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Abstract. Through a recurrence equation, we determine the expectation and the variance of the variable
sum exdeg index in random tree structures. Also, we show some convergence in probability based on this
index. As the main result and through the martingale central limit theorem, the asymptotic normality of
this index is given.

1. Introduction

Many topological indices have been introduced and studied on different graphs (see [1, 2, 7, 8, 13] and
references therein). These studies have been done on deterministic structures and graphs with the lowest
and highest values of these indices have been determined. On the other hand, the probabilistic study of
these indices has received less attention due to the complexity of the calculations. Also, the probabilistic
study is always accompanied by various restrictions during the investigation. One of these indices that
has been studied less even in deterministic structures is the variable sum exdeg index. This index firstly
introduced by Vukicević [11, 12] to predict some physicochemical properties of chemical compounds. Let
G be a (finite, simple, and connected) graph with vertex set V(G) and and edge set E(G). The variable sum
exdeg index of G is defined as

Sa(G) =
∑

uv∈E(G)

(ad(u) + ad(v)) =
∑

v∈V(G)

d(v)ad(v),

where a ∈ (0, 1) ∪ (1,∞), and d(v) is the degree of a vertex v ∈ V(G). For more results on this index, refer to
[3, 4, 9, 10] and references therein. The purpose of this article is to present the first probabilistic study of
this index for domain a ∈ (0, 1). Lemma 2.1 specifies the reason for examining this index in this domain.

The paper is organized as follows. First, we show a recurrence for variable sum exdeg index of random
tree, the expectation and variance are given. Then the asymptotic normality of this index, as the main
result, is proved as the order of the tree grows to infinitely.
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2. Preliminaries

Using the gamma function, we define

ξ[n, k, a] =
Γ(n)

Γ(n + k(a − 1))
, k ≥ 0, n ≥ 3, a ∈ (0, 1).

The following lemma, despite its simplicity, plays a vital role throughout the paper.

Lemma 2.1. For k ≥ 0 and a ∈ (0, 1),
1)

ξ[n − 1, k, a]
ξ[n, k, a]

=
k(a − 1)

n − 1
+ 1.

2)
ξ[n − 1, 2k, a]
ξ[n, 2k, a]

= 2
ξ[n − 1, k, a]
ξ[n, k, a]

− 1.

3) ξ[n, k, a] is strictly increasing and ξ[n, k, a] = nk(1−a)(1 + O(n−1)).

Proof. The proof is an immediate consequence of the definition of the gamma function and Stirling approx-
imation.

Examining the variable sum exdeg index requires examining another quantity. More precisely, deter-
mining the expectation and variance as well as the limiting behavior of the variable sum exdeg index are
determined based on this quantity. In general, this quantity for a (finite, simple, and connected) graph G is
defined as follows:

Da(G) =
∑

v∈V(G)

ad(v), a ∈ (0, 1).

Suppose that Dn,a =
∑n

i=1 ad(vi), where a ∈ (0, 1), and d(vi) is the degree of a node vi. Also, let Sn,a =∑n
i=1 d(vi)ad(vi) be the variable sum exdeg index of random tree of order n. According to the rule of random

tree growth, when the nth vertex is added to tree of order n − 1, we have

Dn,a = Dn−1,a + ad(Vn−1)+1
− ad(Vn−1) + a

= Dn−1,a + (a − 1)ad(Vn−1) + a (1)

and

Sn,a = Sn−1,a + (d(Vn−1) + 1))ad(Vn−1)+1
− d(Vn−1)ad(Vn−1) + a

= Sn−1,a + (a − 1)d(Vn−1)ad(Vn−1) + ad(Vn−1)+1 + a. (2)

See Figure 1 for the stochastic equations (1) and (2).

3. Expectations

To calculate the expectation of E(Sn,a), we must first calculate the expectation of E(Dn,a). Therefore, we
prove the following lemma.

Lemma 3.1. For n ≥ 3,

E(Dn,a) =
a

ξ[n, 1, a]

n−1∑
j=1

ξ[ j + 1, 1, a], a ∈ (0, 1).
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Figure 1: Random tree growth process. In this figure, the new vertex is shown with a different color.

