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Abstract. In this paper, an impulsive dynamic Sturm-Liouville problem is studied on the interval (oo, o).

A spectral matrix-valued function for this problem is obtained. Parseval equality and an eigenfunction
expansion are given.

1. Introduction

The Sturm-Liouville equation
~[py'T +4y =21y

is one of the main research topics in mathematical physics. The theory of this equation has a long history
and has been studied extensively [6, 11, 15]. The fact that it is encountered especially when solving
partial differential equations with the method of separating its variables increases the importance of this
subject. While solving such equations, expansion and completeness theorems are needed. Many studies
have been carried out in the literature regarding this need (see [1-4, 6-14]). Towards the end of the 20th
century, the concept of time scales entered the mathematical literature. With the help of this concept,
differential equations and difference equations started to be studied under a single structure. For more
detailed information on this interesting topic with a wide variety of applications, see the excellent book
by Bohner and Peterson (see [5]). On the other hand, there has been a need to investigate all the issues
discussed in the theory of differential equations by moving them on the time scale. In this article, the
expansion theorems obtained for the classical Sturm-Liouville problems are discussed on a time scale. For
the impulsive dynamic Sturm-Liouville problems on the whole axis, the expansion theorem is obtained
with the help of the spectral matrix-valued function.
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2. Main Results

We assume that the reader is familiar with the basic facts of time scales (see [5]). Consider the following
boundary-value problem (BVP)

Y() = -[p©y* ©] +90y(©=1y©, Cel, )
y(@cosp+pay”(@)sing =0, 2)
y(b)cosa +p(b)y* (b)sina =0, (©)
Y (d+) = AY (d-). (4)

Our basic assumptions throughout the paper are the following;:

i) T is a time scale, A is the 2 X 2 matrix with entries from R and det A = 1/6 > 0.
i) o, f € R, Y:( pzA ) L:=[a,d), L:=(db], ~o<a<0<d<b<+oo, [:=1; UL, [ cT.

iii) g is a real-valued continuous function on I.

iv) p is nabla differentiable function on I, p" is continuous on I and p (C) # 0 for all C € I.

v) d € T is a regular point for Y and one-sided limits g (d+), p" (d+) exist. Similar problems are studied in
[7-9] without impulsive conditions, in [4] for T = R and with impulsive conditions. Let H; = L2 (I;) +12 ()
be a Hilbert space of real-valued functions endowed with the following inner product

d b
(Y, )y, = f PPV +6 f @V,
a d

where

_ ¢)<1)(C)/ C € Il
v© ‘{ YA, Ceb,

and

_f oM, Cen
‘“(C)‘{w@(c» Ceb.

Let

y is A-absolutely continuous,
py” is locally V-absolutely
continuous function on I,
one-sided limits y (d+) and
(pyA> (d+) exist and are
finite and Y(y) € H;

D= ]/EH12

Then, for y,z € D, we obtain

b b
f Y (y)zVC— f yY (2)VC =y, zla- — [y, zla + Oly, zlp — Oly, zlas, (5)
where

[y, lc = p O {y(Oz*(©) - 22 QW (©)} e D).
Let ¢1 and ¢, be solutions of Eq. (1) satisfying

P1(0,0) =0, (p9D) (0, ) =1, 2(0,4) =1, (pp$) (0, 1) =0, (6)
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and
(Di (d+/ A) = A(Dl (d_/ /\) ’ (7)
where
_ @i (C/ /\) .
" ( (p9?) @A) ) (i=12).

