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Abstract. It is well-known that Turán problem is a classical problem in combinatorics, and the spectral
Turán-type problem is the special form of Turán problem. Given a graph F, a hypergraph is called Ber1e-F
if it can be obtained by replacing each edge in F by a hyperedge containing it. In this paper, we investigate
the spectral Turán-type problem on linear r-uniform hypergraphs without Berge-K2,t, and attain an upper
bound of its spectral radius.

1. Introduction

It is well-known that Turán type problem is a classical problem in combinatorics, that is, for a given
graph H (or a family graphs H), what is the maximal size of an H-free (H-free) graph of order n? The
extremal value is called Turán number of H(H) and denoted by ex(n,H)(ex(n,H)). In 2013, Füredi and
Simonovits [7] extended Turán type problem to the following general form.

(P1) For a classG of graphs, G ∈ G does not contain some subgraph H (or subgraph familyH), there are two
parameters on G (for example, order and size), to maximize the second parameter under the condition
that G is H-free (H-free) and the first parameter is given.

In 1986, Brualdi and Solheid [2] proposed the following problem, which became one of the classic
problems in spectral graph theory.

(P2) Given a set G of graphs, find min{λ1(G) : G ∈ G} and max{λ1(G) : G ∈ G}, and characterize the graphs
which achieve the minimum or maximum value.

If the first parameter is the order n(G) of G and the second is spectral radius λ1(G) of G in P1, Nikiforov
[21] proposed the following problem, which is named as Spectral Turán-type problem:

(P3) What is the maximal spectral radius λ1(G) of an H-free (H-free) graph G of order n(G)?
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These problems attract many researchers interesting and there are many elegant results on these fields
and they are still a very active research topics, for examples, please see [2, 4, 7, 19, 21] and references there
in.

Hypergraphs model more general types of relations than graphs do. It is natural to generalize the above
problems to hypergraphs. Indeed the theory of hypergraphs attract more and more researchers interesting.
Since Lim [17] and Qi [22] independently introduced the notions of eigenvalue and eigenvector for tensors,
and Cooper and Dutle [3] gave the definition of adjacent tensor of hypergraphs, many results on spectral
radius of hypergraphs and on hypergraph Turán problems, which are similar to P2 and P1 respectively,
are obtained, for examples, [1, 3, 6, 11, 12, 14, 15, 18, 23] and references therein. Recently, a handful of
results on Spectral Turán-type problem relating to hypergraphs, which is similar to P3, are attained, such
as [8–10, 13, 20] and references therein. In this work, we will continue to study on problems for hypergraphs
spectral Turán-type problem.

The rest of this work is organized as following. In the next section, some necessary notions and
terminologies are given. In section 3, we will study the spectral Turán-type problem on linear r-uniform
hypergraphs without Berge-K2,t.

2. Preliminaries

An order r dimension n complex tensor A = (ai1...ir ) is a multi-array of entries ai1...ir ∈ C, where
i j ∈ [n] = {1, 2, . . . ,n} and j ∈ [r]. If elements ai1...ir are invariant under any permutation of indices i1, . . . , ir,
A is said symmetric. If there exists a subset I with ∅ ⊊ I ⊊ [n], satisfying ai1i2...ir = 0 for all i1 ∈ I and some
i j < I for j ∈ {2, 3, . . . , r},A is called a weakly reducible, otherwise we sayA a weakly irreducible. If every
element ai1...ir ≥ 0,A is called an nonnegative tensor.

For a vector x = (x1, x2, · · · , xn)T
∈ Cn,Axr−1 is an n-dimensional vector with its i-th component being

(Axr−1)i =

n∑
i2,··· ,ir=1

aii2···ir xi2 · · · xir .

If there exists a λ ∈ C and 0 , x = (x1, x2, ..., xn)T
∈ Cn satisfying Axr−1 = λx[r−1], where (x[r−1])i = xr−1

i for
i ∈ [n], λ is called an eigenvalue ofA and x the eigenvector ofA associated withλ [17, 22]. ρ(A)(= max{|λ| : λ
is an eigenvalue ofA}) is the spectral radius ofA.

