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graphs

Yanan Lia, Xiaoling Maa,∗, Shian Denga, Dandan Chena

aCollege of Mathematics and System Sciences, Xinjiang University, Xinjiang 830017, P.R.China

Abstract. Let G be a graph. The splitting graph SP(G) of G is the graph received from G by putting a new
vertex w′ for each w ∈ VG and joining w′ to all vertices of G adjacent to w. Let SG be the set of such new
vertices of the splitting graph SP(G). Let G1 and G2 be two simple connected graphs, the splitting V-vertex
join graph is obtained by taking one copy of SP(G1) and joining each vertex in VG1 to each vertex in VG2 ,
denoted by G1 ⊻G2. The splitting S-vertex join of G1 and G2, denoted by G1 ⊼G2, is a graph obtained from
SP(G1) and G2 by joining each vertex in SG1 to each vertex in VG2 . In this paper, we calculate the resistance
distance and Kirchhoff index of G1 ⊻ G2 and G1 ⊼ G2 for regular graphs G1 and G2, respectively.

1. Introduction

We deal with finite, simple and undirected graphs, and follow [3] for undefined terms and notations.
Let G = (VG,EG) be a graph with vertex set VG = {v1, v2, . . . , vn} and edge set EG, where n = |VG| is the order
of G. The adjacency matrix of G, denoted by AG, is the n × n matrix whose (i, j)-entry is 1 if vi and v j are
adjacent in G and 0 otherwise. The degree of vi in G is denoted by di = dG(vi). The Laplacian matrix of G is
the matrix LG = DG − AG, where DG is the diagonal matrix with diagonal entries d1, d2, . . . , dn.

For a square matrix M of order n, the characteristic polynomial det(tIn −M) of M is denoted by fM(t),
where In is the identity matrix with order n. Particularly, for a graph G, fAG (t) and fLG (t) are the adjacency
and Laplacian characteristic polynomial of G, respectively. And their roots are the adjacency and Laplacian
eigenvalues of G, separately. The collection of eigenvalues of AG and LG together with their multiplicities
referred to the A-spectrum and L-spectrum of G, respectively. Denote the A-spectrum (respectively, L-
spectrum) as SpecA(G) = {λ1(G), λ2(G), . . . , λn(G)} (respectively, SpecL(G) = {µ1(G), µ2(G), . . . , µn(G)}). Note
that if G is r-regular graph, then each eigenvalue µi of LG corresponds to an eigenvalue λi of AG via the
relation µi(G) = r − λi(G).

In 1993, Klein and Randić [8] presented the resistance distance between vertices vi and v j in graph G,
denoted by ri j(G), defined as the effective resistance between vi and v j calculated according to Ohm’s law
when the unit resistance is distributed on each edge of G. The resistance distance of graph is equal to the
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equivalent resistance of electrical network, which is a new metric of graph and has a broad development
prospect in chemistry, network analysis, physics and other fields. The Kirchhoff index K f (G) of G is the
sum of the resistance distances between all pairs of vertices of G, i.e., K f (G) =

∑
i< j ri j.

The splitting graph SP(G) of a graph G is the graph obtained from G by taking a new vertex w′ for each
w ∈ VG and joining w′ to all vertices of G adjacent to w. Let SG be the set of such new vertices of the splitting
graph SP(G), i.e., SG = VSP(G)\VG. Lu et al. [12] introduced two types of graph operations based on the
splitting graph as follows.

Definition 1.1. [12] Let Gi be an ni-vertex connected graph for i = 1, 2. The splitting V-vertex join of G1 and G2
is obtained by taking one copy of SP(G1) and joining each vertex in VG1 to each vertex in VG2 , denoted by G1 ⊻ G2.
The splitting S-vertex join of G1 and G2 is a graph obtained from SP(G1) and G2 by joining each vertex in SG1 to each
vertex in VG2 , denoted by G1 ⊼ G2.

Let Pn be a path of order n and Kn be complete graph of order n. Figure 1 depicts the splitting V-vertex
join and the splitting S-vertex join of P5 and K3.s s s s
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Figure 1: The splitting V-vertex join of P5 ⊻ K3 and the splitting S-vertex join of P5 ⊼ K3.

It is well known that the eigenvalues and eigenvectors of the Laplacian matrix are used to represent
the resistance distance of the graph [11]. But this method only works for certain graph classes. According
to the components of the generalized inverse of the Laplacian matrix, Babapt [1] introduced the formula
for expressing resistance distance and Kirchhoff index. Subsequently, reseachers [6, 7, 9, 16] considered the
problems of resistance distance and Kirchhoff index of many graph classes and graph operations, such as
the Q-vertex and Q-edge join graphs[13], R-vertex and R-edge join graphs[10], the subdivision-vertex and
subdivision-edge join graphs [5], the Q-double join graphs[15] and so on.

Motivated by the above works, in this paper, we utilize the group inverse of matrix to calculate the
resistance distances and Kirchhoff indices of the splitting V-vertex join G1 ⊻ G2 and the splitting S-vertex
join G1 ⊼ G2 for regular graphs G1 and G2, respectively.

2. Preliminaries

Firstly, we give some definitions and lemmas which are very useful in the proof of the main results.
Let Q be a square matrix. The {1}-inverse of Q is a matrix, denoted by Q(1), such that QQ(1)Q = Q.

Particularly, if Q is singular, then Q has infinitely many 1-inverses [2]. The group inverse of Q is the unique
matrix, denoted by Q#, satisfying QQ#Q = Q, Q#QQ# = Q#, and QQ# = Q#Q. Ben-Israel et al. [2] and Bu
et al. [4], independently, proved that Q# exists if and only if rank(Q) = rank(Q2). Specifically, if Q is real
symmetric matrix, then Q# exists and Q# is a symmetric {1}-inverse of Q.