The BVP (1)-(4) has a purely discrete spectrum [3]. Let Ay,A,..., Ay, ... be the (real) eigenvalues and
X1, X2, -y Xn, --. the corresponding real-valued eigenfunctions of the BVP (1)-(4). Then we obtain

Xn (Q) = thp1 (G Ay) +unp2 (G A) (n=1,2,..).

due to ¢ and ¢, are linearly independent. Let i) € H;. By the Parseval equality (see [3]), we find

d b
() @ )V
fﬂ(w ©) vc+6fd(¢ ©) v
oo 2
Z{ f PP QX (QVC+0 f Nl APty (c)vc}

n=1

= Y AW 00 = Y AW O, @1 (A + 1002 (A P
n=1 n=1

Mg

W), o1 (A )

I
—_

n

2y, unH{<1/J() @i (A |
n=1

+ ) 2K (), 92 (A (8)
n=1
Let
- Z 2, forA<0
. A) = A<, <0
aitas (1) Y B ford>0,
0<A, <A
— Z tau,, forA <0
. A) = A<A,<0
oizap () tau,, forA >0,
0<A, <A
0120 (A) = 021,00 (A),
and

— Z ufl, for A <0
A<A,<0

u2, forA>0.

nrs
0<A, <A

02, (A) =
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Then, by (8), we see that
d b o 2
f (¢ @) Ve +s fd (v® ©) v = f 3 i () ¢ (W) dgias (1), ©)
a - T

where

Y1) =0, 10 AN,
and

P2 (1) =@ (), 92 (, An)n,-

Lemma 2.1. The variation of g;jap (i, j = 1,2) is uniformly bounded in each finite interval in the domain of A, i.e.,
for&>0,

13

\/ {@ias W} <T, (10)

-&
where T =T (N) > 0.

Proof. Since (pfj_” (C,A) (i,j=1,2) (where gl = pp® and ¢l%l = ¢) are continuous both with respect to
Ce[0,d) and A € R, for any ¢ > 0, there exists a number k such that

[V @0 -6 < e, (11)

where 6;; is the Kronecker delta and |A| < &, C € [0,k], 0 < k < d. Let ¢4 (.) be a nonnegative function such
that ¢ () vanishes outside the interval (0, k) with

k
fo G OVC=1, (12)

and let gb,[(” () be a continuos function on [a,d). From (9), we obtain

K g 2
fo W ©)Pve = f Y Wi () Wi (W) dgijas V),

<=1
where
k
Wi (A) = f Yr (Q) i (G, A) VG,
0

and

k k
wa)= [ W OeEHVE=- [ wOd Cave
0 0
By virtue of (11) and (12), we conclude that
[Wis (A) — 6is| < ¢, (13)

where i,s = 1,2 and |A] < &. It follows from (9) that

k g 2
[ wEorves [ 0000 - e)dois ), (14)

<=1
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where s = 1, 2. Putting s = 1 in (14), we find

k & '3
f WOV > (1-ep f 0110 (1) + € (14 ¢) f Ao ()
0 — _

& &
re(l+e) f domas (1) + &2 f domns (1)
_é —

&

=(1-¢)* (011,00 (&) = 011,00 (=E))

£
+2e(1+¢) \/ {01200 W)} + €% (022,05 (£) = 022,05 (=)
=&

Then we obtain
k
[ 2@V (28 -3¢ 4 1) 011006 - o100 (-0
0
+2¢e (e = 1) {024 (&) — 022,00 (—E)} (15)

due to

[011,06 () = 011,00 (=&) + 022,06 (&) — 022, (=E)] . (16)

NI

g
\/ {01200 (M)} <

If we take s = 2 in (14), we conclude that

k
[t @rves (26 -3 1) 02201 © - eman -0
0

+2¢ (e = D {011,006 (&) = 011,00 (=)} - 17)
From (15) and (17), we obtain

s k
f WOV + f ki ave
0 0

011,00 (&) = 011,00 (&)
> (2¢ — 1) ,
+02,ap (&) = 022,00 (=8)

which proves the lemma. O

Let 1 be any non-decreasing function on —co < A < co and let

L%(R)={¢¢I ¢2(A)dU(A)<OO},

where dn is the Lebesque-Stieltjes measure defined by 7. L% (R) denote a Hilbert space endowed with the
inner product

@), = [ p@e@in)
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Let H := L*(—o0,d) + L*(d, o) be a Hilbert space of real-valued functions endowed with the following inner
product

d 00
W, w)n = f PP VC +6 f PPwdve,
- ]

where

_ [ ), Ce(-o0,d)
v© ‘{ YAQ), Ce(d ),

and

), Ce (~oo,d)
”("{w@)(o, Ce(d ).

