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Abstract. Nearness theory comes into play in homotopy theory because the notion of closeness between
points is essential in determining whether two spaces are homotopy equivalent. While nearness theory
and homotopy theory have different focuses and tools, they are intimately connected through the concept
of a metric space and the notion of proximity between points, which plays a central role in both areas
of mathematics. This manuscript investigates some concepts of homotopy theory in proximity spaces.
Moreover, these concepts are taken into account in descriptive proximity spaces.

1. Introduction

Topological perspective first appears in the scientific works of Riemann and Poincaré in the 19th
century[21, 22]. The concept reveals that the definitions of topological space emerge either through Kura-
towski’s closure operator[4] or through the use of open sets. Given the Kuratowski’s closure operator, there
are many strategies and approaches that seem useful in different situations and are worth developing, as
in nearness theory. Proximity spaces are created by reflection of the concept of being near/far on sets. For
instance, one can consider a nearness relation as follows: Given a nonempty set X, and any subsets E, F ⊂ X,
we say that E is near F if E ∩ F , ∅. A method based on the idea of near sets is first proposed by Riesz, is
revived by Wallace, and is axiomatically elaborated it by Efremovic[2, 23, 25]. Let X be a nonempty set. A
proximity is a binary relation (actually a nearness relation) defined on subsets of X and generally denoted
by δ. One can construct a topology on X induced by the pair (X, δ) using the closure operator (named a
proximity space). Indeed, for any point x ∈ X, if {x} is near E, then x ∈ clE. In symbols, if {x} δ E, then x δ clE.
It should be noted that the notation x δ E is sometimes used instead of {x} δ E for abbreviation (in particular
in a metric space). It appears that several proximities may correspond in this way to the same topology on
X. Moreover, several topological conclusions can be inferred from claims made about proximity spaces.

The near set theory is reasonably improved by Smirnov’s compactification, Leader’s non-symmetric
proximity, and Lodato’s symmetric proximity[5, 6, 24]. Peters also contributes to the theory of nearness
by introducing the concept of spatial nearness and descriptive nearness[11, 12]. In addition, the strong
structure of proximity spaces stands out in the variety of application areas: In [8], it is possible to see the
construction of proximity spaces in numerous areas such as cell biology, the topology of digital images,
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visual marketing, and so on. In a broader context, the application areas of near spaces are listed along
with the history of the subject in [13]. According to this, some near set theory-related topics are certain
engineering problems, image analysis, and human perception. The main subject of this article, algebraic
topology approaches in proximity spaces, is a work in progress in the literature. Mapping spaces, one of the
fundamental concepts in homotopy theory, is examined in proximity spaces in [10]. The proximal setting of
the notion of fibration is first defined in [20]. Peters and Vergili have recently published interesting research
on descriptive proximal homotopy, homotopy cycles, path cycles, and Lusternik-Schnirelmann theory of
proximity spaces[17–20].

This paper is primarily concerned with the theory of proximal homotopy and is organized as follows. In
Section 2, we discuss the general properties of proximity and descriptive proximity spaces. Section 3 covered
four main topics in proximity spaces: Mapping spaces, covering spaces, fibrations, and cofibrations. They
provide different types of examples and frequently used algebraic topology results in proximal homotopy
cases. Next, the descriptive proximal homotopy theory in Section 5 discusses the ideas from Section 3 with
presenting some interesting examples. Finally, the last section establishes a direction for future works by
clearly emphasizing the application areas of homotopy theory.

2. Preliminaries

Before proceeding with the main results, it is critical to remember the fundamental characteristics of
proximity and descriptive proximity spaces.

2.1. On proximity spaces

Consider a nonempty space X. A binary relation δ on the collection of the subsets of X which satisfies

(a) E δ F ⇒ F δ E,
(b) (E ∪ F) δ G ⇔ E δ G ∨ F δ G,
(c) E δ F ⇒ E , ∅ ∧ F , ∅,
(d) E ∩ F , ∅ ⇒ E δ F,
(e) E δ F ∧ { f } δ G for all f ∈ F ⇒ E δ G

is said to be a Lodato Proximity (denoted by L-proximity)[6]. δ is a nearness relation and E δ F is read as “E
is near F”. Otherwise, the notation E δ F means that “E is far from F”. If the nearness relation δ satisfies only
the axioms (a)-(d), then δ is said to be a Čech proximity (denoted by C-proximity)[1].

Definition 2.1. ([2, 7, 24]) The nearness relation δ for the subsets of X is said to be an Efremovic proximity
(simply denoted by EF-proximity or proximity) provided that δ satisfies (a)-(d), and in addition,

(f) E δ F ⇒ ∃H ⊂ X : E δ H ∧ (X −H) δ F.

Then the pair (X, δ) is said to be an EF-proximity (or proximity) space.

As an example of a proximity space, the discrete proximity δ on a (nonempty) set X is defined by
E δ F ⇔ E ∩ F , ∅ for E, F ⊂ X. Also, the indiscrete proximity δ′ on a (nonempty) set X is given by E δ′ F for
every nonempty subsets E and F in X. A subset E of X with a proximity δ is a closed set if x δ E ⇒ x ∈ E.
The converse is also valid. Therefore, given a proximity δ on X, the topology τ(δ) is defined by the family
of complements of all closed sets the Kuratowski closure operator [7].

Theorem 2.2. ([7]) For a proximity δ and a topology τ(δ) on a set X, we have that the closure clE coincides with
{x : x δ E}.
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Recall that a set E is closed in a proximity space if and only if E = cl(E). Given any proximities δ and
δ′ on respective sets X and X′, a map h from X to X′ is called proximally continuous if E δ F ⇒ h(E) δ′ h(F)
for E, F ⊂ X[2, 24]. We denote a proximally continuous map by “pc-map”. If we have two pc-maps, then
their composition is also a pc-map. Given a proximity δ on X and a subset E ⊂ X, a subspace proximity δE is
defined on the subsets of E as follows[7]: E1 δE E2 ⇔ E1 δ E2 for E1, E2 ⊂ E. Let (X, δ) be a proximity space
and (E, δE) a subspace proximity. A pc-map k : (X, δ) → (E, δE) is a proximal retraction provided that k ◦ j is
an identity map on 1E, where j : (E, δE)→ (X, δ) is an inclusion map.

Lemma 2.3. ([17][Gluing Lemma]) Assume that f1 : (X′, δ′1)→ (Y′, δ′2) and f2 : (X′′, δ′′1 )→ (Y′, δ′2) are pc-maps
with the property that they agree on the intersection of X′ and X′′. If X and X′ are closed subsets, then the map

f1 ∪ f2 : (X′ ∪ X′′, δ)→ (Y′, δ′2), defined by f1 ∪ f2(s) =

 f1(s), s ∈ X′

f2(s), s ∈ X′′
for any s ∈ X′ ∪ X′′, is a pc-map.

We say that h is a proximity isomorphism provided that h is a bijection and both of h and h−1 are pc-maps[7].
According to this, (X, δ) and (X′, δ′) are said to be proximally isomorphic spaces. Another important proximity
relation is given on the subsets of the cartesian product of two proximity spaces as follows[5]: Let δ and δ′

be any proximities on respective sets X and X′. For any subsets E1 × E2 and F1 × F2 of X ×X′, E1 × E2 is near
F1 × F2 if E1 δ F1 and E2 δ′ F2.

Definition 2.4. ([17, 19]) Given two pc-maps h1 and h2 from X to X′, if there is a pc-map F from X × I to X′

with the properties F(x, 0) = h1(x) and F(x, 1) = h2(x), then h1 and h2 are called proximally homotopic maps.

The map F in Definition 2.4 is said to be a proximal homotopy between h and h′. We simply denote a
proximal homotopy by “prox-hom”. Similar to topological spaces, prox-hom is an equivalence relation on
proximity spaces[19]. Let δ be a proximity on X and E ⊂ X. E is called a δ−neighborhood of F, denoted by
F ≪δ E, provided that F δ (X − E)[7]. The proximal continuity of any function h : (X, δ) → (X′, δ′) can also
be expressed as

E≪δ′ F ⇒ h−1(E)≪δ h−1(F)

for any E, F ⊂ X′.