Let Qi j denote the entry of Q in the i-th row and j-th column and e be a column vector whose entries are
all ones. Let In be the identity matrix of size n, and Jn×m denote the n ×m matrix whose all entries are 1.

Let G be a graph. Here we state some lemmas, which indicated that the {1}-inverse and group inverse
of LG can expresses the resistance distance and Kirchhoff index of a graph G. These results play a vital role
in demonstrating the main conclusions of this paper.
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Lemma 2.1. [1, 4] Suppose G is a connected graph. If vertices vi and v j in VG, then the resistance distance ri j(G)
between them is given as follows:

ri j(G) = (L(1)
G )ii + (L(1)

G ) j j − (L(1)
G )i j − (L(1)

G ) ji

= (L#
G)ii + (L#

G) j j − 2(L#
G)i j.

Lemma 2.2. [14] Let G be a connected graph on n vertices. Then

K f (G) = ntr(L(1)
G ) − eTL(1)

G e,

where tr(L(1)
G ) is the trace of L(1)

G .

Definition 2.3. [17] For a n × n matrix A, which can be partitioned as

A =
[
A11 A12
A21 A22

]
,

where A11 and A22 are square matrices. If A11 and A22 are nonsingular, then the matrix A22 − A21A−1
11 A12 and

A11 − A12A−1
22 A21 are called the Schur complements of A11 and A22, respectively.

Lemma 2.4. [17] Suppose W =
(

S T
P Q

)
is a nonsingular matrix. Let S be nonsingular matrix. Then

W−1 =

(
S−1 + S−1TF−1PS−1

−S−1TF−1

−F−1PS−1 F−1

)
.

where F = Q − PS−1T is the Schur complement of S.

Lemma 2.5. [5] Let LG =

(
L1 L2
LT

2 L3

)
be the Laplacian matrix of a connected graph G. If each column vector of LT

2

is −e or a zero vector, then H =
(

L−1
1 0
0 F#

)
is a symmetric {1}-inverse of LG, where F = L3 − LT

2 L−1
1 L2 is a Schur

complement of L1.

Lemma 2.6. [5] Suppose G is a graph of order n. Then

(LG + aIn −
a
n

Jn×n)# = (LG + aIn)−1
−

1
an

Jn×n,

where a is any positive real number.

Lemma 2.7. [5] Let Q be a real symmetric matrix. If Qe = 0, then we have Q#e = 0 and eTQ# = 0.

3. Resistance distance and Kirchhoff index of splitting V-vertex join graphs

Now, we calculate the resistance distance and Kirchhoff index of the splitting V-vertex join graph G1⊻G2.

Theorem 3.1. For i = 1, 2, let Gi be an ri-regular graph of ni vertices. Assume that wk(vi, v j) =
[
(AG1 +

1
r1

A2
G1

)k
]

i j
and NG1 (vi) = {v j ∈ VG1 | viv j ∈ EG1⊻G2 }. Then we have the following conclusions:

1O For any vi, v j ∈ VG1 , we get

ri j(G1 ⊻ G2) =
1

n2 + 2r1

∞∑
k=0

1
(n2 + 2r1)k

(
wk(vi, vi) + wk(v j, v j) − 2wk(vi, v j)

)
;
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2O For any vi, v j ∈ VG2 , we have

ri j(G1 ⊻ G2) =
[
(LG2 + n1In2 )−1

]
ii
+

[
(LG2 + n1In2 )−1

]
j j
− 2

[
(LG2 + n1In2 )−1

]
i j

;

3O For any v′i , v
′

j ∈ SG1 , we know

ri j(G1 ⊻ G2) =
2
r1
+

1
r2

1(n2 + 2r1)

( ∑
vs∈NG1 (v′i )
vt∈NG1 (v′i )

∞∑
k=0

1
(n2 + 2r1)k

wk(vs, vt)

+
∑

vs∈NG1 (v′j)
vt∈NG1 (v′j)

∞∑
k=0

1
(n2 + 2r1)k

wk(vs, vt) − 2
∑

vs∈NG1 (v′i )
vt∈NG1 (v′j)

∞∑
k=0

1
(n2 + 2r1)k

wk(vs, vt)
)
;

4O For vi ∈ VG1 , v j ∈ VG2 , we see

ri j(G1 ⊻ G2) =
1

n2 + 2r1

∞∑
k=0

( 1
(n2 + 2r1)k

wk(vi, vi)
)
+ [(LG2 + n1In2 )−1] j j −

1
n1n2

;

5O For v′i ∈ SG1 , v j ∈ VG2 , we obtain

ri j(G1 ⊻ G2) =
1
r1
+

1
r2

1(n2 + 2r1)

∑
vs∈NG1 (v′i )
vt∈NG1 (v′i )

∞∑
k=0

( 1
(n2 + 2r1)k

wk(vs, vt)
)
+ [(LG2 + n1In2 )−1] j j −

1
n1n2

;

6O For v′i ∈ SG1 , v j ∈ VG1 , we get

ri j(G1 ⊻ G2) =
1

r2
1(n2 + 2r1)

∑
vs∈NG1 (v′i )
vt∈NG1 (v′i )

∞∑
k=0

( 1
(n2 + 2r1)k

wk(vs, vt)
)
+

1
r1
+

1
n2 + 2r1

∞∑
k=0

( 1
(n2 + 2r1)k

wk(v j, v j)
)

−
2

r1(n2 + 2r1)

∑
vs∈NG1 (v′i )

∞∑
k=0

( 1
(n2 + 2r1)k

wk(vs, v j)
)
.

