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Abstract. This paper is focuses to the existence and uniqueness solution to the following problem:

{ D@f(t,y)+ Af(ty) = F(t, f(ty) yeR, t>0 o
fO,y) =uo(y), D@FO,y) =vo(y) '

where D@ is the conformable derivation for 1 < a < 2 which we will prove to be inside Colombeau
algebra, 1y and vy are singular distibution and F provides L™ logarithmic type, the operator A is defined
in Colombeau’s algebra. Nets of conformable cosine family (C¢). with polynomial development in € as
€ — 0 are defined for the first time and used for solving irregular fractional problems.

1. Introduction

An evolution equation is a mathematical equation that describes the time evolution of a physical
system or a field over time. These equations can be used to study a wide range of phenomena, from the
motion of fluids and gases to the propagation of waves, the behavior of particles in quantum mechanics,
and even the growth of populations.

The most common form of evolution equations is partial differential equations, which relate the rates
of change of various quantities to each other over time and space. These equations are essential in
many areas of science and engineering, for the reason that they offer an effective tool for modeling and
analyzing intricate systems and processes.

In traditional calculus, derivatives are defined for integer orders only, such as the first derivative,
second derivative, and so on. However, conformable calculus allows for derivatives of any real or
complex order, including non-integer orders.

The basic idea behind conformable calculus is to redefine the traditional difference operator by using
the conformable fractional difference operator, which is a generalization of the traditional difference
operator. The conformable fractional difference operator uses the concept of fractional calculus, which

is a division of calculus that concerned with derivatives and integrals of non-integer orders.
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Conformable calculus has applications in various fields, including physics, engineering, finance, and
biology. It provides a new tool for modeling complex systems that cannot be accurately described using
traditional calculus.

In this paper we characterize a new method for solving the nonlinear fractional evolution equations
having singular initial data as we can see in the following

{ D@Wf(t,y) + Af(t,y) =F(t, f(t,y) yeR, >0
FO.9) =uo(y), IVf(0,y)=voy)

Where D@ is the conformable derivation with 1 < a < 2, the linear operator A : D(A) c G —» G, F:
[0,TIXxG = G, @G isthe Colombeau algebra.

The pioneering work on (2) was done by C.C.Travis in [21] and our development follows his ap-
proach. Our results extend those of A. Benmerrous [3} 4] in several respects.

(1.1)

The paper is organized as follows, in section 2 we mention some notions of Colombeau’s algebra
and some notion concerning the new derivative, in section 3 we will prove the existence and uniqueness
of conformable fractional derivative of order « in Colombeau algebra, in section 4 we will deal with
the basic definition of conformable cosine family and some properties, in section 5, we provided the
existence and uniqueness of generalized solution.

2. Preliminaries

2.1. Colombeau algebra
In this section we will introduce basic concepts and definitions from Colombeau theory (see also

[az2n.
Definition 2.1. Ay (R") is a set of functions ¢ in Cy’ (R") such that f]Rﬂ ¢(t)dt = 1. For g € N, A, (R") =
{6 € Ao: fo, ()t = 0,0 <|il < q), where t = £ -t}

In [12]] sets .
Ay (R") = @ (x1, .., x) = D (1) D (x) 1 @ () € AR},

are used because of applications to initial value problems. We shall follow the Colombeau original
definition.

Obviously, if ¢ € Ay, g € Ny, then for every ¢ > 0, Pp.(x) = eln (’—S‘),x € R", belongs to A,. If ¢ € Ay,
then its support number d(¢) is defined by

d(¢) = supflx| : Pp(x) # 0}.

&E(Q) represents the set of
R:AyxQ — C,(D,x) > R(D,x),

which are in C*(Q) for every fixed ¢. In the other words elements of & are functions R : Ay — C*. Note
that for any f € C*, the mapping

(¢/ X) — f(X), (Qb/ X) € ﬂO X Q/

defines an element in &(Q)) which does not depend on ¢. Conversely, if an element F in &(Q2) does not
depend on @ € Ay, we have:

F(@,x) =F(V,x), x€Q, forevery ®,¥ € Ay,
then it defines a function f € C*(Q),
f(x) = F(®,x),x € Q, for every ¢ € Ap.