Theorem 2.5. ([7]) Let Ek ≪δ Fk for all k = 1, · · · , r. Then

r⋂
k=1

Ek ≪δ

r⋂
k=1

Fk and
r⋃

k=1

Ek ≪δ

r⋃
k=1

Fk.

Definition 2.6. ([17]) For any two elements x1 and x2 in X with a proximity δ, a proximal path from x1 to x2
in X is a pc-map h from I = [0, 1] to X for which h(0) = x1 and h(1) = x2.

Recall that X is a connected proximity space if and only if for all nonempty subsets E, F ∈ 2X, E ∪ F = X
implies that E δ F[9]. Let δ be a proximity on X. Then X is called a path-connected proximity space if, for any
points x1 and x2 in X, there exists a proximal path from x1 to x2 in X.

Lemma 2.7. Proximal path-connectedness implies proximal connectedness as in the same as topological spaces.

Proof. Let δ be a path-connected proximity on X. Suppose that (X, δ) is not proximally connected. Then there
exist two nonempty subsets E, F in X such that E ∪ F = X and E δ F. Since X is proximally path-connected,
there is a pc-map h : I → X with h(0) = E and h(1) = F. Consider the subsets h−1(E) and h−1(F) ∈ I. They
are nonempty sets because 0 ∈ h−1(E) and 1 ∈ h−1(F). Their union is [0, 1], and by the proximal continuity
of h, h−1(E) δ h−1(F). This contradicts with the fact that [0, 1] is proximally connected. Consequently, X is
proximally connected.

Theorem 2.8. Proximal path-connectedness coincides with proximal connectedness when we consider the proximity
relation δ on a metric space X as follows: E δ F if and only if D(E,F) = 0 for all E, F in 2X.



M. İs, İ. Karaca / Filomat 38:9 (2024), 3137–3156 3140

Proof. Given a proximity δ on X, by Lemma 2.7, it is enough to prove that any connected proximity space is
a path-connected proximity space. Suppose that X is not a path-connected proximity space. Then any map
h : (I, δ′) → (X, δ) with h(0) = x and h(1) = y is not proximally continuous, i.e., if E δ′ F for all E, F ∈ [0, 1],
then h(E) δ h(F). Take E = {0} ⊂ I and F = (0, 1] ⊂ I. Since D(E,F) = inf{d(0, z) : z ∈ F} = 0, we have that E δ F.
It follows that h(E) = {x} is not near to h(F) = X \ {x}. On the other hand,

h(E) ∪ h(F) = {x} ∪ X \ {x} = X.

Thus, X is not proximally connected and this is a contradiction.

2.2. On descriptive proximity spaces

Assume that X is a nonempty set and x ∈ X. Consider the setΦ = {ϕ1, · · · , ϕm} of maps (generally named
as probe functions) ϕ j : X→ R, j = 1, · · · ,m, where ϕ j(x) denotes a feature value of x. Let E ⊂ X. Then the
set of descriptions of a point e in E, denoted by Q(E), is given by the set {Φ(e) : e ∈ E}, where Φ(e) (generally
called a feature vector for e) equals (ϕ1(e), · · · , ϕm(e)). For E, F ⊂ X, the binary relation δΦ is defined by

E δΦ F ⇔ Q(E) ∩ Q(F) , ∅,

and E δΦ F is read as “E is descriptively near F”[11, 12, 14]. Also, E δΦ F is often used to state “E is descriptively
far from F”. The descriptive intersection of E and F and the descriptive union of E and F are defined by

E
⋂
Φ

F = {x ∈ E ∪ F : Φ(x) ∈ Q(E) ∧ Φ(x) ∈ Q(F)},

and
E
⋃
Φ

F = {x ∈ E ∪ F : Φ(x) ∈ Q(E) ∨ Φ(x) ∈ Q(F)},

respectively[14].
Then a binary relation δΦ given in by (1)[8] satisfies

(f) E δΦ F ⇒ E , ∅ ∧ F , ∅,

(g) E
⋂
Φ

F , ∅ ⇒ E δΦ F,

(h) E
⋂
Φ

F , ∅ ⇒ F
⋂
Φ

E,

(i) E δΦ (F ∪ G) ⇔ E δΦ F ∨ E δΦ G,
(k) E δΦ F ⇒ ∃G ⊂ X : E δΦ G ∧ (X − G) δΦ F.

δΦ is a descriptive nearness relation.

Definition 2.9. ([8]) The nearness relation δΦ for the subsets of X is said to be an descriptive Efremovic
proximity (simply denoted by descriptive EF-proximity or descriptive proximity) if δΦ satisfies (f)-(k). (X, δΦ) is
said to be a descriptive EF-proximity (or descriptive proximity) space.

A map h : (X, δΦ)→ (X, δΦ′ ) is called a descriptive proximally continuous provided that

E δΦ F ⇒ h(E) δΦ′ h(F)

for E, F ⊂ X[15, 17]. We denote a descriptive proximally continuous map by “dpc-map”. Let δΦ be a
descriptive proximity on X, and E ⊂ X a subset. Then a descriptive subspace proximity δE

Φ
is defined on the

subsets of E as follows:
E1 δΦ E2 ⇔ E1 δ

E
Φ E2
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for E1, E2 ⊂ E. Given a descriptive proximity δΦ on X, a descriptive subspace proximity (E, δE
Φ

), and the
inclusion j : (E, δE

Φ
) → (X, δΦ), a dpc-map k : (X, δΦ) → (E, δE

Φ
) is called a descriptive proximal retraction if

k ◦ j = 1E.
To state Gluing Lemma in descriptive proximity spaces, we need to refer to descriptively closed sets. In

[16], a descriptive closure clΦ(E) of a set E ∈ 2X is given by the set {x ∈ X : Φ(x) ∈ Q(cl(E))}. Thus, a set E is
descriptively closed in a descriptive proximity space if and only if E = clΦ(E).

Lemma 2.10. ([17, 19][Descriptive Gluing Lemma]) Let X′ and X′′ be two descriptively closed subsets and assume
that f1 : (X′, δΦ′1 )→ (Y′, δΦ′2 ) and f2 : (X′′, δΦ′′1 )→ (Y′, δΦ′2 ) are two dpc-maps with the property that they agree on the

intersection of X′ and X′′. Then the map f1∪ f2 from (X′∪X′′, δΦ) to (Y′, δΦ′2 ), defined by f1∪ f2(s) =

 f1(s), s ∈ X′

f2(s), s ∈ X′′

for any s ∈ X′ ∪ X′′, is a dpc-map.

h is a descriptive proximity isomorphism if h is a bijection and each of h and h−1 is a dpc-map [7]. Hence,
(X, δΦ) and (X′, δΦ′ ) are called descriptive proximally isomorphic spaces. A descriptive proximity relation on
the cartesian product of descriptive proximity spaces is defined as follows[5]: Assume that δΦ and δΦ′ are
any descriptive proximities on X and X′, respectively. For two subsets E × F and E′ × F′ of X × X′, we say
that (E × F) δΦ (E′ × F′) if and only if E δΦ E′ and F δΦ′ F′.

Definition 2.11. ([17, 19]) Let h1, h2 : (X, δΦ)→ (X′, δΦ′ ) be any map. Then h1 and h2 are said to be descriptive
proximally homotopic maps provided that there exists a dpc-map G : X × I → X′ with G(x, 0) = h1(x) and
G(x, 1) = h2(x).

In Definition 2.11, G is a descriptive proximal homotopy between h1 and h2. We simply denote a descriptive
proximal homotopy by “dprox-hom”. Given a descriptive proximity δΦ on X and a subset F ⊂ X, F is said
to be a δΦ−neighborhood of E, denoted by E≪δΦ F, if E δΦ (X − F)[15].

Theorem 2.12. ([7]) Let E j ≪δΦ F j for j = 1, · · · ,m. Then

m⋂
j=1

E j ≪δΦ

m⋂
j=1

F j textand
m⋃

j=1

E j ≪δΦ

m⋃
j=1

F j.