A general hypergraph H = (V(H),E(H)) consists of a vertex set V(H) = {v1, v2, · · · , vn} and a hyperedge
(or edge for simplicity) set E(H) = {e1, e2, · · · , em}, where E(H) ⊆ P(V)\{∅} and P(V) stands for the power
set of V. Denote r(H) = maxe∈E(H) |e| (resp. cr(H) = mine∈E(H) |e|) be the rank (resp. co-rank) of H. If
r(H) = cr(H) = r, H is called an r-uniform hypergraph, and it is an ordinary graph for r(H) = cr(H) = 2. A
hypergraph H is called a linear hypergraph if there is at most one common vertex between any two edges.
For a fixed vertex u ∈ V(H), let

Nu = {v ∈ V(H) \ {u} | v,u ∈ e ∈ E(H)},
Nu = {v ∈ V(H)\(Nu ∪ {u}) | v ∈ e ∈ E(H), e ∩Nu , ∅}.

Let Eu = {e ∈ E(H)|u ∈ e ∈ E(H)}, the degree of u denoted by d(u) and d(u) = |Eu|. For two vertices u, v, let
Nuv be the set of common neighbors of u and v. The codegree of u and v, denoted by d(u, v), is the number
of edges containing both u and v in H. Denote ∆,∆2 be the maximum degree, the maximum codegree of H,
respectively.

For a graph F = (V(F),E(F)), a hypergraph H is called a Berge-F if it can be obtained by replacing each
edge in F by a hyperedge containing it. Given a class of graphs F , we say that a hypergraph H is Berge-F
free if for every F ∈ F , the hypergraph H does not contain a Berge-F as a subhypergraph. We call the
maximum possible number ex(n,F ) of hyperedges in a Berge-F free hypergraph on n vertices as Turán
number of Berge-F .

In [16], F. Lazebnik and J. Verstraëte obtained an upper bound of Turán number on r-uniform hyper-
graphs H without cycles of length less than five. This result was improved by Ergemlidze, Győri and
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Methuku in [5]. In [8], Gerbner, Methuku and Vizer attained an asymptotics for the Turán number of
Berge-K2,t. In [13], Hou, Chang and Cooper generalized these problems to spectral version of Turán-type
problem and given an upper bound for spectral radius of linear hypergraphs without Berge-C4, at the same
time, they put forward a problem to study spectral version of Turán-type problem of linear hypergraphs
without Berge-K2,t. In this paper, we will deal with this problem.

The following lemma is a useful tool in our main result.

Lemma 2.1. [13] Let H be a connected r-uniform linear hypergraph and ρ be the spectral radius of the adjacency
tensor of H. Let u be the vertex with maximum eigenvector entry. Then ρ2

≤
1

r−1

∑
v∈Nu

d(v).

3. Spectral Turán-type problem on linear uniform hypergraphs without Berge K2,t

Let H = (V(H),E(H)) be an r-uniform linear hypergraph and X ⊆ V(H), let

Es(X) = {e|e ∈ E(H) and |e ∩ X| = s}, es(X) = |Es(X)|;
Ev

s (X) = {e|v ∈ e ∈ E(H) and |e ∩ X| = s}, ev
s (X) = |Ev

s (X)|.

Lemma 3.1. For r ≥ 3, let H be a r-uniform linear hypergraph without Berge-K2,t. Then for any v ∈ Nu,

r∑
s=2

ev
s (Nu) ≤ (r − 1)(t − 1) + 1.

Proof. In order to obtain a contradiction, we assume that there exists a vertex v ∈ Nu such that the number
of hyperedges in ∪r

s=2Ev
s (Nu) is at least (r − 1)(t − 1) + 2. Since H is linear, it is easy to see that only one

hyperedge, say h1, in ∪r
s=2Ev

s (Nu) contains u, and let h2, . . . , hl be the remaining hyperedges in ∪r
s=2Ev

s (Nu),
where l =

∑r
s=2 ev

s (Nu). Then l ≥ (r − 1)(t − 1) + 2 ≥ t + 1.
For each hyperedge hi(2 ≤ i ≤ l), we can choose out a vertex xi ∈ (hi ∩ Nu) \ {v} since |hi ∩ Nu| ≥ 2.

