An Example
Let A, B, R1, L, r, m, A, ϵ be as in Section 3.3. Then

B1 = 340

and (P3) and (P4) hold. Take Q as in Section 3.3. Take

11(t, x, y, z) = Q(t)Q(x)Q(y)Q(z), (t, x, y, z) ∈ [0,∞) ×R3.

Then there exists a constant C4 > 0 such that

8(1 + t)2
(
1 + |x| + x2

) (
1 + |y| + y2

) (
1 + |z| + z2

)

milica
Highlight
What is the number of the Theorem?
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0

∣∣∣∣∣ ∫ x

0

∫ y

0

∫ z

0
11(t1, x1, y1, z1)dx1dy1dz1

∣∣∣∣∣∣dt1 ≤ C4, (t, x, y, z) ∈ [0,∞) ×R3.

Let

1(t, x, y, z) =
A
C4
11(t, x, y, z), (t, x) ∈ [0,∞) ×R3.

Then

8(1 + t)2
(
1 + |x| + x2

) (
1 + |y| + y2

) (
1 + |z| + z2

)
∫ t

0

∣∣∣∣∣ ∫ x

0

∫ y

0

∫ z

0
1(t1, x1, y1, z1)dx1dy1dz1

∣∣∣∣∣∣dt1 ≤ C4, (t, x, y, z) ∈ [0,∞) ×R3.

i.e., (P2) holds. Therefore for the functions

u0(x, y, z) = v0(x, y, z) = w0(x, y, z) =
x2 + y2 + z2

10 + x4 + y4 + z4 , (x, y, z) ∈ R3,

the IVP (2) satisfies all conditions of Theorem 4.1 and Theorem 4.6.
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