In this sense, we identify C*(Q) with the corresponding subspace of &(C2).
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Definition 2.2. A component R € E(Q) is moderate if VL CC Q, o € IN, AN € IN such that for every ® € Ay,
dn > 0and C > 0 such that:

l0°R (@, x) || < Ce™ xeL0<e<n.
The ensemble of all mild components is expressed as Ep(€).

Definition 2.3. An element R € E(C) is moderate if AN € Ny such that for every ¢ € Ay, An > 0, C > 0 such
that:
IR (qbs) <Ce™,0<e<n.

The ensemble of mild components is expressed by Egp(C) (resp. Eom(R) ).

Definition 2.4. A component R € Ep(Q) is named null if for every L cC Q and every a € IN!!, AN € Ny and
{a,,} € I such that for every q > N and every ¢ € A, An > 0 and C > 0 such that:

R (qbg,x)H < Ce%N xeL0<e<n.

The ensemble of null components is expressed by N (Q).
Definition 2.5. The spaces of generalized functions G(Q) expressed by

G(Q) = Em(Q)/NQ)
The following description describes what the term "association" means in colombeau algebra.

Definition 2.6. [12] Let f, g € G(R).
We said that f,g are associated if ¥ h(@e, x) and m(@e, x) and arbitrary & € D(R) there is a n € N such that
Yo(x) € A (R), we have:

tim, [ g, ) - mipe, Dl =0
€ R

and we denoted by f = g.

2.2. Conformable derivative

The definition of conformable derivation is provided in the following part.

Definition 2.7. [16] Let n < @« < n+ 1 and u : R* — R be n-differeniable, then the conformable fracrional
derivauive of u of order o characterized by

no; (r + er”“‘“) —u™(r)
D@u(r) = lim
e—0 €
D@Wyu(0) = lim D@Du(r)
r—

Remark 2.1. [16] In light of the definition above, it is simple to demonstrate that
D(a)u(r) — rn+1—au(n+1)(r)
withn < a <n+1,and uis (n + 1)-differeniable.

Definition 2.8. [16] Let1 < a < 2,
t
(I(“)u) (r) = f s 2(s)ds
0

Theorem 2.1. [16]
DW(1Wu(r)) = u(r)

forr>0
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3. Generalized conformable derivative

Let (fc(t)), be a representative of the function f(t) € G(R*) andletn -1 < a <n.

The generalized conformable fractional derivative of (fc(f)),, characterized by

(@) _ 170(1
D@f(y) =y dyfs(y) (3.1)

nelN,e € (0,1)

Lemma 3.1. Let (fc(v))e be a representative of f(t) € G(R*). Then, Ya > 0, SUpP,co.7] | D@ f.(y) | has a moderate
bound.

Proof.
1 d
sup [DWf(y)ll = sup [ly' “—fe(y sup IId—fe(y)II
vel[0,T] ve[0,T] yelo,1] Y
< T'*Ce™N
< Ca,Te_N

Then, AM € IN, such as

sup IDf(y)l =O0(e™), e—0
yel0,T]

O
Lemma 3.2. Let (fie(t)),, (foe(t)), be two distinct representatives of f(t) € G(R*). Then, Yo > 0, sup, oy |
D@ fie(y) = D foe(y) | is negligible.
Proof.

d
sup [ID® fie(y) = D foeW)ll = sup lly'~ “—fle(y Yy el
yel0,T] vel0,T] y

d
= sup Iy = fre®) = 7 o)l
Sup I\ 3y L frety dyf2 y

< T sup |- f1 ) - Ll
yel0,T] dy
Since (fie(y))e and (f2e(y)). represent the same Colombeau generalized function f(y), so Sup o7y |
% fre(y) — % foe(y) | is negligible, then for all p € IN
sup D fie(y) = D9 foc(y) I= O (), €—0
yelo,T]
Therefore, sup, (o ID@ fie(y) — D@ foe(y)l| is negligible. [

We may now initiate the generalized conformable fractional derivative of a Colombeau generalized
function on IR* after establishing the first two lemmas.