Proof. We mark the vertices of G1 ⊻ G2 as shown in Figure 1, then the Laplacian matrix of G1 ⊻ G2 can be
expressed as

L(G1 ⊻ G2) =

SG1 VG1 VG2

SG1

VG1

VG2


r1In1 −AG1 On1×n2

−AT
G1

(r1 + n2)In1 + LG1 −Jn1×n2

On2×n1 −Jn2×n1 n1In2 + LG2


=

 M
(

On1×n2

−Jn1×n2

)
(
On2×n1 −Jn2×n1

)
n1In2 + LG2

 ,
where Oa×b is the a × b matrix of all entries equal to zero and M =

(
r1In1 −AG1

−AT
G1

(r1 + n2)In1 + LG1

)
.
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By Definition 2.3, we know that the Schur complement of r1In1 in M is

SM = (r1 + n2)In1 + LG1 − AT
G1

(r1In1 )−1AG1

= (r1 + n2)In1 + LG1 −
1
r1

AT
G1

AG1

= (2r1 + n2)In1 − AG1 −
1
r1

AT
G1

AG1 . (1)

By Lemma 2.4, we have M−1 =

(
N1 N2
N3 S−1

M

)
, where

N1 =
1
r1

In1 +
1
r2

1

AG1 S−1
M AT

G1
, (2)

N2 =
1
r1

AG1 S−1
M , (3)

N3 =
1
r1

S−1
M AT

G1
. (4)

Let F be the Schur complement of M in L(G1 ⊻ G2). Then by Definition 2.3, we have

F =n1In2 + LG2 −

(
On2×n1 −Jn2×n1

)
M−1

On1×n2

−Jn1×n2


=n1In2 + LG2 − Jn2×n1 SM

−1 Jn1×n2 .

(5)

Since

n1 Jn2×n2 = Jn2×n1 SMSM
−1 Jn1×n2

= Jn2×n1

[
(r1 + n2)In1 + LG1 −

1
r1

AT
G1

AG1

]
SM
−1 Jn1×n2

= (r1 + n2)Jn2×n1 SM
−1 Jn1×n2 −

1
r1

Jn2×n1 AT
G1

AG1 SM
−1 Jn1×n2

= (r1 + n2)Jn2×n1 SM
−1 Jn1×n2 − r1 Jn2×n1 SM

−1 Jn1×n2

= n2 Jn2×n1 SM
−1 Jn1×n2 ,

we get

Jn2×n1 SM
−1 Jn1×n2 =

n1

n2
Jn2×n2 .

Hence, from (5), we know

F = LG2 + n1In2 −
n1

n2
Jn2×n2 .

From Lemma 2.6, we derive that

F# = (LG2 + n1In2 )−1
−

1
n1n2

Jn2×n2 . (6)

Therefore, according to Lemma 2.5, we get the expression of L(1)
G1⊻G2

as follows

L(1)
G1⊻G2

 N1 N2 0
N3 S−1

M 0
0 0 F#

 . (7)
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1O For vi, v j ∈ VG1 , combining Lemma 2.1 with (7), we have

ri j(G1 ⊻ G2) = (S−1
M )ii + (S−1

M ) j j − 2(S−1
M )i j. (8)

In view of (1), we get

SM = (n2 + 2r1)
[
In1 −

1
n2 + 2r1

(AG1 +
1
r1

AT
G1

AG1 )
]
.

The spectral radius of 1
n2+2r1

(AG1 +
1
r1

AT
G1

AG1 ) is

ρ(
1

n2 + 2r1
(AG1 +

1
r1

AT
G1

AG1 )) =
r1 +

r2
1

r1

n2 + 2r1
=

2r1

n2 + 2r1
<1,

which implies that the power series of
[
In1 −

1
n2+2r1

(AG1 +
1
r1

AT
G1

AG1 )
]−1

is convergent. Thus, we obtain

S−1
M =

1
n2 + 2r1

∞∑
k=0

[ 1
(n2 + 2r1)k

(AG1 +
1
r1

A2
G1

)k
]
. (9)

Suppose that wk(vi, v j) =
[
(AG1 +

1
r1

A2
G1

)k
]

i j
. Then due to (8) and (9), we have

ri j(G1 ⊻ G2) =
1

n2 + 2r1

∞∑
k=0

1
(n2 + 2r1)k

(
wk(vi, vi) + wk(v j, v j) − 2wk(vi, v j)

)
.

2O For vi, v j ∈ VG2 , by Lemma 2.1 and (7), we have

ri j(G1 ⊻ G2) = (F#)ii + (F#) j j − 2(F#)i j.

Based on (6), we obtain

ri j(G1 ⊻ G2) =
[
(LG2 + n1In2 )−1

]
ii
+

[
(LG2 + n1In2 )−1

]
j j
− 2

[
(LG2 + n1In2 )−1

]
i j
.

