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Abstract. In this paper, we completely classify the Ricci bi-conformal vector fields on non-symmetric
simply-connected four dimensional pseudo-Riemannian generalized symmetric spaces up to isometry and
we show which of them are the Killing vector fields and gradient vector fields.

1. Introduction

Let (M, 1) be a smooth n-dimensional pseudo-Riemannian manifold. Geometric vector fields are impor-
tant in differential geometry and physics. On of the geometric flows is conformal vector field. A vector
field X on a Riemannian manifold (M, 1) is called conformal vector field if there is a smooth function ψ on
M that named a potential function, such that LX1 = 2ψ1. If the potential function ψ = 0, then X is called a
Killing vector field. Conformal vector fields are completely explained in [10, 16, 28]. Another generalization
of Killing vector fields is generalized Kerr-Schild vector field. The generalized Kerr-Schild vector field is
defined by

LX1 = α1 + βl ⊗ l, LXl = γl,

where α, β, γ are smooth functions over M and l is a null 1-form field on M. When β = 0 then it is called a
Kerr-Schild vector field. A symmetric tensor h on M is called a square root of 1 if hikhk

j = 1i j. Garcia-Parrado
and Senovilla [17] using square root of 1 defined bi-conformal vector fields. A vector field X is said to be a
bi-conformal vector field if it satisfies the following equations:

LX1 = α1 + βh, LXh = αh + β1,

where h is a symmetric square root of 1 and α, β are smooth functions. The functions α and β are called
gauges of the symmetry [12, 17] and they play a role analogous to the factor ψ appearing in the definition
of the conformal vector fields. After then, De et al. in [13] using the metric tensor 1 and the Ricci tensor S
defined Ricci bi-conformal vector fields as follows.
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Definition 1.1. A vector field X on a pseudo-Riemannian manifold (M, 1) is called Ricci bi-conformal vector field if
it satisfies the following equations

(LX1)(Y,Z) = α1(Y,Z) + βS(Y,Z), (1)

and

(LXS)(Y,Z) = αS(Y,Z) + β1(Y,Z), (2)

for any vector fields Y,Z and some smooth functions α and β, where S is the Ricci tensor of M with respect to metric 1.

Also, Ricci soliton is introduced by Hamilton [19] as follows

LX1 + S = λ1, λ ∈ R,

which is a natural generalization of Einstein metric. For more details, see [1–4, 7, 23, 24].

Example 1.2. Consider the manifold M = {(x, y) ∈ R2 : y < 0} with metric tensor 1 = 1
1+e2y (dx2 + dy2). The Ricci

tensor of the metric 1 reprsented by S = 2e2y

1+e2y 1. For an arbitrary vector field X = X1(x, y) ∂∂x + X2(x, y) ∂∂y , we have

LX1 =

 2 (1+e2y)∂xX1
−e2yX2

(1+e2y)2

∂xX2+∂yX1

1+e2y

∂xX2+∂yX1

1+e2y 2 (1+e2y)∂yX2
−e2yX2

(1+e2y)2


and

LYS =

 4e2y (1+e2y)∂xX1+(1−e2y)X2

(1+e2y)3

2e2y(∂xX2+∂yX1)
(1+e2y)2

2e2y(∂xX2+∂yX1)
(1+e2y)2 4e2y (1+e2y)∂yX2+(1−e2y)X2

(1+e2y)3

 .
Applying 1, S, LX1, and LXS in equations (1) and (2), we obtain

(1 + e2y)∂xX1
− e2yX2 =

1
2

(1 + e2y)α + e2yβ,

(1 + e2y)∂yX2
− e2yX2 =

1
2

(1 + e2y)α + e2yβ,

∂xX2 + ∂yX1 = 0,

(1 + e2y)∂xX1 + (1 − e2y)X1 =
1
2

(1 + e2y)α +
e−2y(1 + e2y)2

4
β,

(1 + e2y)∂yX2 + (1 − e2y)X1 =
1
2

(1 + e2y)α +
e−2y(1 + e2y)2

4
β.

By direct computation, we observe that X1 = x,X2 = y and

α =
2

1 + e2y

(
1 + e2y

− xe2y
−

4xe2y

e−2y(1 + e2y)2 − 4e2y

)
, β =

4x
e−2y(1 + e2y)2 − 4e2y

is a solution of the above system. So the manifold M has a non-trivial Ricci bi-conformal vector field. Also, vector
field X is a Ricci soliton vector field on manifolds M if and only if X = a ∂

∂x +
∂
∂x with λ = 0 where a is a constant.