Proof. Let Sn be the sigma-field generated by the first n stages of the tree structure and Vn be a randomly
chosen vertex in the tree of order n with the conditional law [5]:

P(Vn = k|Sn−1) =
1

n − 1
, k = 1, ...,n − 1.

From relation (1), Lemma 2.1 (part 1) and law of iterated expectation,

E(Dn,a) = E(E(Dn,a|Sn−1))

= E
(
E
((

Dn−1,a + (a − 1)ad(Vn−1) + a
)
|Sn−1

))
= E

(
Dn−1,a + (a − 1)

n−1∑
k=1

ad(vk)P(Vn = k|Sn−1) + a
)

= E(Dn−1,a) +
a − 1
n − 1

E(Dn−1,a) + a

=
( a − 1

n − 1
+ 1
)
E(Dn−1,a) + a

=
ξ[n − 1, 1, a]
ξ[n, 1, a]

E(Dn−1,a) + a.

By iteration,

E(Dn,a) =
a

ξ[n, 1, a]

n−1∑
j=1

ξ[ j + 1, 1, a],

and D2,a = 2a.

Theorem 3.2. We have

E(Sn,a) =
1

ξ[n, 1, a]

n−1∑
j=1

ξ[ j + 1, 1, a]α1[ j, a], a ∈ (0, 1),n ≥ 3

where
α1[ j, a] =

a
j
E(D j,a) + a, j ≥ 1.
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Proof. From equality (2) and Lemma 3.1,

E(Sn,a) = E(E(Sn,a|Sn−1))

= E
(
E
((

Sn−1,a + (a − 1)d(Vn−1)ad(Vn−1) + ad(Vn−1)+1 + a
)
|Sn−1

))
= E

(
Sn−1,a + (a − 1)

n−1∑
k=1

d(Vn−1)ad(Vn−1)P(Vn = k|Sn−1) + a
n−1∑
k=1

ad(Vn−1)P(Vn = k|Sn−1) + a
)

= E(Sn−1,a) +
a − 1
n − 1

E(Sn−1,a) +
a

n − 1
E(Dn−1,a) + a

=
( a − 1

n − 1
+ 1
)
E(Sn−1,a) +

a
n − 1

E(Dn−1,a) + a

=
ξ[n − 1, 1, a]
ξ[n, 1, a]

E(Sn−1,a) + α1[n − 1, a].

By iteration, proof is completed.

Corollary 3.3. From Lemma 2.1, Part (3), we have

E(Sn,a) =
2a

(2 − a)2 n + O(1), a ∈ (0, 1),

since

E(Dn,a) =
a

n1−a

∫ n

0
x1−adx + O(1) =

a
2 − a

n + O(1),

α1[ j, a] =
2a

2 − a
+ O(1).

4. Variance

The main definition and direct method cannot be used to calculate the variance of Sn,a because it is
not possible to calculate the second order moment E(S2

n,a). In the following method, there is no need to
calculate the variance of Dn,a. Formally, a stochastic process is a martingale if E(Xn|σ(X0, ...,Xn−1)) = Xn−1
where X0,X1,X2, ... is a sequence of random variables. Therefore, first the following lemma is proved.

Lemma 4.1. Assume Dn,a = E(Dn,a). The sequence {ξ[n, 1, a](Sn,a − E(Sn,a))}n≥1 is a martingale relative to the
sigma-field Sn−1 where a ∈ (0, 1).

Proof. From Theorem 3.2,

E(ξ[n, 1, a](Sn,a − E(Sn,a))|Sn−1) = ξ[n − 1, 1, a](Sn−1,a − E(Sn−1,a)),

and by definition of a martingale proof is completed [5].

Set
Φn,a := Sn,a − Sn−1,a − (a − 1)d(Vn−1)ad(Vn−1)

− a, n ≥ 3, a ∈ (0, 1).