3O For vi
′, v′j ∈ SG1 , according to Lemma 2.1 and (7), we have

ri j(G1 ⊻ G2) = (N1)ii + (N1) j j − 2(N1)i j. (10)

Recall that NG1 (vi) = {v j ∈ VG1 | viv j ∈ EG1⊻G2 }. According to (2) and (9), we can get

(N1)ii =
1
r1
+

1
r2

1

(AG1 S−1
M AT

G1
)ii

=
1
r1
+

1
r2

1


 ∑

vs∈NG1 (v′i )

(S−1
M )s1,

∑
vs∈NG1 (v′i )

(S−1
M )s2, . . . ,

∑
vs∈NG1 (v′i )

(S−1
M )sn1

 AT
G1


i

=
1
r1
+

1
r2

1

∑
vs∈NG1 (v′i )
vt∈NG1 (v′i )

(S−1
M )st

=
1
r1
+

1
r2

1(n2 + 2r1)

∑
vs∈NG1 (v′i )
vt∈NG1 (v′i )

∞∑
k=0

[ 1
(n2 + 2r1)k

(AG1 +
1
r1

A2
G1

)k
]

st
. (11)
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By using a similar analysis as above, we can deduce that

(N1)i j =
1

r2
1(n2 + 2r1)

∑
vs∈NG1 (v′i )
vt∈NG1 (v′j)

∞∑
k=0

[ 1
(n2 + 2r1)k

(AG1 +
1
r1

A2
G1

)k
]

st
.

(12)

Let wk(vs, vt) =
[
(AG1 +

1
r1

A2
G1

)k
]

st
. Then substituting (11) and (12) into (10), we obtain

ri j(G1 ⊻ G2) =
2
r1
+

1
r2

1(n2 + 2r1)

( ∑
vs∈NG1 (v′i )
vt∈NG1 (v′i )

∞∑
k=0

1
(n2 + 2r1)k

wk(vs, vt)

+
∑

vs∈NG1 (v′j)
vt∈NG1 (v′j)

∞∑
k=0

1
(n2 + 2r1)k

wk(vs, vt) − 2
∑

vs∈NG1 (v′i )
vt∈NG1 (v′j)

∞∑
k=0

1
(n2 + 2r1)k

wk(vs, vt)
)
.

4O For vi ∈ VG1 , v j ∈ VG2 , by Lemma 2.1 and (7), we have

ri j(G1 ⊻ G2) = (S−1
M )ii + (F#) j j.

Combining (9) with (6), we receive

ri j(G1 ⊻ G2) =
1

n2 + 2r1

∞∑
k=0

( 1
(n2 + 2r1)k

wk(vi, vi)
)
+ [(LG2 + n1In2 )−1] j j −

1
n1n2

.

5O For v′i ∈ SG1 , v j ∈ VG2 , together Lemma 2.1 with (7), we have

ri j(G1 ⊻ G2) = (N1)ii + (F#) j j.

Due to (11) and (6), we have

ri j(G1 ⊻ G2) =
1
r1
+

1
r2

1(n2 + 2r1)

∑
vs∈NG1 (v′i )
vt∈NG1 (v′i )

∞∑
k=0

( 1
(n2 + 2r1)k

wk(vs, vt)
)
+ [(LG2 + n1In2 )−1] j j −

1
n1n2

.

6O For v′i ∈ SG1 , v j ∈ VG1 , by using Lemma 2.1 and

ri j(G1 ⊻ G2) = (N1)ii + (S−1
M ) j j − 2(N2)i j. (13)

From (3), we know N2 =
1
r1

AG1 S−1
M . Furthermore, using (9), (N2)i j can be expressed as

(N2)i j =
1
r1

(AG1 S−1
M )i j

=
1
r1

 ∑
vs∈NG1 (v′i )

(S−1
M )s1,

∑
vs∈NG1 (v′i )

(S−1
M )s2, . . . ,

∑
vs∈NG1 (v′i )

(S−1
M )sn1


j

=
1
r1

∑
vs∈NG1 (v′i )

(S−1
M )sj

=
1

r1(n2 + 2r1)

∑
vs∈NG1 (v′i )

∞∑
k=0

( 1
(n2 + 2r1)k

wk(vs, v j)
)
. (14)
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Hence, plugging (9), (11) and (14) into (13), we get

ri j(G1 ⊻ G2) =
1

r2
1(n2 + 2r1)

∑
vs∈NG1 (v′i )
vt∈NG1 (v′i )

∞∑
k=0

( 1
(n2 + 2r1)k

wk(vs, vt)
)
+

1
r1
+

1
n2 + 2r1

∞∑
k=0

( 1
(n2 + 2r1)k

wk(v j, v j)
)

−
2

r1(n2 + 2r1)

∑
vs∈NG1 (v′i )

∞∑
k=0

( 1
(n2 + 2r1)k

wk(vs, v j)
)
.

Theorem 3.2. Suppose Gi is an ri-regular graph of ni vertices. If λ1(Gi), λ2(Gi), . . . , λn(Gi) are the eigenvalues of
AGi for i = 1, 2, then

K f (G1 ⊻ G2) =(2n1 + n2)
[ 1
r1

n1∑
i=1

λ2
i (G1) + r2

1

r1(n2 + 2r1 − λi(G1)) − λ2
i (G1)

+

n2∑
i=1

1
(r2 + n1) − λi(G2)

]
+

2n2
1 + n1n2 − n1

r1
−

4n2
1 + 2n1n2 + n2

2

n1n2
.

Proof. By Lemma 2.2, we have

K f (G1 ⊻ G2) = (2n1 + n2)tr(L(1)
G1⊻G2

) − eTL(1)
G1⊻G2

e.

Since L(1)
G1⊻G2

can be shown from the proof of Theorem 3.1 as in (7), we have

tr(L(1)
G1⊻G2

) = tr(N1) + tr(S−1
M ) + tr(F#).

From (1), we obtain

tr(SM) =
n1∑
i=1

[
(2r1 + n2) − λi(G1) −

1
r1
λ2

i (G1)
]
,

and so

tr(S−1
M ) =

n1∑
i=1

1
(2r1 + n2) − λi(G1) − 1

r1
λ2

i (G1)
.