Definition 2.13. ([17]) Let x1 and x2 be any two elements in X with a descriptive proximity δΦ. Then a
descriptive proximal path from x1 to x2 in X is a dpc-map h from I = [0, 1] to X for which h(0) = x1 and h(1) = x2.

A descriptive proximity space (X, δΦ) is connected if and only if for all nonempty E, F ∈ 2X, E ∪ F = X
implies that E δΦ F[9]. A descriptive proximity space (X, δΦ) is path-connected if, for any points x1 and x2 in
X, there exists a descriptive proximal path from x1 to x2 in X.

Theorem 2.14. In a descriptive proximity space, path-connectedness coincides with connectedness.

Proof. Follow the method in the proof of Theorem 2.8.

3. Homotopy theory on proximity spaces

This section, one of the main parts (Section 3 and Section 4) of the paper, examines the projection of the
homotopy theory elements in parallel with the proximity spaces. First, we start with the notion of proximal
mapping spaces. Then we have proximal covering spaces. The last two parts are related to proximal
fibrations and its dual notion of proximal cofibrations. Results on these four topics that we believe will be
relevant to future proximity space research are presented.



M. İs, İ. Karaca / Filomat 38:9 (2024), 3137–3156 3142

3.1. Proximal mapping spaces
The work of mapping spaces in nearness theory starts with [10] and is still open to improvement. Note

that the study of discrete invariants of function spaces is essentially homotopy theory in algebraic topology,
and recall that depending on the nature of the spaces, it may be useful to attempt to impose a topology on
the space of continuous functions from one topological space to another. One of the best-known examples
of this is the compact-open topology.

Definition 3.1. Let δ1 and δ2 be two proximities on X and Y, respectively. The proximal mapping space YX

is defined as {α : X → Y | α is a pc-map} having the following proximity relation δ on itself: Let E, F ⊂ X
and {αi}i∈I and {β j} j∈J be any subsets of pc-maps in YX. We say that {αi}i∈I δ {β j} j∈J if the fact E δ1 F implies
that αi(E) δ2 β j(F) for all i ∈ I and j ∈ J.

Figure 1: The picture represented by X is given by the set {A,B,C,D,E,F,G,H}.

Example 3.2. Consider the set X = {A,B,C,D,E,F,G,H} of cells in Figure 1 with the proximity δ defined by
bd(E1)∩ E2 , ∅ for any subsets E1 and E2 in 2X, where bd(E1) denotes the boundary of E1 (see [19] for more
details of the boundary of a set in proximity spaces). Define three proximal paths α1, α2, and α3 ∈ XI by

α1 : A 7→ B 7→ C 7→ D 7→ E 7→ F 7→ G 7→ H,

α2 : H 7→ A 7→ B 7→ C 7→ D 7→ E 7→ F 7→ G,

α3 : A 7→ H 7→ G 7→ F 7→ E 7→ D 7→ C 7→ B.

For all t ∈ I, α1(t) δ α2(t). This means that α1 is near α2. On the other hand, for t ∈ [2/8, 3/8], we have that
α1(t) = C and α3(t) = G, that is, α1 and α3 are not near in X.

Remark 3.3. For the proximal continuity of a map H : (X, δ1)→ (ZY, δ′), we say that the fact E δ1 F implies
that H(E) δ′ H(F) for any subsets E, F ⊂ X.

Proposition 3.4. Let δ1, δ2, and δ3 be any proximities on the sets X, Y, and Z, respectively. Then the map
G : (X × Y, δ′′) → (Z, δ3) is pc-map if and only if the map H : (X, δ1) → (ZY, δ′) defined by H(E)(F) := G(E × F) is
pc-map for E ⊂ X and F ⊂ Y.

Proof. Assume that E1 δ1 F1 for E1, F1 ⊂ X. If E2 δ2 F2 for E2, F2 ⊂ Y, then we find (E1 × E2) δ′′ (F1 × F2).
Since G is a pc-map, we get G(E1 × E2) δ3 G(F1 × F2). It follows that H(E1)(E2) δ3 H(F1)(F2). This shows that
H(E1) δ′ H(F1), i.e., H is a pc-map. Conversely, assume that (E1 × E2) δ′′ (F1 × F2). Then we get E1 δ1 F1 in X
and E2 δ2 F2 in Y. Since H is a pc-map, we get H(E1) δ′ H(F1). So, we have that H(E1)(E2) δ3 H(F1)(F2). This
leads to the fact that G(E1 × E2) δ′′ G(F1 × F2), namely that, G is a pc-map.
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Theorem 3.5. Let δ1, δ2, and δ3 be any proximities on X, Y, and Z, respectively. Then (ZX×Y, δ4) and ((ZY)X, δ5)
are proximally isomorphic spaces.

Proof. Define a bijective map f : ZX×Y
→ (ZY)X by f (G) = H. For any pc-maps G, G′ ⊂ ZX×Y such that

G δ4 G′, we have that f (G) δ5 f (G′). Indeed, for E1×E2, F1×F2 ⊂ X×Y, we have that G(E1×E2) δ3 G(F1×F2).
This means that H(E1)(E2) δ3 H(F1)(F2). Another saying, we find H δ5 H′. Therefore, f is a pc-map. For the
proximal continuity of f−1, assume that H δ5 H′. Then we have that H(E1) and H′(F1) are near in ZY for E1,
F1 ⊂ X. If E2 δ2 F2 in Y, then we have that H(E1)(E2) δ3 H′(F1)(F2). It follows that G(E1×E2) δ3 G′(F1×F2). Thus,
we obtain that G δ4 G′, which means that f−1(H) δ4 f−1(H′). As a result, f is a proximity isomorphism.

Theorem 3.6. Let δ1, δ2, and δ3 be any proximities on X, Y, and Z, respectively. Then ((Y×Z)X, δ4) and (YX
×ZX, δ5)

are proximally isomorphic spaces.

Proof. The proximal isomorphism is given by the map

f : ((Y × Z)X, δ4)→ (YX
× ZX, δ5)

with f (α) = (π1 ◦α, π2 ◦α), where π1 and π2 are the i−th projection maps from Y×Z to the respective spaces.
For any {αi}i∈I, {β j} j∈J ⊂ (Y×Z)X such that {αi}i∈I is near {β j} j∈J, we obtain that πk ◦ {αi}i∈I is near πk ◦ {βi} j∈J for
each k ∈ {1, 2}. Therefore, we have that (π1 ◦ {αi}i∈I, π2 ◦ {αi}i∈I) is near (π1 ◦ {β j} j∈J, π2 ◦ {β j} j∈J). Thus, f ({αi}i∈I)
is near f ({β j} j∈J), i.e., f is a pc-map. For the pc-map

1 : (YX
× ZX, δ5)→ ((Y × Z)X, δ4)

with 1(β, γ) = (β × γ) ◦ ∆X, where ∆X : (X, δ1)→ (X × X, δ′1) is a diagonal map of proximity spaces on X, we
have that 1◦ f and f ◦1 are identity maps on respective proximity spaces (Y×Z)X and YX

×ZX. Note that∆X
is also pc (similarly, in descriptive proximity spaces, the diagonal map is dpc) because A δ1 B implies that
(A,A) δ′1 (B,B) by the property of cartesian product proximity. Consequently, ((Y×Z)X, δ4) and (YX

×ZX, δ5)
are proximally isomorphic spaces.

Definition 3.7. Let δ1 and δ2 be any proximities on X and Y, respectively. Then the proximal evaluation
map

eX,Y : (YX
× X, δ)→ (Y, δ2)

is defined by e(α, x) = α(x).

To show that the evaluation map eX,Y is a pc-map, we first assume that ({αi}i∈I×E) δ ({β j} j∈J×F) in YX
×X.

This means that {αi}i∈I δ′ {β j} j∈J for a proximity relation δ′ on YX and E δ1 F in X. It follows that αi(E) δ2 β j(F)
in Y for any i ∈ I and j ∈ J. Finally, we conclude that

eX,Y({αi}i∈I × E) δ2 eX,Y({β j} j∈J × F).