Theorem 2.2. Let ¢ € H. There exist monotonic functions o11 (A) and g (A), bounded in each finite interval and
not depending of the function a function ¢, and a function 01, (A) with bounded variation in each finite interval, so
that the following equality

d 00 00
I (w ©) Ve+o fd (¥? ©) Ve = f W Wden (1)

2 f Wy ()W (V) dora () + f W2 (1) dox (1), (18)

holds, where

W ) = Jim f PO €OV [P P € vE),

2 (1) = lim ( f PO Qo )V +6 f ey C)(p(z)(C,A)VC).

The matrix ( on w2 ) is said to be spectral.
021 022

Proof. Let the function i, satisfies the following conditions. (1) ¥, (C) vanishes outside the interval
[-n,d)U(d,n], a < —n <d <n <b. (2 ¢, is A-differentiable on [-n,d) U (d,n]. (3) py4 is continuous
V-differentiable on [, d) U (d, n]. (4) 1, (C) satisfies the conditions defined by (2)-(4).

From (8), we obtain

d n 00
[ e @rvers [ e @rve= Y iwn 0l (19)
n k=1

Now we use twice the integration-by-parts formula and obtain

d
f P QAP @QVC+s f N (aPeRi (kY
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fd P (C) (™) <c>+q<c>x“>]vc
f Y (C) px,(f’A (c>+q<ox<2>]vc
= Alk f |- () @+ g © v | (Ve

+—6 f [ (py?*) (C)+q(o¢<2>]x‘2>vc

= L) O+ Q9 O x0m,

Therefore,

Y O, xm

[Axl=s

<7 { () 0+ 4090 O}
< 2V () 0+ 9@ O xm |

- f |- (o)’ (C)+q(C)z,bf}’]2VC

5% J-n
+§26 f - (pv2*) ©+9 C)W]

It follows from (19) that

d 5 n 5
(@ @) vess fd (2O ve- Y (w0 00m )

—5<Ak<s

< Slz fd [— ()’ (c>+q(c>¢£}>]2vc

e 50 [T (e © 0w ve

2989
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Moreover, we see that

Y WO 0m P

—s<Ak<s

= Z {Wn (), trpr (-,Ak)+ukfpz(-,/\k)>Hl}2

—5s<Ak<s

f Z Wi (1) \Ij]n 1) UQijab A,

i,j=1
where

Wi, (/\) = (ll)n () s Qi ('r A)>H1 (l =1, 2) .

Hence, we obtain

‘ [P ) vers [ (2 ©) ve
sz 1 \I]zn (A) \I’]n (/\) d@z]a b (/\)

<5 f - (w(l)A)V(C)+q(C)z,bf})]2vc

+5126 fd n [— () ©+q© W]

2990

(20)

From Lemma 2.1 and Helly’s theorems, we can find sequences {a;} (ax — —o0) and {bx} (by — +00) such that

Oija, b, (A) converge to a monotone function g;; (1) . By (20), we deduce that

pvces [T orve- [ Y Wi ()W (1) oy (1)

i,j=1

<3 f [0 @+ @] ve

+ 50 fd n - () <c>+q(c>¢@>]

Letting s — co, we conclude that

d n
[t rvers [wP@pve- [ 3 Wi () (1) ).

i,j=1

Let ¢, be a function satisfying conditions (1)-(4) and such that

lim [ @P(©- ¢y (©FVC+limd fd W20 - 9P OPV=0,

1 —c0
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where ¢ € H. Let

= [ Qe Covers [y 0pP e (=12,

Then, we obtain

d
[ @y (OPVC+5 f Wy ©yve = f Zwm ()W), (1) dgij (A).