Definition 3.1. Let f(y) € G(IR*) be a Colombeau function on R*.
The generalized conformable fractional derivative of f(y), using the notation D@ f(t) = [(D(a) fe(t))e], a>0,isa
component of G(R") satisfying (3).

Remark 3.1. For a € (0, 1] the first-order derivative of D\ fo(y) is

d d &
gy DI = (L= @y o) + v s )

and it fails to reach its limit.
Generally, the p-th order derivative %D(’” fe(y) it fails to reach its limit on R*.
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Then if we wants D@ to be in G(R*), thus the fractional derivative must be regularized.

Definition 3.2. Let (fc). be a representative of a Colombesu generalized f € G([0, 0)). The regularized of new
fractional derivative of (f¢)..,, is characterized by :

€00/

(D("‘)fe*(pe)(y), n-l<a<n
W =@ fey), a=n,
nelN,e €(0,1).
where (3) gives DY £ (y) and the first section gives pc(y).
The convolution in (4) is (D(“) fe(y) = (pe) (y) = fooo D@ f.(y)pe(y — s)ds.

Lemma 3.3. Let (fc(y)), be a representative of f(y) € G(R").
So, Ya > 0,k €10,1,...}, sup, o7y | (d/dy*) D@ f.(y)l| has a moderate limit.

Proof. LetO0<e < 1.
For a € N, D@ fe(y) is the normal derivative of order a of f.(y) and the assertion follows immediately .
In the event that n — 1 < @ < n, We've got

sup [ID@ £l = sup (D fo+ pc) W)

DWf.(y) = { (3.2)

yel0,T] yel0,T]
< sup || D(“)fg(s)(pe(y — 8)ds||
velo,1] Jo

<sup DY)l sup || | @e(y - s)dsl|

rek ye[o,T] JK
< Csup D £y
yek

With C is a strictly positive constant.
Using the Lemma 1, sup, o1 | D fe(y) | has a moderate bound, Ya > 0, as a result of this, sup, ¢ |

D@ £.(y) | has a moderate bound, too.
|

Lemma 3.4. Let (fie(y)), and (f2(y)). be two different representatives of f(y) € G(R*). Then, Ya > 0,
ke(0,1,2,..,5up,op | (d¥/dEF) (D@ fie(t) = D@ foe(t)) | is negligible.

Proof.
k
sup | — (D fie(y) — D foe(y)) | =
yel0,T] dyk ( )
sup || ((D@ fiex9e) 1) = (D foc x ) () |
vel0,T] dy*
= su I| D@ fic = D@ foe) x o) Wl
sup Iz (( fi fae) * pe) (v
= su II( DWf. — DY fy, (Pe)( )i
ye[o];] ( / f ) dy* !
k
< sup || (D fic = D foe) (M) sup | k(Ps(]/ r)drl|
rek yel0,T] K

< Csup | (D@ fie = D@ foe) (1)
rekK
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Using the Lemma 2, we have sup, || (D(“) fie = D@ fze) (Ml is negligible, so sup, o | % (D(“) fre(y)—
D@ sz(y)) | is negligible. [

The regularized generalized conformable fractional derivative DWlPha) s now introduced in the fol-
lowing manner.

Definition 3.3. Let f(t) € G(IR") be a Colombeau generalized function. The regularized generalized conformable
fractional derivative of f(t), writing D@W f(t) = [(D(“) fg(t))e]/ a >0, is a component of G(IR™) satisfy (4).

4. Generalized conformable Cosine family

Let (X, |I.ll) denote a Banach space, and C(X) denote the space of all linear continuous mappings.
Before we define the generalized conformable cosine family, we will state that an application from
G — G must be linear.

Definition 4.1. Let X be a locally convex space with a semi-norm familly (q;),;-
We define Ey by the set of (ye), C X such that there exist n € N and for alli € I CIN, q; (ye) = Oeo (€7").

And
N(X) by (ye). € X such that for allm € N and foralli e I CIN,  q; (ye) = Oeo (€").