Obviously, for any distinct i, j ∈ [l] \ {1}, xi , x j and both are adjacent to u. It is easy to see that we can select
a vertex set W consisting of (r−1)(t−1)+1 distinct vertices from {xi|i ∈ [l]\{1}}, without loss of generality, say
W = {x2, x3, . . . , x(r−1)(t−1)+2}. Furthermore we know that there exist at least t distinct hyperedges obtained
from W ∪ {u}, which are incident to u, without loss of generality, say lu1 , l

u
2 , · · · , l

u
t . Let yi ∈ lui ∩W , it is

obvious that yi is adjacent to v for i ∈ [t]. Denote lvi be the hyperedge containing v and yi. By the linearity
of H, we know that lv1, l

v
2, · · · , l

v
t are distinct each other. Then the 2t hyperedges lu1 , l

u
2 , · · · , l

u
t and lv1, l

v
2, · · · , l

v
t

form a Berge-K2,t in H, a contradiction.

For i ∈ [d(u)] and j ∈ [r − 1], let hu
i = {u} ∪ {u j,i| j ∈ [r − 1]} be a hyperedge of H in the following

Uu j,i = {x ∈ Nu | x ∈ e ∈ Eu j,i

1 (Nu)}, (1)

Ui = ∪
r−1
j=1Uu j,i . (2)

Then |Uu j,i | = (r − 1)|Eu j,i

1 (Nu)| = (r − 1)eu j,i

1 (Nu), |Nu| = (r − 1)d(u). Further by Lemma 3.1, we have

d(u j,i) = eu j,i

1 (Nu) +
r∑

s=2

eu j,i
s (Nu) ≤ eu j,i

1 (Nu) + (r − 1)(t − 1) + 1.
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Therefore,

eu j,i

1 (Nu) ≥ d(u j,i) − (r − 1)(t − 1) − 1,

|Uu j,i | = (r − 1)eu j,i

1 (Nu) ≥ (r − 1)d(u j,i) − (r − 1)2(t − 1) − (r − 1) (3)∑
u j,i∈Nu

|Uu j,i | ≥

∑
u j,i∈Nu

((r − 1)d(u j,i) − (r − 1)2(t − 1) − (r − 1))

=
∑

u j,i∈Nu

(r − 1)d(u j,i) − (r − 1)2(t − 1)|Nu| − (r − 1)|Nu|

=
∑

u j,i∈Nu

(r − 1)d(u j,i) − (r − 1)3(t − 1)d(u) − (r − 1)2d(u) (4)

Lemma 3.2. For r ≥ 3, let H be a r-uniform linear hypergraph without Berge-K2,t and hu
i = {u} ∪ {u j,i| j ∈ [r− 1]} be

its a hyperedge. For i ∈ [d(u)], j, k ∈ [r− 1], let u j,i,uk,i ∈ hu
i be any two distinct vertices. Then |Nu j,iuk,i | ≤ t(r− 1)− 1.

Proof. For simplicity, let u j,i = u j,uk,i = uk, then Nu j,iuk,i = Nu juk . If d(uk) ≤ t or d(u j) ≤ t, it is easy to that

|Nu juk | ≤ (t − 1)(r − 1) + (r − 2) = t(r − 1) − 1.

The equality holds only for the case that all vertices which are adjacent to uk (resp. u j) also belong to Nu j

(resp. Nuk ).
Now we only need to consider the case that d(uk) ≥ t + 1 and d(u j) ≥ t + 1. Suppose for the sake of a

contradiction that |Nu juk \ {h
u
i }| ≥ t(r− 1). Then there are at least (t− 1)(r− 1)+ 1 vertices in Nu juk \ {h

u
i }. Since

H is r-uniform, there must exist t vertices v1, v2, · · · , vt ∈ Nu juk \ {h
u
i } such that the pairs ukv1, · · · ,ukvt are

contained in t distinct edges which are not the edge hu
i .

(1.1). If there are two pairs u jvp,u jvq contained in one edge incident to u j, there must exist a vertex
v′q ∈ Nu juk \ {h

u
i } such that u jv1, · · · ,u jv′q,u jvp(vq), · · · ,u jvt in t distinct edges incident to u j. Then the edges

containing u jv1, · · · ,u jv′q,u jvp(vq), · · · ,u jvt and ukv1, · · · ,ukv′q,u jvp(vq), · · · ,ukvt form a Berge-K2,t in H, a
contradiction.