Cerny and Kowalski [11] classified pseudo-Riemannian four-dimensional generalized symmetric spaces
into four classes, denoted by A,B,C, and D. Except from type C, which is Lorentzian, in the remainder
cases associated pseudo-Riemannian metric is of signature (4, 0), (2, 2) and (0, 4). In [8, 15], the Levi-
Civita connection, the curvature tensor, and the Ricci tensor of these spaces are computed. Batat and
Onda [3] classified, up to isometry, non-symmetric simply-connected four dimensional pseudo-Riemannian
generalized symmetric spaces which are algebraic Ricci solitons.

Motivated by [13], we study the Ricci bi-conformal vector fields on Lorentzian four-dimensional gener-
alized symmetric spaces.
The paper is organized as follows. In Section 2, we recall some necessary concepts on non-symmetric
simply-connected four dimensional pseudo-Riemannian generalized symmetric spaces which will be used
throughout this paper. In the Section 3, we give the main results and their proofs.
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2. Preliminaries

Suppose that (M, 1) is a connected pseudo-Riemannian manifold and p is a point of M. A symmetry at
a point p is an isometry sp of M having p as isolated fixed point.
A regular s-structure on M is a family of isometries {sp|p ∈M} of (M, 1) such that

• the mapping M ×M→M, (p, q) 7→ sp(q), is smooth,

• p is an isolated fixed point of sp, ∀p ∈M,

• sp ◦ sq = ssp(q) ◦ sp, ∀p, q ∈M.

The map sp is called the symmetry centered at p. The order of a regular s-structure is the least integer k ≥ 2
such that sk

p = idM for all p ∈M. If such an integer does not exist, we say that the regular s-structure has order
infinity. A generalized symmetric space is a connected, pseudo-Riemannian manifold (M, 1), admitting at
least one regular s-structure.

If (M, 1) is a generalized symmetric space then the full isometry group I(M) of M acts transitively on
it, which means that (M, 1) can be identified with (G/H, 1), where G ⊂ I(M) is a subgroup of I(M) acting
transitively on M and H is the isotropy group at a fixed point p ∈M. Moreover it admits at least on structure
of reductive homogenous space with an invariant metric [11].

Generalized symmetric spaces have been intensively studied under different points of view [5, 18, 20–
22, 26, 27]. Several geometric features of four-dimensional generalized symmetric spaces have been studied:
homogeneous geodesic [14], curvature properties [8], harmonicity properties of invariant vector fields [6].
Bouharis and Djebbar [4] studied Ricci solitons on Lorentzian four-dimensional generalized symmetric
space of type C.

Generalized symmetric spaces of low dimension have been completely classified. Non-symmetric
simply-connected four-dimensional pseudo-Riemannian generalized symmetric spaces were classified in
four types A, B, C, D, by Cerny and Kowalski [11] which is only type C in Lorentzian form and is as follows:
the underlying homogeneous space G/H is the matrix group

G =


e−t 0 0 x
0 et 0 y
0 0 1 z
0 0 0 1

 .
Manifold (M, 1) is the space R4(x, y,u, v) with the pseudo-Riemannian metric

1 = ±(e2tdx2 + e−2tdy2) + dzdt. (3)

The order is k = 3 and the possible signatures are (1, 3), (3, 1).

3. The main results and their proofs

Suppose that (M, 1) is a four-dimensional generalized pseudo-Riemannian symmetric space. By ∇,
S, and R we denote respectively the Levi-Civita connection, the scalar curvature, and the Riemannian
curvature tensor of the manifold M. The Riemannian curvature tensor R is defined by

R(X,Y)Z = ∇[X,Y]Z − [∇X,∇Y]Z.

The Ricci tensor S of (M, 1) is defined by

S(X,Y) =
4∑

k=1

ϵk1(R(X, ek)Y, ek),
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with respect to the pseudo-orthonormal frame field {e1, e2, e3, e4}, with 1(ek, ek) = ϵk = ±1.