Recall that N1 =
1
r1

In1 +
1
r2

1
AG1 S−1

M AT
G1

from (2). Then we get

tr(N1) =
1
r1

tr(In1 ) +
1
r2

1

tr(AG1 S−1
M AT

G1
)

=
n1

r1
+

1
r2

1

n1∑
i=1

λ2
i (G1)

(2r1 + n2) − λi(G1) − 1
r1
λ2

i (G1)
.

On the other hand, by (6), we gain

tr(F#) =tr
[
(LG2 + n1In2 )−1

]
− tr(

1
n1n2

Jn2×n2 )

=

n2∑
i=1

1
(r2 + n1) − λi(G2)

−
1
n1
.



Y. Li et al. / Filomat 38:9 (2024), 3215–3233 3223

Therefore, taking the above results together, we have

tr(L(1)
G1⊻G2

) =
n1

r1
+

1
r2

1

n1∑
i=1

λ2
i (G1) + r2

1

(n2 + 2r1) − λi(G1) − 1
r1
λ2

i (G1)
+

n2∑
i=1

1
(r2 + n1) − λi(G2)

−
1
n1
. (15)

Moreover, from (7), it is easy to see that

eTL(1)
G1⊻G2

e = e1
TN1e1 + e1

TN2e2 + e2
TN3e1 + e2

TS−1
M e2 + e3

TF#e3,

where e1, e2 and e3 are the column vectors of size n1, n1 and n2, respectively, whose all entries are 1.
Notice that

n1 = e2
TSMS−1

M e2

= e2
T
(
(r1 + n2)In1 + LG1 −

1
r1

AT
G1

AG1

)
SM
−1e2

= (r1 + n2)e2
TSM

−1e2 −
1
r1

e2
TAT

G1
AG1 SM

−1e2

= (r1 + n2)e2
TSM

−1e2 − r1e2
TSM

−1e2

= n2e2
TS−1

M e2,

which implies that e2
TS−1

M e2 =
n1
n2

. Since N1 =
1
r1

In1 +
1
r2

1
AG1 S−1

M AT
G1

, N2 =
1
r1

AG1 S−1
M and N3 =

1
r1

S−1
M AT

G1
from

(2), (3) and (4), we get

e1
TN1e1 =

n1

r1
+

1
r2

1

e1
TAG1 SM

−1AT
G1

e1 =
n1

r1
+ e1

TSM
−1e1 =

n1

r1
+

n1

n2
.

By a similar analysis as above, we can obtain that

e1
TN2e2 = e2

TN3e1 =
1
r1

r1e2
TSM

−1e2 =
n1

n2
.

In addition, since F = LG2 + n1In2 −
n1
n2

Jn2×n2 , by simple calculation, we have F is a real symmetric matrix
and Fe3 = 0. Hence, from Lemma 2.7, we can obtain e3

TF#e3 = 0.
Finally, Putting the above results together, we get

eTLG1⊻G2
(1)e =

n1

r1
+ 4

n1

n2
. (16)

Therefore, combining (15) with (16), we have

K f (G1 ⊻ G2) =(2n1 + n2)[
1
r1

n1∑
i=1

λ2
i (G1) + r2

1

r1(n2 + 2r1 − λi(G1)) − λ2
i (G1)

+

n2∑
i=1

1
(r2 + n1) − λi(G2)

]

+
2n2

1 + n1n2 − n1

r1
−

4n2
1 + 2n1n2 + n2

2

n1n2
.

Now, we provide an example.
Example 3.3 Suppose P2 denotes a path on 2 vertices. It is easy to get that SpecA(P2) = {−1, 1}. The

splitting V-vertex join graph P2 ⊻ P2 of P2 and P2 is shown in Figure 2.
Now, applying Theorem 3.1, we have the following conclusions.
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r r

r r

SG1

r r VG1

VG2

v1 v3

v4 v2

v5 v6

Figure 2: P2 ⊻ P2.

1O For v2, v4 ∈ VG1 , we have

r24 (P2 ⊻ P2) =
1

n2 + 2r1

∞∑
k=0

1
(n2 + 2r1)k

(
wk(vi, vi) + wk(v j, v j) − 2wk(vi, v j)

)
=

1
2
.

2O For v5, v6 ∈ VG2 , we see

r56 (P2 ⊻ P2) =
[
(LG2 + n1In2 )−1

]
ii
+

[
(LG2 + n1In2 )−1

]
j j
− 2

[
(LG2 + n1In2 )−1

]
i j
=

1
2
.

3O For v1, v3 ∈ SG1 , we obtain

r13(P2 ⊻ P2) =
2
r1
+

1
r2

1(n2 + 2r1)

( ∑
vs∈NG1 (v′i )
vt∈NG1 (v′i )

∞∑
k=0

1
(n2 + 2r1)k

wk(vs, vt)

+
∑

vs∈NG1 (v′j)
vt∈NG1 (v′j)

∞∑
k=0

1
(n2 + 2r1)k

wk(vs, vt) − 2
∑

vs∈NG1 (v′i )
vt∈NG1 (v′j)

∞∑
k=0

1
(n2 + 2r1)k

wk(vs, vt)
)
=

5
2
.

4O If vi ∈ VG1 , v j ∈ VG2 , taking v4 and v5 as an example, then

r45(P2 ⊻ P2) =
1

n2 + 2r1

∞∑
k=0

( 1
(n2 + 2r1)k

wk(vi, vi)
)
+ [(LG2 + n1In2 )−1] j j −

1
n1n2

=
1
2
.