Example 3.8. Consider the proximal evaluation map eI,X : (XI
× I, δ)→ (X, δ1). Since XI

× {0} is proximally
isomorphic to XI by the map (α, 0) 7→ α(0), the restriction

e0
I,X = eI,X|(XI×{0}) : (XI, δ′)→ (X, δ1),

defined by e0
I,X(α) = α(0), is a pc-map.

Example 3.9. Let eI,X×X : ((X × X)I
× I, δ) → (X, δ1) be the proximal evaluation map. By Theorem 3.6, the

restriction
e0

I,X×X = eI,X×X|(XI×{0}) : (XI, δ′)→ (X × X, δ′),

defined by e0
I,X×X(α) = (α(0), α(1)), is a pc-map.

Note that, in topological spaces, the map XI
→ X × X, α 7→ (α(0), α(1)), is a path fibration. Similarly, the

map XI
→ X, α 7→ α(0), is the path fibration with a fixed initial point at t = 0.
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3.2. Proximal covering spaces
A covering space of a topological space and the fundamental group are tightly related. One can

categorize all the covering spaces of a topological space using the subgroups of its fundamental group.
Covering spaces are not only useful in algebraic topology but also in complex dynamics, geometric group
theory, and the theory of Lie groups.

Definition 3.10. A surjective pc-map p : (X, δ)→ (X′, δ′) is a proximal covering map if the followings hold:

• Let {x′} ⊆ X′ be any subset with {x′} ≪δ′ Y′. Then there is an index set I satisfying that

p−1(Y′) =
⋃
i∈I

Yi

with Vi ≪δ Yi, where Vi ∈ p−1({x′}) for each i ∈ I.

• Yi , Y j when i , j for i, j ∈ I.

• p|Yi : Yi → Y′ is a proximal isomorphism for every i ∈ I.

In Definition 3.10, (X, δ) is called a proximal covering space of (X′, δ′). For i ∈ I, Yi is said to be a
proximal sheet. For any x′ ∈ X′, p−1({x′}) is called a proximal fiber of x′. The map p|Yi : Yi → Y′ is a proximal
isomorphism if the map p : (X, δ) → (X′, δ′) is a proximal isomorphism. However, the converse is not
generally true. Given any proximity δ on X, it is obvious that the identity map on X is always a proximal
covering map.

Figure 2: A map p from {a1, a2, a3, a4}∪{b1, b2, b3, b4}∪{c1, c2, c3, c4} to {d1, d2, d3, d4}defined by p(ai) = p(bi) = p(ci) = di for any i = 1, 2, 3, 4.

Example 3.11. Assume that X = {a1, a2, a3, a4} ∪ {b1, b2, b3, b4} ∪ {c1, c2, c3, c4} and X′ = {d1, d2, d3, d4} are two
proximity spaces such that p : (X, δ)→ (X′, δ′) is a surjective and pc-map defined by p(ai) = p(bi) = p(ci) = di
for each i = 1, 2, 3, 4 (see Figure 2). Let {d1} ⊂ X′ and Y′ = {d1, d2, d4} a proximal δ′−neighborhood of {d1}.

For V1 = {a1}, V2 = {b1}, and V3 = {c1}, we have p−1(Y′) =
3⋃

i=1

Yi, where Y1 = {a1, a2, a4}, V2 = {b1, b2, b4}, and

V3 = {c1, c2, c4}. Note that V1 δ (X−Y1), V2 δ (X−Y2), and V3 δ (X−Y3), i.e., Yi is a proximal δ−neighborhood
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of Vi for each i ∈ {1, 2, 3}. Moreover, for i, j ∈ {1, 2, 3} with i , j, we have that Yi is not near Y j, and
p|Y1 : {a1, a2, a4} → {d1, d2, d4}, p|Y2 : {b1, b2, b4} → {d1, d2, d4}, and p|Y3 : {c1, c2, c4} → {d1, d2, d4} are proximal
isomorphisms. For other points d2, d3, and d4, a similar process is done. This shows that p is a proximal
covering map.

Example 3.12. Suppose that δ is any proximity relation on the subsets of a nonempty set X. Let {0, 1, 2 · · · }
admit a discrete proximity such that the subsets of X × {0, 1, 2 · · · } have the cartesian product proximity.
Consider the surjective and pc-map p : (X × {0, 1, 2 · · · }, δ′) → (X, δ) with p(x, t) = x. For a proximal
δ−neighborhood Y of any subset {x} ⊂ X, we have that

p−1(Y) = Y ×Z+ ⊂ X × {0, 1, 2 · · · }

for a proximal δ′−neighborhood Y′ of Y×Z+. Moreover, p|Y×Z+ : Y×Z+ → Y, p|Y×Z+ (x, t) = x, is a proximal
isomorphism. Thus, p is a proximal covering map.

Proposition 3.13. Any proximal isomorphism is a proximal covering map.

Proof. Let p : (X, δ) → (X′, δ′) be a proximal isomorphism. Then p is a pc-map. Lemma 4.1 of [8] says
that p is continuous with respect to compatible topologies. Therefore, we get p−1(Y′) = Y ⊂ X for an open
neighborhood Y′ of any subset {x′} ⊆ X′. Combining with the fact that a proximal neighborhood of a set is
also a neighborhood, we conclude that p−1(Y′) = Y for a proximal δ′−neighborhood Y′ of {x′} in X′ and a
proximal δ−neighborhood Y of V, where V ∈ p−1({x′}) in X. Furthermore, p|Y : Y → Y′ is an isomorphism
of proximity spaces because p is an isomorphism of proximity spaces. Finally, p is a proximal covering
map.

The following diagram illustrates two ways to prove that any proximal isomorphism p : (X, δ)→ (X′, δ′)
is a covering map between respective compatible topologies on both (X, δ) and (X′, δ′).

proximal isomorphism //

��

proximal covering map

��

homeomorphism // covering map.

Theorem 3.14. The cartesian product of two proximal covering maps is a proximal covering map.

Proof. Let p : (X, δ1)→ (X′, δ′1) and q : (Y, δ2)→ (Y′, δ′2) be two proximal covering maps. Then for a proximal
δ′1−neighborhood M′

1 of {x′1} ⊂ X′, we have that

p−1(M′

1) =
⋃
i∈I

Mi

for a proximal δ1−neighborhood M1 of Vi, where Vi ∈ p−1({x′1}). We also have that Mi , Mk with any k ∈ I
when i , k. Similarly, for a proximal δ′2−neighborhood N′2 of {x′2} ⊂ Y′, we have that

q−1(N′2) =
⋃
j∈J

N j

for a proximal δ2−neighborhood N j of W j, where W j ∈ q−1({x′2}). Also, we have that Ni , Nl with any l ∈ J
when j , l. For a proximal neighborhood M′

1 ×N′2 of {x′1} × {x
′

2} ⊂ X′ × Y′, we get

(p × q)−1(M′

1 ×N′2) = p−1(M′

1) × q−1(N′2) =
⋃
i∈I

Mi ×
⋃
j∈J

N j =
⋃
i∈I
j∈J

(Mi ×N j).

It is clear that Mi×N j ,Mk×Nl when (i, j) , (k, l) for any i, k ∈ I and j, l ∈ J. Moreover, since p|Mi : Mi →M′

1
and q|N j : N j → N′2 are proximal isomorphisms, the map (p × q)|Mi×N j : Mi × N j → M′

1 × N′2 is a proximal
isomorphism. Consequently, p × q : X × Y→ X′ × Y′ is a proximal covering map.
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3.3. Proximal fibrations

Some topological problems can be conceptualized as lifting or extension problems. In the homotopy-
theoretic viewpoint, fibrations and cofibrations deal with them, respectively (see Section 3.4 for the detail
of cofibrations). Postnikov systems, spectral sequences, and obstruction theory, which are important tools
constructed on homotopy theory, involve fibrations. On the other hand, the notion of proximal fibration of
proximity spaces is first mentioned in [20], and we extend this with useful properties in proximity cases.