Then the Colombeau generalized function type by:
X = En(X)/NX)
I_nitially_, using a provided family (Ac)eepo1) of maps Ae : X — X we want to see if we can define a map
A: X — X, Ac € L(X).
The next lemma expresses the basic requirement:

Lemma 4.1. Let (A¢), represent a family of maps Ae : X — X.

For each (x). € Em(X) and (ye), € N(X), suppose that:
1) (Aexe)s € 8M()()
2) (Ae (e + Ye)), — (Aexe)e € N(X)

So
A X—X
x = [xe] ¥ Ax = [Acxe]

is clearly stated.

Proof. The first attribute reveals that the class [(Acxc).] € X.
Let x¢ + ye should serve as another example of x = [xc], we have from the second property:

(Ae (xe + ye))e - (Aexe)e € N(X)

and B
[(Ae (xe + ye))e] = [(Aexe))e] in X

So A is well defined. [

We shall now introduce the idea of the generalized conformable cosine family(Convolution-type
cosine family).
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Definition 4.2.

Era (R*,C(X)) = {cé ‘R* — C(X),e €]0,1[/¥T > 0,32 € R such that

1 4.1)
sup [IC2 (DIl =0 (") , € = 0}
te[0,T]
Na(R*,C(X)) = {Nj ' R* - C(X),e €]0,1[/¥T > 0,¥b € R such that
4.2)

sup N (Bl =O(€") , e — 0}
te[0,T]

With the following characteristics:
1) 3s > 0 and Ja € R such that

N, (ts
sup = Oe—o (€7),
t<s
2) A(H), in C(X) and € €]0, 1] such that
)
lim—~e=Hee, e€X
s—0 S

For every b > 0,
IHell = Oco (€7),

Proposition 4.1. N,(R", C(X)) is an ideal of Ep1o(R*, C(X)) and Ep,(R*, C(X)) is an algebra with respect to
composition.

Proof. Let (Co), € Eya ([0, +00[, C(X)) and (N, € N ([0, +oo[, C(X)).
We shall simply establish the second statement, specifically,

(C N6 (N6 (), € M 0 st )

Where C, (s% ) Ne (si) represents the composition.
By (1) and the definition of N, from the previous definition, we have:

e e )] < e e e )

The same is also true for ”Ne (s%) Ce (s%) .
Furthermore, (1) and (2) provide

— Oe—)O <€a+b) ,

()N ()

sup p Ne (r%)

r<s

< s:g) Ce (rﬂ)

= Oe0 (ea) ’

sup
r<s

In some situations s > 0. We have,

= Oe—>0 (Ea) ’

For some s > 0 and a2 € R. Let now € €]0, 1] be fixed. We have
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Ne(r)
r

1 1
e(r2)Ne(re 1 1
Mx — C.0Hx| = |lc.oh) X = Co(r)Hox+

Co(r#)Hex — Co(0)Hex

Co(r#)Hex — Co(0)Hex

N.(r#
—E(: )x — Hex

<

|

According to (1) and (2), in addition to the continuity of r Cs(ri)(HEx) at 0, the final expression
becomes zero as r — 0, we have:

l

Ce(r?) +

Ne(r)Ce(re) Ne(rt) o o3y, - Nelrt)
r

. . Ce(0)x+

X - HeCe(O)xH =

Ne(re)
r

|

Ce(o)x - Hece(o)x

<

Co(rt)x - He(r)Ce(O)x” +

Ne(re)
r

(Ce(0)x) — He (Ce(0)x)

Assertions (1) and (2) require that the final expression goes to zero since t + 0. As aresult, the proposition
is proven in both circumstances. [

Definition 4.3. The Colombenu type algebra define by:
G(R™,C(X)) = Ema(R™, C(X))/Na(R™, C(X))
Now we will define the concept of generelized conformable cosine family.
Definition 4.4. C* = [(C%)] with C. € Epo(R*, C(X)) say the generalized conformable cosine family if:
1. C*0) =1
2. C((r+1)%) + C*((r = 1)7 ) = 2C* (rt) € (1)
3. The mapping r — C*(r)x is a continuous mapping for each x € X.