5O Let vi ∈ SG1 , v j ∈ VG2 , taking v1 and v5 as an example. Then

r15(P2 ⊻ P2) =
1
r1
+

1
r2

1(n2 + 2r1)

∑
vs∈NG1 (v′i )
vt∈NG1 (v′i )

∞∑
k=0

( 1
(n2 + 2r1)k

wk(vs, vt)
)
+ [(LG2 + n1In2 )−1] j j −

1
n1n2

=
3
2
.

6O Suppose vi ∈ SG1 , v j ∈ VG1 , taking v1 and v2 as an example. Then

ri j(G1 ⊻ G2) =
1

r2
1(n2 + 2r1)

∑
vs∈NG1 (v′i )
vt∈NG1 (v′i )

∞∑
k=0

( 1
(n2 + 2r1)k

wk(vs, vt)
)
+

1
r1
+

1
n2 + 2r1

∞∑
k=0

( 1
(n2 + 2r1)k

wk(v j, v j)
)

−
2

r1(n2 + 2r1)

∑
vs∈NG1 (v′i )

∞∑
k=0

( 1
(n2 + 2r1)k

wk(vs, v j)
)
= 1.
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In addition, by Theorem 3.2, we obtain Kirchhoff index of P2 ⊻ P2 as follows:

K f (P2 ⊻ P2) =(2n1 + n2)[
1
r1

n1∑
i=1

λ2
i (G1) + r2

1

r1(n2 + 2r1 − λi(G1)) − λ2
i (G1)

+

n2∑
i=1

1
(r2 + n1) − λi(G2)

]

+
2n2

1 + n1n2 − n1

r1
−

4n2
1 + 2n1n2 + n2

2

n1n2
=

33
2
.

On the other hand, by using Mathematica, we find the resistance distance matrix of P2 ⊻ P2 as shown
below:

R(P2 ⊻ P2) =



0 1 5
2

3
2

3
2

3
2

1 0 3
2

1
2

1
2

1
2

5
2

3
2 0 1 3

2
3
2

3
2

1
2 1 0 1

2
1
2

3
2

1
2

3
2

1
2 0 1

2
3
2

1
2

3
2

1
2

1
2 0


.

This implies that the Theorem 3.1 and Theorem 3.2 are effective ways to compute the resistance distance
and the Kirchhoff index.

4. Resistance distance and Kirchhoff index of splitting S-vertex join graphs

In this section, we calculate the resistance distance and Kirchhoff index of the splitting S-vertex join
graph G1 ⊼ G2.

Theorem 4.1. Suppose Gi is an ri-regular graph on ni vertices for i = 1, 2. Let wk(vi, v j) =
[
(AG1 +

1
r1 + n2

A2
G1

)k
]

i j

and NG1 (vi) = {v j ∈ VG1 | viv j ∈ EG1⊼G2 }. Then we can conclude the following results.

1O For any vi, v j ∈ VG1 , we have

ri j (G1 ⊼ G2) =
1

2r1

∞∑
k=0

1
(2r1)k

(
wk(vi, vi) + wk(v j, v j) − 2wk(vi, v j)

)
;

2O For any vi, v j ∈ VG2 , we get

ri j (G1 ⊼ G2) =
[ (

LG2 + n1In2

)−1
]

ii
+

[ (
LG2 + n1In2

)−1
]

j j
− 2

[ (
LG2 + n1In2

)−1
]

i j
;

3O For any vi
′, v′j ∈ SG1 , we obtain

ri j (G1 ⊼ G2) =
2

r1 + n2
+

1

2r1 (r1 + n2)2

[ ∑
vs∈NG1 (v′i)
vt∈NG1 (v′i)

∞∑
k=0

1
(2r1)k

wk(vs, vt) +
∑

vs∈NG1

(
v′j

)
vt∈NG1

(
v′j

)
∞∑

k=0

1
(2r1)k

wk(vs, vt)

− 2
∑

vs∈NG1 (v′i)
vt∈NG1

(
v′j

)
∞∑

k=0

1
(2r1)k

wk(vs, vt)
]
;

4O For vi ∈ VG1 , v j ∈ VG2 , we see

ri j (G1 ⊼ G2) =
1

2r1

∞∑
k=0

[ 1
(2r1)k

wk(vi, vi)
]
+

[ (
LG2 + n1In2

)−1
]

j j
−

1
n1n2

;
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5O For v′i ∈ SG1 , v j ∈ VG2 , we know

ri j (G1 ⊼ G2) =
1

r1 + n2
+

1
2r1(r1 + n2)2

∑
vs∈NG1 (v′i)
vt∈NG1 (v′i)

∞∑
k=0

[ 1
(2r1)k

wk(vs, vt)
]
+

[ (
LG2 + n1In2

)−1
]

j j
−

1
n1n2

;

6O For v′i ∈ SG1 , v j ∈ VG1 , we have

ri j (G1 ⊼ G2) =
1

2r1 (r1 + n2)2

∑
vs∈NG1 (v′i)
vt∈NG1 (v′i)

∞∑
k=0

[ 1
(2r1)k

wk(vs, vt)
]
+

1
2r1

∞∑
k=0

[ 1
(2r1)k

wk(v j, v j)
]

−
2

2r1(r1 + n2)

∑
vs∈NG1 (v′i )

∞∑
k=0

[ 1
(2r1)k

wk(vs, v j)
]
+

1
r1 + n2

.