Then, with the approach used in the proof of Theorem 3.2,

E(Φn,a) = E(E(Φn,a|Sn−1)) = α1[n − 1, a] − a =
a

n − 1
E(Dn−1,a).
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From relation (2),

E(Φ2
n,a|Sn−1) = a2E(a2d(Vn−1)

|Sn−1)

= a2
n−1∑
k=1

a2d(vk)P(Vn = k|Sn−1)

=
a2

n − 1
Dn−1,a2 . (3)

Then

E(Φ2
n,a) =

a2

n − 1
E(Dn−1,a2 ). (4)

On the other hand, with simple but relatively long calculations,

E(Φ2
n,a) = E

((
Φn,a − E(Sn,a) + E(Sn,a) − E(Sn−1,a) + E(Sn−1,a)

)2)
= Var(Sn,a) − 2E((Sn,a − E(Sn,a))(Sn−1,a − E(Sn−1,a)))
+ Var(Sn−1,a) + (α1[n − 1, a] − a)2. (5)

From Lemma 4.1,

E((Sn,a − E(Sn,a))(Sn−1,a − E(Sn−1,a))) =
ξ[n − 1, 1, a]
ξ[n, 1, a]

Var(Sn−1,a).

Hence, from part (2) in Lemma 2.1, the relation (5) leads to

E(Φ2
n,a) = Var(Sn,a) +Var(Sn−1,a) − 2

ξ[n − 1, 1, a]
ξ[n, 1, a]

Var(Sn−1,a) + (α1[n − 1, a] − a)2

= Var(Sn,a) +
(
1 − 2

ξ[n − 1, 1, a]
ξ[n, 1, a]

)
Var(Sn−1,a) +

( a
n − 1

E(Dn−1,a)
)2
. (6)

Theorem 4.2. Let Sn,a be the variable sum exdeg index of random tree of order n ≥ 3. Then

Var(Sn,a) =
1

ξ[n, 2, a]

n−1∑
k=1

ξ[ j + 1, 2, a]α2[ j, a], a ∈ (0, 1)

where

α2[ j, a] =
a2

j
E(D j,a2 ) −

(a
j
E(D j,a)

)2
, j ≥ 1.

Proof. From (4) and (6),

Var(Sn,a) =
(
2
ξ[n − 1, 1, a]
ξ[n, 1, a]

− 1
)
Var(Sn−1,a) +

a2

n − 1
E(Dn−1,a2 ) −

( a
n − 1

E(Dn−1,a)
)2
.

Now, from part (2) in Lemma 2.1,

Var(Sn,a) =
ξ[n − 1, 2, a]
ξ[n, 2, a]

Var(Sn−1,a) + α2[n − 1, a].

By iteration and just similar to proof of Theorem 3.2, proof is completed .

Corollary 4.3. From Lemma 2.1, Part (3), and similar to Corollary 3.3, we have

Var(Sn,a) = σ2
2(a)n + O(1),

where σ2
2(a) = 2a4(a−1)2

(2a−3)(a−2)2(a2−2) and a ∈ (0, 1).

Figure 2 shows the behavior σ2
2(a) for domain a ∈ (0, 1).
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Figure 2: Behavior σ2
2(a) for domain a ∈ (0, 1).

5. Limiting rules

Suppose that P
−→ represents convergence in probability [5].

Theorem 5.1. As n→∞,
Sn,a

n
P
−→

2a
(2 − a)2 , a ∈ (0, 1).

Proof. The claim is a consequence of Corollary 4.3 and Chebyshev’s inequality.

Lemma 5.2. As n→∞,

n3−2a
n∑

k=2

ξ[k, 1, a]2

k − 1

(
Sk−1,a − E(Sk−1,a)

) P
−→ 0, a ∈ (0, 1).

Proof. We have

n∑
k=2

ξ[k, 1, a]2

ξ[k − 1, 1, a](k − 1)
= O(n1−a),

and

E
(

max
2≤k≤n

(
ξ[k − 1, 1, a]

(
Sk−1,a − E(Sk−1,a)

))2)
≤ ξ[n, 1, a]2Var(Sn,a)

= O(n3−2a).