Definition 3.15. A pc-map p : (X, δ) → (X′, δ′) is said to have the proximal homotopy lifting property
(PHLP) with respect to a proximity space (X′′, δ′′) if for an inclusion map i0 : (X′′, δ′′) → (X′′ × I, δ1),
i0(x′′) = (x′′, 0), for every pc-map k : (X′′, δ′′) → (X, δ), and prox-hom G : (X′′ × I, δ1) → (X′, δ′) with
p ◦ k = G ◦ i0, then there exists a prox-hom G′ : (X′′ × I, δ1) → (X, δ) for which G′(x′′, 0) = k(x′′) and
p ◦ G′(x′′, t) = G(x′′, t).

X′′ k //

i0
��

X

p
��

X′′ × I
G
//

G′
;;

X′.

Definition 3.16. A pc-map p : (X, δ) → (X′, δ′) is said to be a proximal fibration if it has the PHLP for any
proximity space (X′′, δ′′).

Example 3.17. For any proximity spaces (X, δ) and (X′, δ′), we shall show that the projection map

π1 : (X × X′, δ2)→ (X, δ)

onto the first factor is a proximal fibration. Consider the diagram

X′′
(kX ,kX′ ) //

i0
��

X × X′

π1

��

X′′ × I
G

//

G′
99

X′

with π1 ◦ (kX, kX′ ) = G ◦ i0. Then there is a map G′ : (X′′ × I, δ1) → (X × X′, δ2) defined by G′ = (G,F),
where F : (X′′ × I, δ1) → (X′, δ′) is the composition of the first projection map (X′′ × I, δ1) → (X′′, δ′′) and
kX′ . Since kX′ and the first projection map are pc-maps, it follows that F is a pc-map. Moreover, we get
F(x′′, 0) = F(x′′, 1) = kX′ (x′′), which means that F is a (constant) prox-hom. Combining this result with the
fact that H is a prox-hom, we have that G′ is a prox-hom. Moreover, we get

G′ ◦ i(x′′) = G′(x′′, 0) = (G(x′′, 0),F(x′′, 0)) = (kX(x′′), kX′ (x′′)) = (kX, kX′ )(x′′),

and
π1 ◦ G′(x′′, t) = π1(G(x′′, t),F(x′′, t)) = G(x′′, t).

This shows that π1 is a proximal fibration.

Example 3.18. Let c : (X, δ)→ ({x0}, δ0) be the constant map of proximity spaces. Given the diagram

X′′ k //

i0
��

X

p
��

X′′ × I
G
//

G′
;;

{x0}
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with the condition p◦k(x′′) = G◦i0(x′′) = {x0}. Then there exists a (constant) prox-hom G′ : (X′′×I, δ1)→ (X, δ)
defined by G′(x′′, t) = k(x′′) satisfying that

p ◦ G′(x′′, t) = p(G′(x′′, t)) = {x0} = G(x′′, t),

G′ ◦ i0(x′′) = G′(x′′, 0) = k(x′′).

This proves that p is a proximal fibration.

Proposition 3.19. i) The composition of two proximal fibrations is also a proximal fibration.
ii) The cartesian product of two proximal fibrations is also a proximal fibration.

Proof. i) Let p1 : (X1, δ1) → (Y1, δ′1) and p2 : (Y1, δ′1) → (Y2, δ′2) be any proximal fibrations. Then for
the inclusion map i0 : (X′′, δ′′) → (X′′ × I, δ3), pc-maps k1 : (X′′, δ′′) → (X1, δ1), k2 : (X′′, δ′′) → (Y1, δ′1),
and proximal homotopies G1 : (X′′ × I, δ3) → (Y1, δ′1), G2 : (X′′ × I, δ3) → (Y2, δ′2) with the property
p1 ◦ k1 = G1 ◦ i0 and p2 ◦ k2 = G2 ◦ i0, there exist two proximal homotopies G′1 : (X′′ × I, δ3) → (X1, δ1) and
G′2 : (X′′ × I, δ3)→ (Y1, δ′1) satisfying that

G′1 ◦ i0 = k1, p1 ◦ G′1 = G1,

G′2 ◦ i0 = k2, p2 ◦ G′2 = G2.

If we take G′2 = G1, then we have the following commutative diagram:

X′′
k1 //

i0
��

X1

p2◦p1

��

X′′ × I
G2

//

G′1
;;

Y2.

Thus, we get
G′1 ◦ i0 = k1,

(p2 ◦ p1) ◦ G′1 = G2.

This shows that the composition p2 ◦ p1 is a proximal fibration.
ii) Let p1 : (X1, δ1)→ (Y1, δ′1) and p2 : (X2, δ2)→ (Y2, δ′2) be any proximal fibrations. Then for the inclusion

map i0 : (X′′, δ′′) → (X′′ × I, δ3), pc-maps k1 : (X′′, δ′′) → (X1, δ1), k2 : (X′′, δ′′) → (X2, δ2), and proximal
homotopies G1 : (X′′ × I, δ3) → (Y1, δ′1), G2 : (X′′ × I, δ3) → (Y2, δ′2) with the property p1 ◦ k1 = G1 ◦ i0 and
p2◦k2 = G2◦i0, there exist two proximal homotopies G′1 : (X′′×I, δ3)→ (X1, δ1) and G′2 : (X′′×I, δ3)→ (X2, δ2)
satisfying that

G′1 ◦ i0 = k1, p1 ◦ G′1 = G1,

G′2 ◦ i0 = k2, p2 ◦ G′2 = G2.

Consider the map G′3 = (G′1,G
′

2). Then G′3 is clearly a prox-hom and we have the following commutative
diagram.

X′′
(k1,k2)

//

i0
��

X1 × X2

p1×p2

��

X′′ × I
(G1,G2)

//

G′3
99

Y1 × Y2.

Thus, we get
G′3 ◦ i0 = (k1, k2),

(p1 × p2) ◦ G′3 = (G1,G2).

This proves that the cartesian product p1 × p2 is a proximal fibration.
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Let f : (X, δ1)→ (Y, δ2) be a pc-map. Then for any pc-map 1 : (Z, δ3)→ (Y, δ2), a proximal lifting of f is a
pc-map h : (X, δ1)→ (Z, δ3) satisfying that f = 1 ◦ h.

Proposition 3.20. Let p : (X, δ1)→ (Y, δ2) be a proximal fibration. Then
i) The pullback 1∗p : (P, δ)→ (Y′, δ′2) is a proximal fibration for any pc-map 1 : (Y′, δ′2)→ (Y, δ2).

P
π1 //

1∗p
��

X

p
��

Y′
1
// Y.

ii) For any proximity space (Z, δ3), the map p∗ : (XZ, δ′3)→ (YZ, δ′′3 ) is a proximal fibration.

Proof. i) Let

P = {(x, y′) | 1(y′) = p(e)} ⊆ X × Y′

be a proximity space with the proximity δ0 on itself. p is a proximal fibration. Then, for an inclusion map
i0 : (X′′, δ′′)→ (X′′ × I, δ3), for any pc-map k1 from (X′′, δ′′) to (X, δ1), and prox-hom G1 : (X′′ × I, δ3)→ (X, δ)
with p ◦ k1 = G1 ◦ i0, there exists a prox-hom

G′1 : (X′′ × I, δ3)→ (X, δ1)

for which G′1(x′′, 0) = k1(x′′) and p◦G′1(x′′, t) = G1(x′′, t). Assume that a map k2 from (X′′, δ′′) to (P, δ0) is a pc-
map and G2 : (X′′× I, δ3)→ (Y′, δ′2) is a prox-hom with 1∗p◦k2 = G2 ◦ i0. If we define G′2 : (X′′× I, δ3)→ (P, δ0)
by G′2 = (G′1,G2), then we observe that

G′2 ◦ i0 = k2,

1∗p ◦ G′2 = G2.

This gives the desired result.
ii) Consider the following diagrams:

Z × X′′
k1 //

i0
��

X

p
��

Z × X′′ × I
G1

//

G′1

::

Y

and

X′′
k2 //

i0
��

XZ

p∗
��

X′′ × I
G2

//

G′2
;;

YZ.