Proof. Marking the vertices of G1 ⊼G2 as shown in Figure 1, we have the Laplacian matrix of G1 ⊼G2 below

LG1⊼G2 =

SG1 VG1 VG2

SG1

VG1

VG2


(r1 + n2)In1 −AG1 −Jn1×n2

−AT
G1

r1In1 + LG1 On1×n2

−Jn2×n1 On2×n1 n1In2 + LG2


=

 M
(
−Jn1×n2

On1×n2

)
(
−Jn2×n1 On2×n1

)
n1In2 + LG2

 ,
where M =

(
(r1 + n2)In1 −AG1

−AT
G1

r1In1 + LG1

)
and Oa×b is the a × b matrix with all entries equal to zero.

By Definition 2.3, we have the Schur complement of (r1 + n2)In1 in M is

SM = r1In1 + LG1 −
1

r1 + n2

(
AT

G1
AG1

)
. (17)

By Lemma 2.4, we have

M−1 =

(
M1 M2
M3 S−1

M

)
, (18)

where

M1 =
1

r1 + n2
In1 +

1
(r1 + n2)2 AG1 S−1

M AT
G1
, (19)

M2 =
1

r1 + n2
AG1 S−1

M , (20)

M3 =
1

r1 + n2
S−1

M AT
G1
. (21)

Suppose F is the Schur complement of M in L(G1 ⊼ G2). Then from Definition 2.3 and (18), we get

F = n1In2 + LG2 −

(
−Jn2×n1 On2×n1

)
M−1

(
−Jn1×n2

On1×n2

)
= n1In2 + LG2 −

n1

r1 + n2
Jn2×n2 −

r1
2

(r1 + n2)2 Jn2×n1 S−1
M Jn1×n2 .

(22)
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Since

n1 Jn2×n2 = Jn2×n1 SMS−1
M Jn1×n2

= Jn2×n1

[
r1In1 + LG1 −

1
r1 + n2

(AT
G1

AG1 )
]
S−1

M Jn1×n2

= (r1 −
r2

1

r1 + n2
)Jn2×n1 S−1

M Jn1×n2 ,

we get

Jn2×n1 S−1
M Jn1×n2 =

n1(r1 + n2)
r1n2

Jn2×n2 . (23)

Substituting (23) into (22), we obtain

F = n1In2 + LG2 −
n1

n2
Jn2×n2 .

Furthermore, according to Lemma 2.6, we get the expression

F# = (LG2 + n1In2 )−1
−

1
n1n2

Jn2×n2 . (24)

Therefore, we get the expression of L(1)
G1⊼G2

from Lemma 2.5 as follows

L(1)
G1⊼G2

=

 M1 M2 0
M3 S−1

M 0
0 0 F#

 . (25)

1O For vi, v j ∈ VG1 , combining Lemma 2.1 with (25), we have

ri j (G1 ⊼ G2) = (S−1
M )ii + (SM)−1

j j − 2(S−1
M )i j.

In view of (17), we get

SM = 2r1

[
In1 −

1
2r1

(AG1 +
1

r1 + n2
A2

G1
)
]
.

The spectral radius of
1

2r1
(AG1 +

1
r1 + n2

A2
G1

) is

ρ(
1

2r1
(AG1 +

1
r1 + n2

A2
G1

)) =
2r1 + n2

2r1 + 2n2
< 1,

which implies that the power series of
[
In1 −

1
2r1

(AG1 +
1

r1 + n2
A2

G1
)
]−1

is convergent. Thus, we gain

S−1
M =

1
2r1

∞∑
k=0

[ 1
(2r1)k

(AG1 +
1

r1 + n2
A2

G1
)k
]
. (26)

Let wk(vi, v j) =
[
(AG1 +

1
r1 + n2

A2
G1

)k
]

i j
. Then we have

ri j (G1 ⊼ G2) =
1

2r1

∞∑
k=0

[ 1
(2r1)k

(
wk(vi, vi) + wk(v j, v j) − 2wk(vi, v j)

)]
.
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2O For vi, v j ∈ VG2 , according to Lemma 2.1 and (25), we have

ri j (G1 ⊼ G2) = (F#)ii + (F#) j j − 2(F#)i j.

Based on (24), we obtain

ri j (G1 ⊼ G2) =
[ (

LG2 + n1In2

)−1
]

ii
+

[ (
LG2 + n1In2

)−1
]

j j
− 2

[ (
LG2 + n1In2

)−1
]

i j
.

3O For vi
′, v′j ∈ SG1 , according to Lemma 2.1 and (25), we have

ri j (G1 ⊼ G2) = (M1)ii + (M1) j j − 2 (M1)i j . (27)

Note that NG1 (vi) = {v j ∈ VG1 | viv j ∈ EG1⊼G2 }. According to (19), we can get

(M1)ii =
1

r1 + n2
+

1
(r1 + n2)2

(
AG1 S−1

M AT
G1

)
ii

=
1

r1 + n2
+

1
(r1 + n2)2


 ∑

vs∈NG1 (v′i )

(
S−1

M

)
s1
,

∑
vs∈NG1 (v′i )

(S−1
M )s2, . . . ,

∑
vs∈NG1 (v′i )

(S−1
M )sn1

 AT
G1


i

=
1

r1 + n2
+

1
2r1(r1 + n2)2

∑
vs∈NG1 (v′i )
vt∈NG1 (v′i )

∞∑
k=0

( 1
(2r1)k

wk(vs, vt)
)
. (28)

By using a similar method as above, we obtain

(M1)i j =
1

2r1(r1 + n2)2

∑
vs∈NG1 (v′i)
vt∈NG1

(
v′j

)
∞∑

k=0

( 1
(2r1)k

wk(vs, vt)
)
. (29)

Therefore, substituting (28) and (29) into (27), we have

ri j (G1 ⊼ G2) =
1

2r1 (r1 + n2)2

[ ∑
vs∈NG1 (v′i)
vt∈NG1 (v′i)

∞∑
k=0

1
(2r1)k

wk(vs, vt) +
∑

vs∈NG1

(
v′j

)
vt∈NG1

(
v′j

)
∞∑

k=0

1
(2r1)k

wk(vs, vt)

− 2
∑

vs∈NG1 (v′i)
vt∈NG1

(
v′j

)
∞∑

k=0

1
(2r1)k

wk(vs, vt)
]
+

2
r1 + n2

.