(1.2). If there are three pairs u jvp,u jvq,u jvm contained in one edge incident to u j, there must exist two vertices
v′q, v′m ∈ Nu juk \ {h

u
i } such that u jv1, · · · ,u jvp(vq, vm),u jv′q,u jv′m, · · · ,u jvt in t distinct edges incident to u j. Then

the edges containing u jv1, · · · ,u jvp(vq, vm),u jv′q,u jv′m · · · ,u jvt and ukv1, · · · ,u jvp(vq, vm),ukv′q,u jv′M, · · · ,ukvt
form a Berge-K2,t in H, a contradiction.
...

(1.t). If there are t pairs u jv1, · · · ,u jvt contained in one edge incident to u j, there must exist t − 1 vertices
v′2, · · · , v

′

t ∈ Nu juk \ {h
u
i } such that u jv1,u jv′2, · · · , · · · ,u jvt in t distinct edges incident to u j. Then the edges

containing u jv1(v2, · · · , vt),u jv′2, · · · , · · · ,u jv′t and ukv1(v2, · · · , vt),ukv′2, · · · , · · · ,ukv′t form a Berge-K2,t in H, a
contradiction.

Otherwise the pairs u jv1, · · · ,u jvt are contained in t different edges incident to u j, then the 2t edges
containing the pairs ukv1, · · · ,ukvt,u jv1, · · · ,u jvt form a Berge-K2,t in H, a contradiction. So, for the case that
d(uk) ≥ t + 1 and d(u j) ≥ t + 1 ,we have |Nu juk | ≤ t(r − 1) − 1.

From the above discussion, we know that |Nu j,iuk,i | ≤ t(r − 1) − 1.

Lemma 3.3. For r ≥ 3, let H be a r-uniform linear hypergraph without Berge-K2,t and Uu j,i be defined as (1). For
i ∈ [d(u)], we have

d(u)∑
i=1

r−1∑
j=1

|Uu j,i | ≤ (t − 1)(n − 1 − |Nu|) +
(r − 1)2(r − 2)(t − 1)

2
d(u).
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Proof. Let hu
i = {u} ∪ {u j,i| j ∈ [r − 1]} be a hyperdege in H, and u j,i,uk,i ∈ hu

i be any two distinct vertices. By
(1) and (2), it is easy to see that

|Ui| = |

r−1⋃
j=1

Uu j,i | ≥

r−1∑
j=1

|Uu j,i | −

∑
1≤ j<k≤r−1

|Uu j,i

⋂
Uuk,i |. (5)

Further by Lemma 3.2, we get

|Uu j,i

⋂
Uuk,i | ≤ |Nu juk \ (Nu ∪ {u})|

≤ |Nu juk \ (hu
i \ {u j,i,uk,i})|

≤ t(r − 1) − 1 − (r − 2) = (t − 1)(r − 1).

By (5), we have

|Ui| ≥

r−1∑
j=1

|Uu j,i | −

(
r − 1

2

)
(t − 1)(r − 1) =

r−1∑
j=1

|Uu j,i | −
(r − 1)2(r − 2)(t − 1)

2
.

Then

r−1∑
j=1

|Uu j,i | ≤ |Ui| +
(r − 1)2(r − 2)(t − 1)

2
,

d(u)∑
i=1

r−1∑
j=1

|Uu j,i | ≤

d(u)∑
i=1

|Ui| +

d(u)∑
i=1

(r − 1)2(r − 2)(t − 1)
2

=

d(u)∑
i=1

|Ui| +
(r − 1)2(r − 2)(t − 1)

2
d(u). (6)

In order to attain our desirable result, now we only want to prove the following inequality.

d(u)∑
i=1

|Ui| ≤ (t − 1)(n − 1 − |Nu|). (7)

Note that hu
i = {u} ∪ {u j,i| j ∈ [r − 1]} be the hyperedge associated to Ui for i ∈ [d(u)].