i,j=1

Since

d
f G0 (© - y@ QPVC+ 6 f @2 (©) - @ PV >0

as 11,12 — oo, we conclude that

co 2
| D Wi (0 Wi, ) Vi ) Wi Ol O

f W0 © -yl OPVC+ 0 f G2 (© - 9 (©PVC 0
as 11, 12 — oo. Consequently, there exists limit functions W; (i = 1,2) which satisfy
d o oo 2
[em@)vers [ eRo)ve= [ Y wwwwisw,
—o —o =1

due to L7 (R) is complete. We proceed to show that the sequences

d 1
O IIGECRN fd ¥ (0 p® (C HVE,
-n

converge to W; (i =1,2) asn — oo. Let w € H and Q; (1) (i = 1,2) be defined by w. Then we have

4 0
f <¢(1) ©) - W (C))2 Vi+6 f (¢(2) ©) - w® (C))Z \V/e

- [ 2 (W5 (1) - 0; () () — (1) day (1)

i,j=1
Let

w(c):{lP(C), Cel-nd)udn

0, otherwise.
Hence,

f 3 (000 — K ) () 1) Koy ()] ey 1)

i,j=1

= I_ (1/J(1) (C))2 V(+6 foo (1/’(2) (C))2 VL—0 (n— ).

n
U

2991
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Theorem 2.3. Suppose that , w € H, and \V; (A), Q; (A) (i = 1, 2) are their generalized Fourier transforms. Then,
we obtain

YD Q0 (QVC+6 fd ) P2 () 0 () VL

o 2
:fmZ\I/i(A)Qj(/\)inj(/\)-

=1

Proof. Since W F Q) are transforms of ¢ ¥ w, we find

f (tp(l) Q) + (C))Z VC+06 Loo (¢(2) 0 +w®? (C))z VC

o 2
= f YW () + Qs () (W () + Q; (1)) dij (1), (21)
% 4,j=1
and
f (¥9© - o @) V46 fd ) (¥®(©-w®©) Ve 22)

o 2
= Y e - 0 (%) - 0y () 0.

ij=1
From (21) and (22), we get the desired result. [J
Theorem 2.4. Let ¢ € H. Then we have
oo 2
0O = [ Y e dey ).
o j=1
Consequently, the integral
o0 2
[ Y e @ vg; @)
— =1
converges \ in H.
Proof. Let
s 2
0.0 = [ Y W@, Cads (),
54,j=1
where s > 0 and

(), Ce(~o0,d)

‘PS(Q:{ O©, Cedw).
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Let w € H be a real-valued function such that equals zero outside the finite interval [-7,d) U (d, 7] . Hence,
we get

d T
f ¥ 0V (V5 f ¥ @ (©VC=
-7 d

d s 2
| [ | Z%(A)@}”(c,A>d@ij(A>]w<1)<c>vc

=S ij=1

T s 2
w [ [ | Z‘I’i()\)@f)(C//\)sz‘j(/\)]w(z)(C)VC

=S =1

2 [ @ pe® ©ve
= I PIRZTEY doij (1)

= +5 [, 9P ) 0® Q) VC

s 2
- [ Y wo;tde; (24)

=S ,j=1
It follows from Theorem 2.3 that

o0 QW (O VC+6 fd 9 Q0 (QVC

—00

oo 2
= I Z\I/i(A)Qj(/\)d@,-]-(/\). (25)

=1

From (24) and (25), we conclude that

d 00
f WD © - v (@) (VT + 5 fd W® (©) - @ ©)w® (O VC
2

- fM W0, Wy . (26)

i,j=1
Let

© () ={ YO -9 (0, Cel-sd)ud,s]

0, otherwise.

By (26), we obtain

f W @ -y ©PVT+D fd @ © -9 ©Ve

2

:fA 3w ()W (1) doy; ().

i,j=1

As s — oo, we get the desired result. O
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