If C*(r), r € R is a strongly continuous conformable cosine family in X, then: S®(r), r € R is the one parameter
family of operators in X defined by

S%(r) = fr C*(1)dr.
0

Exemple 4.1. Let A be a bounded linear operasor on X. Define C*(r) = M Then T(r), > 01isa % semigroup.
Indeed:
1. C*0)=1.

3. The conrinuiry is cleat.

Proposition 4.2. The family {C*(r), r € R} is a srongly conformable cosine family if only if {C(r) = C*(r) (r%) ,te ]R}
is a srongly conrinuous conformable cosine family.
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Proof. 1. Itis clear that C(0) = I.
2. For all s, t € R, we have

C(s+8)+C(s—s)=C*t+5s) (s%) + C*(t —s) (s%)
=2C%(t) (57) C*(s) (s7)
= 2C(s)C(s)

3.Further the continuity of r — C¢ (,,};) y and the continuity of ¥ — r* implies that* — C(r)y is continuous.

It is sufficient to mention that for the necessary requirement C* = C*(r), if {C*(r), r € R} is a strongly
continuous conformable cosine family in X, then {S%(r), » € R} is the one parameter family of operators
in X defined by

Sty =1C)(y, VreRyeX
U

Remark 4.1. As the previous proposision {S*(r), r € IR} is a conformable sine family iff {S(r) =5 (ri) , T E ]R} is
conformable sine family.

Proposition 4.3. Let {C%(r),r € R} be a strongly continuous conformable cosine family in X. The following
statements are correct:

1. C*r)=C*-r) VreR

2. C*(r), §*(r), C*(s), and S*(s) commute for all 1,5 € R

3. §%(r)y is continuous in r on R for each fixed y € X

4. S%(r +5) + S%(r —s) = 25%(r)C%(s) forall v,s € R

5. §%(r +5) = S4(r)C¥(s) + S(s)C*(r) forall r,s € R

6.5%(t) = =S*(—t) forall t € R

7. There exist constant M > 1 and w > 0 such that C*(r) < Me*" for all r € R and

M o o
(IS* (r1) = S* ()l £ — (e“’l - e“’Z)
@

Proof. The proposition 1-6 are consequence of the proposition 3.
For 7 , we have
tca (s)

Sl—a

ds

1% (1) = S (1)l = f

t

hws®
e M a1h
<M ds = — [e“’s ]
L Sl—a @ tr

O

Definition 4.5. The conformable infinitesimal generator of a strongly continuous conformable cosine families
C*(r),r € Ris the operator A : X — X defined by

Ax = lim D@ C(r)
D(A) = {y,r — D(“)C”(r)y, is continuous in r}

Lemma 4.2.
C(r) = lir? C%(r) is a cosine family
a—2*

Proof. It suffice to note that C* (r%) is a cosine families, r — 7% is continuous. [J
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Proposition 4.4. Let C*(r),r € R, be a srongly continuous conformable cosine family in X with conformable
infinitesimal generator A. Then,

1. D(A) is dense in X and A is a closed operasor in X.

2.ifxeXandr,s €R, thenz = er iﬂl(ffl)xdu € D(A) and Az = C*(s)x — C*(r)x
3. ifxe X, then S*(t)x € X

4. if x € X, shen S*(t)x € D(A) and (DWC?) (t)x = AS*(t)x

5 if x € D(A), then C*(t)x € D(A) and D®WC4(t)x = AC*(t)x = C*(t)Ax

6. if x € D(A), then limy_,0 AS*(x)x = 0

7 if x € D(A), then S%(t)x € D(A) and D@WS*(t)x = AS*(t)x

8. if x € D(A), then 5*(t)x € D(A) and AS*(t)x = S*(t)Ax

9. C*(r +s) — C%(s — s) = 2AS*()S“(s) for all s, t € R.

Proof. For 1 it just to use the previous definition 17 and proposition 3.
For 2 — 9 By change s by st and t by t+ and use proposition 2.2 in [21]. O

5. Existence and Uniqueness of the Solution in colombeau algebra G

we consider the following problem :

{ D@t y)+ Af(t,y) =Ft f(t,y) yeR, t20 -
fO,y) = uo(y), DWFO,y) =vo(y) '

with uo(y), vo(y) € D’ (R"). Now we will transform the problem (7) in the Colombeau algebra using
the first section.