If t > d(u), we have d(u) ≤ t − 1, and for any v ∈ Nu it belongs to at most d(u) sets Ui(i ∈ [d(u)]). Then

d(u)∑
i=1

|Ui| ≤ d(u)(n − 1 − |Nu|) ≤ (t − 1)(n − 1 − |Nu|).

If t ≤ d(u), we can claim that for any v ∈ Nu it belongs to at most t− 1 sets Ui(i ∈ [d(u)]). Otherwise, there
exists a vertex v0 ∈ Nu, which is contained in t sets, without loss of generality, say U1,U2, . . . ,Ut. For each
U j, j ∈ [t], we can select a hyperedge lv0

j containing v0. Then the 2t hyperedges lv1, l
v
2, · · · , l

v
t and hu

1 , h
u
2 , · · · , h

u
t

form a Berge-K2,t in H, a contradiction. Further it is easy to see that (7) holds.
By (6) and (7), we have

d(u)∑
i=1

r−1∑
j=1

|Uu j,i | ≤ (t − 1)(n − 1 − |Nu|) +
(r − 1)2(r − 2)(t − 1)

2
d(u).
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Lemma 3.4. For r ≥ 3, let H be a r-uniform linear hypergraph without Berge-K2,t. Then for any vertex u ∈ V(H),∑
u j,i∈Nu

(r − 1)d(u j,i) ≤ (t − 1)(n − 1) +
(n − 1)[3(t − 1)r2

− (7t − 9)r + 2(t − 2)]
2

.

Proof. From the linearity of H, it has d(u) ≤ n−1
r−1 . Note that |Nu| = (r− 1)d(u), by (4) and Lemma 3.3, we have∑

u j,i∈Nu

(r − 1)d(u j,i)

≤

∑
u j,i∈Nu

|Uu j,i | + (r − 1)3(t − 1)d(u) + (r − 1)2d(u)

=

d(u)∑
i=1

r−1∑
j=1

|Uu j,i | + (r − 1)3(t − 1)d(u) + (r − 1)2d(u)

≤ (t − 1)(n − 1 − |Nu|) +
(r − 1)2(r − 2)(t − 1)

2
d(u) + (r − 1)3(t − 1)d(u) + (r − 1)2d(u)

= (t − 1)(n − 1) +
(r − 1)2(r − 2)(t − 1)

2
d(u) + (r − t)(r − 1)d(u) + (r − 1)3(t − 1)d(u)

= (t − 1)(n − 1) +
(r − 1)[3(t − 1)r2

− (7t − 9)r + 2(t − 2)]
2

d(u)

≤ (t − 1)(n − 1) +
(n − 1)[3(t − 1)r2

− (7t − 9)r + 2(t − 2)]
2

.

Theorem 3.5. LetH be the set of r-uniform linear hypergraphs without Berge-K2,t, and ρ be the maximum spectral
radius inH . Then ρ2

≤ (n − 1)[ 3(t−1)
2 −

t−3
2(r−1) ].

Proof. By Lemma 2.1 and Lemma 3.4, for any vertex v ∈ Nu, we have

ρ2
≤

1
r − 1

∑
v∈Nu

d(v)

=

∑
v∈Nu

(r − 1)d(v)
(r − 1)2

≤
(t − 1)(n − 1)

(r − 1)2 +
(n − 1)[3(t − 1)r2

− (7t − 9)r + 2(t − 2)]
2(r − 1)2

= (n − 1)
[3(t − 1)r2

− (7t − 9)r + 2(2t − 3)]
2(r − 1)2

= (n − 1)
(r − 1)[3(t − 1)r − 2(2t − 3)]

2(r − 1)2

= (n − 1)
3(t − 1)r − 2(2t − 3)

2(r − 1)

= (n − 1)[
3(t − 1)

2
−

t − 3
2(r − 1)

].

Note that K2,t = C4 for t = 2, then we have the following corollary. Obviously, this corollary improve
the result of Theorem 6 in [13].
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Corollary 3.6. LetH be the set of linear r-uniform hypergraphs of order n without Berge-C4, and ρ be the maximum
spectral radius inH . Then ρ2

≤ (n − 1)
(

3
2 +

1
2(r−1)

)
.
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