Now, assume that (M = G/H, 1) is a non-symmetric simply-connected four-dimensional generalized
symmetric space of type C. From [4], the Levi-Civita connection ∇ of M with respect to the coordinates
vector fields {∂1 =

∂
∂x , ∂2 =

∂
∂y , ∂3 =

∂
∂z , ∂4 =

∂
∂w } is described by

∇∂i∂ j =


2ϵe−2w∂3 0 0 −∂1

0 −2ϵe2w∂3 0 ∂2
0 0 0 0
−∂1 ∂2 0 0

 , (4)

and the Ricci tensor is represented by

S =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

 . (5)

Let X = X1∂1 +X2∂2 +X3∂3 +X4∂4 be an vector field on (M, 1) where Xi, i = 1, 2, 3, 4 are smooth functions of
the variables x, y, z,w. Therefore the Lie-derivative of 1 along the vector field X = Xi∂i is given by



(LX1)11 = 2ϵe−2w(∂1X1 − X4), (LX1)12 = ϵ(e2w∂1X2 + e−2w∂2X1),
(LX1)13 =

1
2∂1X4 + ϵe−2w∂3X1, (LX1)14 =

1
2∂1X3 + ϵe−2w∂4X1,

(LX1)22 = 2ϵe2w(X4 + ∂2X2), (LX1)23 =
1
2∂2X4 + ϵe2w∂3X2,

(LX1)24 =
1
2∂2X3 + ϵe2w∂4X2, (LX1)33 = ∂3X4,

(LX1)34 =
1
2 (∂3X3 + ∂4X4), (LX1)44 = ∂4X3.

(6)

The Lie-derivative of S along the vector field X = Xi∂i is represented by

LXS =


0 0 0 −2∂1X4
0 0 0 −2∂2X4
0 0 0 −2∂3X4

−2∂1X4 −2∂2X4 −2∂3X4 −4∂4X4

 . (7)
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Applying (6) and (7) in (1) and (2), we have

2(∂1X1 − X4) = α, (8)
β = 0, (9)

e2w∂1X2 + e−2w∂2X1 = 0, (10)
1
2
∂1X4 + ϵe−2w∂3X1 = 0, (11)

1
2
∂1X3 + ϵe−2w∂4X1 = 0, (12)

∂1X4 = 0, (13)
2(X4 + ∂2X2) = α, (14)

1
2
∂2X4 + ϵe2w∂3X2 = 0, (15)

1
2
∂2X3 + ϵe2w∂4X2 = 0, (16)

∂2X4 = 0, (17)
∂3X4 = 0, (18)

∂3X3 + ∂4X4 = α, (19)
∂4X3 = 0, (20)

2∂4X4 = α. (21)

Equations (13), (17), and (18) imply that X4 = X4(w). Hence, equation (21) yields α = α(w). Taking derivative
of equations (12) and (16) with respect to w, we get

∂2
4X1 − 2∂4X1 = 0, (22)

∂2
4X2 + 2∂4X2 = 0. (23)

Using (11) and (13), we conclude that

∂3X1 = 0. (24)

Also, using (15) and (17), we infer

∂3X2 = 0. (25)

Solving differential equations (22) and (23), we obtain

X1 = e2wh(x, y) +H(x, y), (26)
X2 = e−2wk(x, y) + K(x, y), (27)

where h,H, k, and K are smooth functions depending on x and y. From (19) and (21), we find

2∂3X3 = α. (28)

By taking derivative with respect to w and using (20) we obtain ∂4α = 0. Then α is a constant. Applying (8)
and (14), we arrive at

∂1X1 + ∂2X2 = α. (29)

Inserting (26) and (27) into (29), we deduce that

e2w∂1h + ∂1H + e−2w∂2k + ∂2K = α. (30)
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By taking derivative with respect to w of both sides of (30), we infer

e2w∂1h − e−2w∂2k = 0. (31)

Since w is arbitrary, (31) gives ∂1h = ∂2k = 0 and so (30) leads to

∂1H + ∂2K = α. (32)

Then h depends only on y and k depends only on x. We replace X1 and X2 in equation (10) to find

∂1k + e2w∂1K + ∂2h + e−2w∂2H = α. (33)

Taking differentiation with respect to w of both sides of (33), we get ∂1K = ∂2H = 0 and

∂1k + ∂2h = 0. (34)

Then H depends only on x and K depends only on y. Since x and y are arbitrary, from (34) we conclude
that ∂1k = −∂2h = a1 for some constant a1. Thus, h = −a1y + a2 and k = a1x + a3, where a2, a3 ∈ R. Similarly,
∂1H = α−∂2K = b1 for some constant b1, then H = b1x+ b2 and K = (α− b1)y+ b3, where b2, b3 ∈ R. Equation
(8) leads to X4 = ∂1H − α

2 = b1 −
α
2 . Hence, ∂4X4 = 0 and equation (21) implies that α = 0 and

X1 = (−a1y + a2)e2w + b1x + b2,

X2 = (a1x + a3)e−2w
− b1y + b3,

X4 = b1.