{ DWf(t,y) + Acfe(t,y) = Fe(t, fult,y)) yER, t>0 52)
fe(ol y) = MO,G(x)/ D(a)fe(or y) = vO,s(y) '

with1 < a < 2, ug(y), vo.(y) are regularized of a9(x) and by(x) respectively and by definition 18 A = [(A,)]
is the infinitesimal generator of generalized conformable cosine family C = [(cg )e]

The folowing definition is the definition of mild solution.

Definition 5.1. A funcrion fo  : [0, 00) — X is a mild soluion of (8) if
1. fe is continuous differential on [0, co).

2. fe is continuously a-differeniable on (0, oo).

3. fe(r) € D(A) forr > 0.

4. fu(s) = Ci(S)uoe + Se)ore + fj "=t Das,

Definition 5.2. An element F € G[IR"] is L™ logarithmic type if it has a representative (F.). € Em [IR"] such that
IFell=n = Ollog(e)) as €0

Theorem 5.1. Let VF, is L* log-type and the conformable generalized sine family S, = [(S?)e] is the associated

of the conformable generalized cosine family C = [(C?)e] verify the properties of the previous section. Then the
problem (8) has a unique solution in G (R* x R").

Proof. Existence.

The integral solution of the problem 8 is:

t
fe(t,y) = CE(Duoe(y) + Se(H)voe(y) + fo SYT2SE(t = S)Fe(s, fe(s))ds
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Which implies that:
et My < ICEON (10O ey + ISEO] o0 Ol ey
t
+ fo s"2ISEDI|Fe (50 fels, | o 85
Then:
”fe(t' Mpogn < SUP HCS(T)”||u0/€(’)“L°°(R”) + sup HSZ(T)”||Z’0/€(')“Lw(mn)
7€[0,T] 7€[0,T]

t
+ sup 52 [ 26 6 D]
1€[0,T] 0
The first approximation of F, is
Fe(s, fe(s,-)) = Fe(s,0) + VFcfe(s, .) + Ne(s)

with N € N (R*)

Then
M < 500 T2 ol + 550 152 ol
t
+ sup ||s2|| f $Y2|[Fe(s, 0)llds
7€[0,T] 0
t
+ sup IS OIVE] f 2 £(5, )l
7€[0,T] 0
t
+ sup [|S4(7)l| f sY 2N (s)ds
7€[0,T] 0
We get
“ff(t' Mpogn < SUP ”CZ(T)||||MO/5HL°°(R")
7€[0,T]
a—1
+ sup [IS¢llllvoellremny + 7 sup IS¢ ()| sup [|Fe(T, O)ll
7€[0,T] @ =1 1e0,1] 7€[0,T]
t
+ sup ISSOIIVE f 2, Mimqrnds
7€[0,T] 0
a—1
+ sup [|S¢(7)ll sup [INe(7)ll
— 1 z€f0,1] 7€[0,T]
So,

It ')”L‘”(]R”) < sup HCG(T)HlluO'e”L“(R")
7€[0,T]

+ sup [S2@)| [fooe] e
7€[0,T]

a—1
+ sup [IS¢(7)ll sup [[Fe(T,0)]]
a-1 7€[0,T] 7€[0,T]
a—1
+ sup [IS(7)ll sup [[Ne(7)ll

a=1 o 7€[0,T]

t
+ sup [IS¢(7)ll IIVFellf SN fe(s, Mlis(weyds.
0

7€[0,T]
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By the Granwall’s inequality:

£t )

|L°°(]R") S| sup ”CS(T)” Huof€||L°°(]R")
7€[0,T]

+ sup ||5§(T)||||00r€||Lw(w)
7€[0,T]

a—1

+ sup [IS¢(7)ll sup [|IFe(7, 0)]]

-1 7€[0,T] 7€[0,T]

Ta—l N
+—— sup IS2(7)ll sup ”Ne”]

7€[0,T] 7€[0,T]

Toz—l
X exp sup [IS¢(DIIIIVFell|.
a=1 o

Since C? € G (R*,C(X)), S¢ € G(]0, +oo[, C(X)), upe € G(R"),v9 € G(R") (N¢). € N (R*)and VF¢is L®—
logtype there exist M € IN such that

SUP:e(0,7] ”ff(t' ) )L‘”(]R") =0 (e_M) , €20
Then

fe € G([0, +00),RY).