Since p is a proximal fibration, we have H′1 : (Z × X′′ × I, δ′′) → (X, δ1) as the prox-hom in the upper
diagram. Z × X′′ × I is proximally isomorphic to X′′ × I × Z and we can think of G′1 as the prox-hom
(X′′ × I ×Z, δ′′)→ (X, δ1). By Proposition 3.4, we have the prox-hom G′2 : (X′′ × I, δ′)→ (XZ, δ′3) in the lower
diagram. This map satisfies the desired conditions, and thus, we conclude that p∗ is a proximal fibration.
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3.4. Proximal cofibrations
Similar to the proximal fibration, we currently deal with the notion of proximal cofibration of proximity

spaces. We first study the problem of extension in homotopy theory, and then present the definition of
proximal cofibration with its basic results.

Definition 3.21. Given two proximity spaces (X, δ) and (X′, δ′), a pc-map h : X → X′ is said to have a
proximal homotopy extension property (PHEP) with respect to a proximity space (X′′, δ′′) provided that
for inclusion maps iX0 : (X, δ) → (X × I, δ1) and iX′0 : (X′, δ′) → (X′ × I, δ′1), for every pc-map k : (X′, δ′) →
(X′′, δ′′), and prox-hom F : (X × I, δ1) → (X′′, δ′′) with k ◦ (h × 10) = F ◦ iX0 , then there exists a prox-hom
F′ : (X′ × I, δ′1)→ (X′′, δ′′) satisfying F′ ◦ iX′0 = k and F′ ◦ (h × 1I) = F.

X × 0 �
� iX0 //

h×10

��

X × I

h×1I

��

F

{{

X′′

X′ × 0 �
�

iX′0

//

k
;;

X′ × I.

F′
cc

Example 3.22. Let X′′ = {A,B,C,D} be a set with the proximity δ′′ on itself as in Figure 3. Let γ1 and
γ2 be proximal paths on X′′ such that γ1(0) = B, γ1(1) = A, γ2(0) = B, and γ2(1) = C. Consider the
following diagram for an inclusion map h : ({0}, δ) → (I, δ′), where k : (I, δ′) → (X′′, δ′′) is the map γ2 and
F : ({0} × I, δ1)→ (X′′, δ′′) is defined by F(0, t) = γ1(t) for all t ∈ I:

{0} × 0 �
� i{0}0 //

� _

h×10

��

{0} × I� _

h×1I

��

F

{{

X′′

I × 0 �
�

iI0

//

k
;;

I × I,

i.e., the equality k ◦ (h× 10) = F◦ i{0}0 holds. Then, by Gluing Lemma, there exists a prox-hom F′ : (I× I, δ′1)→
(X′′, δ′′) defined by F′(0, t1) = F(0, t1) and F′(t2, 0) = k(t2) for all (t1, t2) ∈ I × I which satisfy

F′ ◦ (h × 1I) = F,

F′ ◦ iI0 = k.

Schematically, we have the diagram

{0} × 0 �
� i{0}0 //

� _

h×10

��

{0} × I� _

h×1I

��

F

{{

X′′

I × 0 �
�

iI0

//

k
;;

I × I.

F′
cc
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Figure 3: The picture is represented by X′′ = {A,B,C,D}.

Definition 3.23. A pc-map h : (X, δ) → (X′, δ′) is said to be a proximal cofibration if it has the PHEP with
respect to any proximity space (X′′, δ′′).

Example 3.24. Let h : (X, δ) ↪→ (X′, δ′) be an inclusion map such that X ⊂ X′. Then h is a natural proximal
cofibration, since there exists a prox-hom

F′ = F|X′ : (X′ × I, δ′1)→ (X′′, δ′′)

satisfying the conditions of PHEP with respect to any proximity space (X′′, δ′′).

The notion of coproduct proximity is studied in [3]. Assume that {(X j, δ j)} j∈J is a collection of proximity
spaces and ⊔ jX j denotes the disjoint union

X1 ⊔ X2 ⊔ · · · ⊔ X j.

Then one defines a relation δ on the subsets of ⊔ jX j as follows: Let Ek = ⊔ jX j ∩ Xk. For all E, F ∈ 2⊔ jX j ,

E δ F ⇔ Ek δk Fk

for some k ∈ J[3, 20].

Proposition 3.25. i) Let h : (X, δ) → (X′, δ′) and h′ : (Y, δ1) → (Y′, δ′1) be two maps such that X and X′ are
proximally isomorphic to Y and Y′, respectively, and the following diagram commutes.

X
≈δ //

h
��

Y

h′

��

X′
≈δ

// Y′.

Then h is a proximal cofibration if and only if h′ is a proximal cofibration.
ii) The composition of two proximal cofibrations is also a proximal cofibration.
iii) The coproduct of two proximal cofibrations is also a proximal cofibration.
iv) Let h : (X, δ)→ (X′, δ′) be a proximal cofibration and the following is a pushout diagram.

X l //

h
��

Y

h′

��

X′
l′
// Y′.

Then h′ is a proximal cofibration.



M. İs, İ. Karaca / Filomat 38:9 (2024), 3137–3156 3151

Proof. i) Let h be a proximal cofibration. By Definition 3.21, there is a prox-hom F′ : (X′ × I, δ′2) → (X′′, δ′′)
such that

F′ ◦ iX
′

0 = k and F′ ◦ (h × 1I) = F

for any pc-map k : (X′, δ′)→ (X′′, δ′′), and prox-hom F from (X × I, δ2) to (X′′, δ′′) with k ◦ (h × 10) = F ◦ iX0 .
Assume that β1 : X → Y and β2 : X′ → Y′ are two proximal isomorphisms. Since the diagram commutes,
we know that h′ ◦ β1 = β2 ◦ h. Let iY0 : (Y, δ1) → (Y × I, δ3) and iY′0 : (Y′, δ′1) → (Y′ × I, δ′3) be two inclusion
maps, k′ := k ◦ (β2)−1 : (Y′, δ′1) → (X′′, δ′′) a pc-map, and F′′ := F′ ◦ (β−1

1 × 1I) from (Y × I, δ3) to (X′′, δ′′) a
prox-hom for which

k′ ◦ (h′ × 10) = F′ ◦ iY0 .

Then there exists a prox-hom

F
′′′

:= F′ ◦ ((β2)−1
× 1I) : (Y′ × I, δ′3)→ (X′′, δ′′)

such that F′′ ◦ iY′0 = k′ and F′′ ◦ (h′ × 1I) = F′.
Conversely, assume that h′ is a proximal cofibration. Similarly, for a prox-hom F′ from (Y′ × I, δ′3) to

(X′′, δ′′) that makes h′ a proximal cofibration, there exists a prox-hom

F′′ := F′ ◦ ( f ′ × 1I) : (X′ × I, δ′2)→ (X′′, δ′′)

that makes h a proximal cofibration.
ii) Let h : (X, δ) → (X′, δ′) and h′ : (X′, δ′) → (Y, δ1) be two proximal cofibrations. Then for any pc-map

k : (X′, δ′)→ (X′′, δ′′) and prox-hom F from (X × I, δ2) to (X′′, δ′′) with

k ◦ (h × 10) = F ◦ iX0 ,

there is a prox-hom F′ : (X′ × I, δ′2) → (X′′, δ′′) such that F′ ◦ iX′0 = k and F′ ◦ (h × 1I) = F, similarly, for any
pc-map k′ : (Y, δ1)→ (X′′, δ′′) and prox-hom G′ : (X′ × I, δ′2)→ (X′′, δ′′) with

k′ ◦ (h′ × 10) = G′ ◦ iX
′

0 ,

there is a prox-hom F′′ : (Y× I, δ′3)→ (X′′, δ′′) such that F′′ ◦ iY0 = k′ and F′′ ◦ (h′ × 1I) = G′. Combining these
results with the fact F′ = G′, we have the following: For a pc-map k′′ := k′ and prox-hom G′′ := F with

k′′ ◦ ((h′ ◦ h) × 10) = G′′ ◦ iX0 ,

there is a prox-hom F′′′ := F′′ such that

F
′′′

◦ iY0 = k′′ and F
′′′

◦ ((h′ ◦ h) × 1I) = G′′.