For any ε > 0, by Chebyshev’s inequality,

P
( n∑

k=2

ξ[k, 1, a]2

k − 1

(
Sk−1,a − E(Sk−1,a)

)
> εn2a−3

)
≤

1
ε2n2(2a−3)

E
( n∑

k=2

ξ[k, 1, a]2

k − 1

(
Sk−1,a − E(Sk−1,a

))2
≤

1
ε2n2(2a−3)

( n∑
k=2

ξ[k, 1, a]2

ξ[k − 1, 1, a](k − 1)

)2
E
(

max
2≤k≤n

(ξ[k − 1, 1, a](Sk−1,a − E(Sk−1,a))
)2

= O(n−1),

and the proof is completed.
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Now the conditions are ready to prove the main result. Suppose that D
−→ represents convergence in

distribution and N(µ, σ2) is the normal random variable with mean µ and variance σ2 [5].

Theorem 5.3. As n→∞,

S∗n,a =
Sn,a −

2a
(2−a)2 n√

2a4(a−1)2

(2a−3)(a−2)2(a2−2) n

D
−→ N(0, 1), a ∈ (0, 1).

Proof. To show the asymptotic normailty of the variable sum exdeg index, we introduce an appropriate
martingale difference sequence. We define

Wk,a = ξ[k, 1, a](Sk,a − E(Sk,a)) − ξ[k − 1, 1, a](Sk−1,a − E(Sk−1,a)),

with W1,a = 0. It is abvious that the process {Wk,a}k≥1 is a martingale difference sequence. By expression of
theVar(Sn,a), we should prove that, for any ε > 0 [5]:

1
ξ[n, 1, a]2σ2

2(a)n

n∑
k=2

E(W2
k,a|Sk−1)) P

−→ 1

and

1
ξ[n, 1, a]2n

n∑
k=2

E
(
W2

k,aI
(∣∣∣∣∣ Wk,a

ξ[n, 1, a]
√

n

∣∣∣∣∣ > ε)∣∣∣∣Sk−1

)
P
−→ 0. (7)

We have (considering the conditional expectation in relation (6)):

E(Φ2
k,a|Sn−1) = E

(
(Sk,a − E(Sk,a))2

|Sn−1

)
+
(
1 − 2

ξ[k − 1, 1, a]
ξ[k, 1, a]

)
(Sk−1,a − E(Sk−1,a))2 +

( a
k − 1

Dk−1,a

)2
. (8)

Thus, from (3),

E
(
(Sk,a − E(Sk,a))2

|Sn−1

)
=

a2

k − 1
Dk−1,a2 −

(
1 − 2

ξ[k − 1, 1, a]
ξ[k, 1, a]

)
(Sk−1,a − E(Sk−1,a))2

−

( a
k − 1

Dk−1,a

)2
.

Now, from Lemma 2.1, part (1),

n∑
k=2

E(W2
k,a|Sn−1) =

n∑
k=2

(
ξ[k, 1, a]2E

(
(Sk,a − E(Sk,a))2

|Sn−1) − ξ[k − 1, 1, a]2(Sk−1,a − E(Sk−1,a))2
)

=

n∑
k=2

a2ξ[k, 1, a]2

k − 1
Dk−1,a2 − (a − 1)2

n∑
k=2

ξ[k, 1, a]2

(k − 1)2 (Sk−1,a − E(Sk−1,a))2

−

n∑
k=2

a2ξ[k, 1, a]2

(k − 1)2 D2
k−1,a.

Hence, by Lemmas 2.1 and 5.2,

1
ξ[n, 1, a]2σ2

2(a)n

n∑
k=2

E(W2
k,a|Sk−1) P

−→ 1 − 0 − 0 = 1.

Also, from relation (2) and the expectation of Sn,a, we can rewrite Wk,a as

Wk,a = ξ[k, 1, a]
(
(a − 1)d(Vk−1)ad(Vk−1) + ad(Vk−1)+1 + a −

a − 1
k − 1

Sk−1,a − α1[k − 1, a]
)
.
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Also, there exist a positive constant ca (only depends on a) such that

max
2≤k≤n

|Wk,a| ≤ caξ[n, 1, a] = o(ξ[n, 1, a]
√

n),

which implies that convergence in (7) is holds (see [5] for more details).

6. Conclusion

In this article, the probabilistic properties of the variable sum exdeg index of random tree structures
were investigated. Due to the dependence of these random variables (dependency on the order of the tree
structure) through Martingale’s central limit theorem, the asymptotic normality of this index was shown.
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