Uniqueness.
Let’s say there are two solutions fi¢(t,.), f2¢(t,.) to problem (8), consequently :

D(a)fl,e(t/ }/) - Aefl,e(t/ y) - D(a)fZ,e (t/ y) + AefZ,e(t/ y)
= Fe (tr fl,e(t/ y)) - Fe (tr f2,e(tr y))
yeR", t>0 (5.3)

fl,e(or y) - f2,e(or y) = NO,e(y) _
D(a)fl,e(o’ y) - D(a)fz,e(or y) = NO,e(y)

Then:

D(a) (fl,e(t/ }/) - fZ,e(t/ }/)) - Ae (fl,e(tl y) + fZ,E(tl y)) = Pe (tr fl,e(tr y))
- Fe (t,fz,e(t/ ]/))
yeR", t>0 (5.4)

fl,e(ol y) - fZ,e(OI y) = NO,e(y)
D@ (0, y) = D™ £,£(0, y) = Noe(y)

With (NO,e)e , (NO,e)e € N(]R+)
The integral solution of the equation (10) is:

fret, y) = foe(t, y) = CE(BNoe(y) + Se(H)Noe(y)

t
b [ SO E s il ) = P fols 1)
0

Then:
fret, ) = foelt M porny < ICEO INoO] e
+[IsE O N0 Oll o e

t
, fo 272 SO [Fe 5 o5, ) = Ee (5 foelss Do gy 5
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Which implies that:
Ifoelt) = et Mooy < sup 2@} [Noe Ol o e
€0,

+ sup [[SI@|| [NoeO)] o ey
7€[0,T]
+ sup ||S§(T)||
7€[0,T]
¢
[) s472 “Pe (S, fre(s,.)) — Fe (s, fae(s, '))||L°° ds.
The initial estimate of F¢ (s, fi¢(s,.)) — Fe (s, f2,¢(s, .)) is provided by

Fe (S/ fl,e(sl )) - Fs (S/ fZ,E(S/ )) = ||VF€|| (fl,e(sr ) _f2,e(5/ )) + NE(S),

With (N¢). € N (RY).
So
Ifiet, ) = foelt, M=@mn < sup [|C2)|| ”No,e(-)“Lm(]Rn)
7€[0,T]
a N Ta_l a
+ sup. 52Ol [NoeOll ey + == sup IS¢

t
f S IVENlfre(s, ) = faels, Mi=qrods
0

To-! a
et 2] ING)I

So,
et )=foelt, Miwarn < sup [|CE@|[[NoeC)] e
7€[0,T]

— a—1
+ sup [[550] NoeO)l| ey + 21— sup IS0 sup INO
7€[0,T] 7€[0,T] 7€[0,T]

+ sup [ICZ(D)l
7€[0,T]

t
f S AVEN|foe(5, ) = Foes, Mieweds
0

Using the Granwall’s inequality:

Ifielt, ) = faelt, M= < (sup ICEOINo(lls + sup SNl

7€[0,T] 7€[0,T]
a—1
+ 7 sup IS¢ ()l sup [INe(s)I)
a =1 ze0,1] 7€[0,T]
a—1
X exp sup [ISg(DIIVFEell |-

a—=1 comn

Since:
Ce € G(RY, L(X)), S¢ € G(R", L(X)), Noee, (Noe)e € N(IRT)(Ne)e
€ N (R*) and VF is L* - logtype and for every q € IN such that:

sup [|fie(t,.) = foelt,)]|,. =0 €—0
te[0,T]

3205
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