This proves that h′ ◦ h is a proximal cofibration.
iii) Let h j : (X j, δ j) → (X′j, δ

′

j) be a family of proximal cofibrations for all j ∈ J. Then we shall show that
⊔ jh j : (⊔ jX j, δ) → (⊔ jX′j, δ

′) is a proximal cofibration. Since for all j ∈ J, h j : (X j, δ j) → (X′j, δ
′

j) is proximal
cofibration, we have that for any pc-map k j from (X′j, δ

′) to (X′′, δ′′) and prox-hom F j : (X j × I, δ2)→ (X′′, δ′′)
with

k j ◦ (h j × 10) = F j ◦ iX j

0 ,

there is a prox-hom F′j : (X′j × I, δ′2)→ (X′′, δ′′) such that F′j ◦ i
X′j
0 = k j and F′j ◦ (h j × 1I) = F j. Now assume that

for a pc-map ⊔k j : (⊔ jX′j, δ
′)→ (X′′, δ′′) and prox-hom ⊔ jF j : (⊔ jX j × I, δ4)→ (X′′, δ′′) with

⊔ jk j ◦ (⊔ jh j × 10) = ⊔ jF j ◦ i
⊔ jX′j
0 .
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Then there exists a map ⊔ jF′j : (⊔ jX′j × I, δ5)→ (X′′, δ′′) of proximity spaces for which F′j = ⊔ jF′j ◦ i j for a map

i j : (X′j × I, δ′2)→ (⊔ jX′j × I, δ5). If we define i′j as i j ◦ i
X′j
0 , then we find that i

⊔ jX′j
0 = ⊔ ji′j. It follows that

⊔ jF′j ◦ i
⊔ jX′j
0 = ⊔ jk j

and
⊔ jF′j ◦ (⊔ jh j × 1I) = ⊔ jF j.

Finally, we have that ⊔ jh j is a proximal cofibration.
iv) Let h : (X, δ) → (X′, δ′) be a proximal cofibration, i.e., there is a prox-hom F′ : (X′ × I, δ′2) → (X′′, δ′′)

such that
F′ ◦ iX

′

0 = k and F′ ◦ (h × 1I) = F

for any pc-map k : (X′, δ′) → (X′′, δ′′) and prox-hom F from (X × I, δ2) to (X′′, δ′′) with k ◦ (h × 10) = F ◦ iX0 .
Since we have a pushout diagram, it follows that l′◦h = h′◦ l holds. Now assume that k′ : (Y′, δ′1)→ (X′′, δ′′)
is a pc-map, and F′′ from (Y′ × I, δ3) to (X′′, δ′′) is a prox-hom with k′ ◦ l′ = k, F′′ ◦ (l × 1I), and

k′ ◦ (h′ × 10) = F′′ ◦ iY
′

0 .

Then there exists a prox-hom
F
′′′

: (Y′ × I, δ3)→ (X′′, δ′′)

such that F′′′ ◦ (l′ × 1I) = F′. Moreover, we have that

F
′′′

◦ (l′ × 1I) = F′ ⇒ F
′′′

◦ (l′ × 1I) ◦ iX
′

0 = F′ ◦ iX
′

0

⇒ F
′′′

◦ iY
′

0 ◦ l′ = k

⇒ F
′′′

◦ iY
′

0 ◦ l′ = k′ ◦ l′

⇒ F
′′′

◦ iY
′

0 = k′,

and

F′ ◦ (h × 1I) = F′ ⇒ F′′ ◦ (l′ × 1I) ◦ (h × 1I) = F′′ ◦ (l × 1I)
⇒ F

′′′

◦ ((l′ ◦ h) × 1I) = F′′ ◦ (l × 1I)
⇒ F

′′′

◦ ((h′ ◦ l) × 1I) = F′′ ◦ (l × 1I)
⇒ F

′′′

◦ (h′ × 1I) ◦ (l × 1I) = F′′ ◦ (l × 1I)
⇒ F

′′′

◦ (h′ × 1I) = F′′.

As a consequence, h′ is a proximal cofibration.

Theorem 3.26. h : (X, δ)→ (X′, δ′) is a proximal cofibration if and only if (X′ × 0)∪ (X× I) is a proximal retract of
X′ × I.

Proof. Let X′′ = (X′ × 0) ∪ (X × I). If f is a proximal cofibration, then for any pc-map k : (X′, δ′)→ (X′′, δ′′)
and prox-hom F : (X× I, δ2)→ (X′′, δ′′) with k◦ (h×10) = F◦ iX0 , there is a prox-hom F′ : (X′× I, δ′2)→ (X′′, δ′′)
such that F′ ◦ iX′0 = k and F′ ◦ (h × 1I) = F. Hence, F′ is a proximal retraction of X′ × I. Conversely, let
h : (X′ × I, δ′2) → (X′′, δ′′) be a proximal retraction. Assume that k : (X′, δ′) → (Y, δ) is a pc-map and
F : (X × I, δ2)→ (Y, δ) is a prox-hom with

k ◦ (h × 10) = F ◦ iX0 .

Define a map F′′ : (X′′,′′ ) → (Y, δ) by F′′(x′, t) = F(x′, t) and F′′(x′, 0) = k(x). By Lemma 2.3, F′′ is a pc-map.
Therefore, the map F′ = F′′ ◦ k is a proximal fibration satisfying that F′ ◦ iX′0 = k and F′ ◦ (h × 1I) = F. This
shows that h is a proximal cofibration.
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4. Basic constructions for descriptive proximity

This section is dedicated to describing the concepts given in Section 3 on descriptive proximity spaces.
Recall that a (spatial) proximity is also a descriptive proximity, and note that, in the examples of this section,
descriptions of feature vectors consider the colors of boxes or some parts of balls (see Example 4.2, Example
4.7, and Example 4.12).

Definition 4.1. Let (X, δ1
Φ

) and (Y, δ2
Φ

) be two descriptive proximity spaces. The descriptive proximal map-
ping space YX is defined as the set

{α : X→ Y | α is a dpc-map}

having the following descriptive proximity relation δΦ on itself: Let E, F ⊂ X and {αi}i∈I and {β j} j∈J be any
subsets of dpc-maps in YX. We say that {αi}i∈I δΦ {β j} j∈J if the fact E δ1

Φ
F implies that αi(E) δ2

Φ
β j(F) for all

i ∈ I and j ∈ J.

Example 4.2. Consider the set X = {A,B,C,D,E,F,G,H} in Figure 1 with the descriptive proximity δΦ, where
Φ is a set of probe functions that admit colors of given boxes. Define three descriptive proximal paths γ1,
γ2, and γ3 ∈ XI by

γ1 : A 7→ B 7→ C 7→ D,

γ2 : C 7→ B 7→ A 7→ H,

γ3 : A 7→ H 7→ G 7→ F.

For all t ∈ I, Φ(γ1(t)) δΦ Φ(γ2(t)). Indeed,

Φ(γ1(t)) =


red, t ∈ [0, 1/4] and [3/4, 1]
green, t ∈ [1/4, 2/4]
black, t ∈ [2/4, 3/4]

= Φ(γ2(t)),

namely that, γ1 is descriptively near γ2. However, for t ∈ [1/4, 2/4], we have that Φ(α1(t)) equals green and
Φ(α3(t)) equals black, that is, α1 and α3 are not descriptively near in X.

Remark 4.3. We say that a map H : (X, δ1
Φ

)→ (ZY, δΦ′ ) is descriptive proximally continuous if the fact E δ1
Φ

F
implies that H(E) δΦ′ H(F) for any subsets E, F ⊂ X.

Definition 4.4. For any descriptive proximity spaces (X, δ1
Φ

) and (Y, δ2
Φ

), the descriptive proximal evaluation
map

eX,Y : (YX
× X, δΦ)→ (Y, δ2

Φ)

is defined by e(α, x) = α(x).

Proposition 4.5. The descriptive proximal evaluation map eX,Y is a dpc-map.

Proof. We shall show that for any E, F ⊂ X and {αi}i∈I, {β j} j∈J ⊂ YX, ({αi}i∈I × E) δΦ ({β j} j∈J × F) implies
eX,Y({αi}i∈I × E) δ2

Φ
eX,Y({β j} j∈J × F).