Equations (12) and (16) give

∂1X3 = −4ϵ(−a1y + a2), (35)
∂2X3 = 4ϵ(a1x + a3). (36)

Also, equation (9) leads to

∂3X3 = 0. (37)

Using (20), (35), (36) and (37), we obtain

X3 = −4ϵ(−a1y + a2)x + 4ϵa3y + a4. (38)

Therefore, we have the following result:

Theorem 3.1. A four-dimensional pseudo-Riemannian generalized symmetric space of type C has Ricci bi-conformal
vector field X = Xi∂i if and only if α = β = 0 and

X1 = (−a1y + a2)e2w + b1x + b2,

X2 = (a1x + a3)e−2w
− b1y + b3,

X3 = −4ϵ(−a1y + a2)x + 4ϵa3y + a4,

X4 = b1,

(39)

where a1, a2, a3, a4, b1, b2, b3 ∈ R.

Now, we consider the vector fields in the form of X = ∇ f for some smooth function f which are Ricci
bi-conformal vector fields on a four-dimensional pseudo-Riemannian generalized symmetric space of type
C. On a four-dimensional Lorentzian generalized symmetric space, we have

∇ f = ϵe2w(∂1 f )e1 + ϵe−2w(∂2 f )e2 + 2(∂4 f )e3 + 2(∂3 f )e4. (40)
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From (39) and (40), we have

∂1 f = ϵ(−a1y + a2) + ϵ(b1x + b2)e−2w, (41)
∂2 f = ϵ(a1x + a3) + ϵ(−b1y + b3)e2w, (42)

∂3 f =
b1

2
, (43)

∂4 f = −2ϵ(−a1y + a2)x + 2ϵa3y +
a4

2
. (44)

By taking derivative of the equation (41) with respect to w and taking derivative of the equation (44) with
respect to x, we infer

(b1x + b2)e−2w = −a1y + a2. (45)

Hence, a1 = a2 = b1 = b2 = 0. Also, taking derivative of the equation (42) with respect to w and taking
derivative of the equation (44) with respect to y, we get

(−b1y + b3)e2w = a1x + a3, (46)

and a3 = b3 = 0. Thus

∂1 f = ∂2 f = ∂3 f = 0, and ∂4 f =
a4

2
, (47)

and

f =
a4

2
w + a5, (48)

where a5 ∈ R. Therefore, we have the following corollary:

Corollary 3.2. A four-dimensional pseudo-Riemannian generalized symmetric space of type C has Ricci bi-conformal
vector field as X = ∇ f if and only if f = a

2 w + b, where a, b ∈ R.

Remark 3.3. A vector field X on (M, 1) is called a Killing vector field if

LX1 = 0.

Then, from Theorem 3.1 we conclude that all Ricci bi-conformal vector fields on four-dimensional Lorentzian general-
ized symmetric spaces are Killing vector fields. From [25], Ricci bi-conformal vector fields are infinitesimal harmonic
transformations, becuase LX1 = 0 implies that LX∇ = 0 and trac1(LX∇) = 0. Also, (M, 1) is said to be Yamabe
soliton if it admits a vector field X such that

LX1 = (r −Λ)1,

where r denotes the scalar curvature of (M, 1) and Λ is a real number. Moreover, we say that the Yamabe soliton is
a gradient Yamabe soliton if X = ∇ f for some potential function f . Thus, by Theorem 3.1 we deduce that all Ricci
bi-conformal vector fields on four-dimensional Lorentzian generalized symmetric spaces admit in Yamabe soliton
equation with Λ = r.

Remark 3.4. A vector field X is called a Ricci collineation vector field [9] whenever LXS = 0. Using Theorem 3.1,
Ricci bi-conformal vector fields on four-dimensional Lorentzian generalized symmetric spaces become Ricci collineation
vector field.
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