({αi}i∈I × E) δΦ ({β j} j∈J × F) ⇒ {αi}i∈I δΦ′ {β j} j∈J and E δ1
Φ F

⇒ αi(E) δ2
Φ β j(F), ∀i ∈ I, ∀ j ∈ J

⇒ eX,Y({αi}i∈I × E) δ2
Φ eX,Y({β j} j∈J × F),

where YX has a descriptive proximity δΦ′ .

Definition 4.6. A surjective and dpc-map p : (X, δΦ)→ (X′, δΦ′ ) between any descriptive proximity spaces
(X, δΦ) and (X′, δΦ′ ) is a descriptive proximal covering map if the following hold:
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• Let {x′} ⊆ X′ be any subset with {x′} ≪δΦ′ Y′. Then there is an index set I satisfying that

p−1(Y′) =
⋃
i∈I

Yi

with Vi ≪δΦ Yi, where Vi ∈ p−1({x′}) for each i ∈ I.

• Yi , Y j when i , j for i, j ∈ I.

• p|Yi : Yi → Y′ is a descriptive proximal isomorphism for every i ∈ I.

In Definition 4.6, (X, δΦ) is called a descriptive proximal covering space of (X′, δΦ′ ). For i ∈ I, Yi is said
to be a descriptive proximal sheet. For any x′ ∈ X′, p−1({x′}) is called a descriptive proximal fiber of x′. The
map p|Yi : Yi → Y′ is a descriptive proximal isomorphism if the map p : (X, δΦ) → (X′, δΦ′ ) is a descriptive
proximal isomorphism. However, the converse is not generally true. Given any descriptive proximity
space (X, δΦ), it is obvious that the identity map on X is always a descriptive proximal covering map.

Example 4.7. Consider the surjective and dpc-map p : (X, δΦ)→ (X′, δΦ′ ), defined by p(ai) = p(bi) = p(ci) = di
for any i = 1, 2, 3, 4, in Figure 2, where Φ is a set of probe functions that admits colors of given shapes.
Let {d1} ⊂ X′ and Y′ = {d1, d3, d4} a δΦ′−neighborhood of {d1}. For V1 = {a1}, V2 = {b1}, and V3 = {c1}, we

have that p−1(Y′) =
3⋃

i=1

Yi, where Y1 = {a1, a3, a4}, Y2 = {b1, b3, b4}, and Y3 = {c1, c3, c4}. This gives us that for

all i ∈ {1, 2, 3}, Yi is a δΦ−neighborhood of Vi. We also observe that Yi , Y j if i , j for i, j ∈ {1, 2, 3}. In
addition, p|Yi : Yi → Y′ is a descriptive proximal isomorphism for each i. If one considers d3 and d4, the
same process can be repeated. Let {d2} ≪δΦ′ {d2} = Y′ in X′. Then p−1(Y′) = Y1 ∪ Y2 ∪ Y3, where Y1 = {a2},
Y2 = {b2}, and Y3 = {c2}. We observe that V1 = {a2} ≪δΦ Y1, V2 = {b2} ≪δΦ Y2, and V3 = {c2} ≪δΦ Y3. Note
that Y1 , Y2 , Y3. Furthermore, p|Yi : Yi → Y′ is a descriptive proximal isomorphism for each i = 1, 2, 3.
This proves that p is a descriptive proximal covering map.

Definition 4.8. A dpc-map p : (X, δΦ) → (X′, δΦ′ ) is said to have the descriptive proximal homotopy
lifting property (DPHLP) with respect to a descriptive proximity space (X′′, δΦ′′ ) if, for an inclusion map
i0 : (X′′, δΦ′′ )→ (X′′× I, δ1

Φ
) defined by i0(x′′) = (x′′, 0), for every dpc-map h : (X′′, δΦ′′ )→ (X, δΦ), and dprox-

hom G : (X′′ × I, δ1
Φ

)→ (X′, δΦ′ ) with p ◦ h = G ◦ i0, then there exists a dprox-hom G′ : (X′′ × I, δ1
Φ

)→ (X, δΦ)
for which G′(x′′, 0) = h(x′′) and p ◦ G′(x′′, t) = G(x′′, t).

X′′ h //

i0
��

X

p
��

X′′ × I
G
//

G′
;;

X′.

Definition 4.9. A map p : (X, δΦ) → (X′, δΦ′ ), which is a dpc-map, is said to be a descriptive proximal
fibration if it has the DPHLP for any descriptive proximity space (X′′, δΦ′′ ).

Definition 4.10. Given two descriptive proximity spaces (X, δΦ) and (X′, δΦ′ ), a dpc-map h : X→ X′ is said
to have a dprox-hom extension property (DPHEP) with respect to a descriptive proximity space (X′′, δΦ′′ )
if there exists a dprox-hom

F′ : (X′ × I, δΦ1′ )→ (X′′, δΦ′′ )

satisfying the conditions F′ ◦ iX′0 = k and F′ ◦ (h×1I) = F for any dpc-map k : (X′, δΦ′ )→ (X′′, δΦ′′ ), and dprox-
hom F : (X× I, δΦ1 )→ (X′′, δΦ′′ ) with the equality k◦ (h×10) = F◦ iX0 , where the maps iX0 : (X, δΦ)→ (X× I, δΦ1 )
and iX′0 : (X′, δΦ′ )→ (X′ × I, δΦ1′ ) are inclusions.
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X × 0 �
� iX0 //

h×10

��

X × I

h×1I

��

F

{{

X′′

X′ × 0 �
�

iX′0

//

k
;;

X′ × I.

F′
cc

Definition 4.11. A dpc-map f : (X, δΦ) → (X′, δΦ′ ) is said to be a descriptive proximal cofibration if it has
the DPHEP with respect to any descriptive proximity space (X′′, δΦ′′ ).

Example 4.12. Let (X′′, δΦ′′ ) be a descriptive proximity space as in Figure 3, where Φ is a set of probe
functions that admit colors of given rounds. Assume that γ1 and γ2 are descriptive proximal paths on X′′

such that γ1 is from B to A and γ2 is from B to C. Let h : ({0}, δΦ) → (I, δΦ′ ) be an inclusion map. For a
dpc-map k : (I, δΦ′ )→ (X′′, δΦ′′ ) defined as k = γ2, and a dprox-hom F : ({0} × I, δΦ1 )→ (X′′, δΦ′′ ) defined by
F(0, t) = α(t) for all t ∈ I with the property k ◦ (h × 10) = F × i{0}0 , there exists a dprox-hom

F′ : (I × I, δΦ1′ )→ (X′′, δΦ′′ )

defined by F′(0, t1) = F(0, t1) and F′(t2, 0) = k(t2) for all (t1, t2) ∈ I × I which satisfy

F′ ◦ (h × 1I) = F,

F′ ◦ iI0 = k.

In another saying, the diagram

{0} × 0 �
� i{0}0 //

� _

h×10

��

{0} × I� _

h×1I

��

F

{{

X′′

I × 0 �
�

iI0

//

k
;;

I × I

F′
cc

holds.

5. Conclusion

A subfield of topology called homotopy theory investigates spaces up to continuous deformation.
Although homotopy theory began as a topic in algebraic topology, it is currently studied as an independent
discipline. For instance, algebraic and differential nonlinear equations emerging in many engineering
and scientific applications can be solved using homotopy approaches. As an example, these equations
include a set of nonlinear algebraic equations that model an electrical circuit. In certain studies, the aging
process of the human body is presented using the algebraic topology notion of homotopy. In addition
to these examples, one can easily observe homotopy theory once more when considering the algorithmic
problem of robot motion planning. In this sense, this research is planned to accelerate homotopy theory
studies within proximity spaces that touch many important application areas. Moreover, this examination
encourages not only homotopy theory but also homology and cohomology theory to take place within
proximity spaces. The powerful concepts of algebraic topology always enrich the proximity spaces and
thus it becomes possible to see the topology even in the highest-level fields of science such as artificial
intelligence and medicine.
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