4O For vi ∈ VG1 , v j ∈ VG2 , combining Lemma 2.1 with (25), we have

ri j (G1 ⊼ G2) = (S−1
M )ii + (F#) j j.

Further, according to (26) and (24), we know

ri j (G1 ⊼ G2) =
1

2r1

∞∑
k=0

( 1
(2r1)k

wk(vi, vi)
)
+ [

(
LG2 + n1In2

)−1] j j −
1

n1n2
.

5O For v′i ∈ SG1 , v j ∈ VG2 , combining Lemma 2.1 with (25), we get

ri j (G1 ⊼ G2) = (M1)ii + (F#) j j.
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Similarly, due to (24) and (28), we have

ri j (G1 ⊼ G2) =
1

r1 + n2
+

1
2r1(r1 + n2)2

∑
vs∈NG1 (v′i)
vt∈NG1 (v′i)

∞∑
k=0

( 1
(2r1)k

wk(vs, vt)
)
+ [

(
LG2 + n1In2

)−1] j j −
1

n1n2
.

6O For v′i ∈ SG1 , v j ∈ VG1 , based on Lemma 2.1 and (25), we have

ri j (G1 ⊼ G2) = (M1)ii + (SM)−1
j j − 2(M2)i j. (30)

Since M2 =
1

r1+n2
AG1 S−1

M from (20), according to (26), we see

(M2)i j =
1

r1 + n2
(AG1 S−1

M )i j

=
1

r1 + n2
(

∑
vs∈NG1 (vi′)

(
S−1

M

)
s1
,

∑
vs∈NG1 (vi′)

(S−1
M )s2, . . . ,

∑
vs∈NG1 (v′i )

(S−1
M )sn1 ) j

=
1

r1 + n2

∑
vs∈NG1 (vi′)

(S−1
M )sj

=
1

2r1(r1 + n2)

∑
vs∈NG1 (vi′)

∞∑
k=0

[ 1
(2r1)k

wk(vs, v j)
]
.

(31)

Hence, plugging (26), (28) and (31) into (30), we get

ri j (G1 ⊼ G2) =
1

2r1 (r1 + n2)2

∑
vs∈NG1 (v′i)
vt∈NG1 (v′i)

∞∑
k=0

[ 1
(2r1)k

wk(vs, vt)
]
+

1
2r1

∞∑
k=0

[ 1
(2r1)k

wk(v j, v j)
]

−
2

2r1(r1 + n2)

∑
vs∈NG1 (v′i )

∞∑
k=0

[ 1
(2r1)k

wk(vs, v j)
]
+

1
r1 + n2

.

Theorem 4.2. Assume Gi is an ri-regular graph with ni vertices. If λ1(Gi), λ2(Gi), . . . , λn(Gi) are the eigenvalues of
AGi for i = 1, 2, then

K f (G1 ⊼ G2) =(2n1 + n2)
[ 1
r1 + n2

n1∑
i=1

(r1 + n2)2 + λ2
i (G1)

(2r1 − λi(G1))(r1 + n2) − λ2
i (G1)

+

n2∑
i=1

1
n1 + r2 − λi(G2)

]
+

2n2
1 + n1n2

n2 + r1
−

(4r1 + n2)n2
1 + 2r1n1n2 + r1n2

2

r1n1n2
.

Proof. By Lemma 2.2, we have

K f (G1 ⊼ G2) = (2n1 + n2)tr(L(1)
G1⊼G2

) − eTL(1)
G1⊼G2

e.

Since the expression of L(1)
G1⊼G2

from (25) is shown as follows

L(1)
G1⊼G2

=

 M1 M2 0
M3 S−1

M 0
0 0 F#

 ,
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we have

tr(L(1)
G1⊼G2

) = tr(M1) + tr(S−1
M ) + tr(F#).

According to (17) , we obtain

tr(SM) =
n1∑
i=1

(
2r1 − λi(G1) −

1
r1 + n2

λ2
i (G1)

)
,

which implies that

tr(S−1
M ) =

n1∑
i=1

1
2r1 − λi(G1) − 1

r1+n2
λ2

i (G1)
.

Meanwhile, from (19), we get

tr(M1) = tr(
1

r1 + n2
In1 ) + tr

( 1
(r1 + n2)2 AG1 S−1

M AT
G1

)
=

n1

r1 + n2
+

1
r1 + n2

n1∑
i=1

λ2
i (G1)

(2r1 − λi(G1))(r1 + n2) − λ2
i (G1)

.

On the other hand, by (24), we obtain

tr(F#) = tr
(
(LG2 + n1In2 )−1

)
−

1
n1n2

tr(Jn2×n2 )

=

n2∑
i=1

1
n1 + r2 − λi(G2)

−
1
n1
.

Therefore, taking the above results together, we have

tr(L(1)
G1⊼G2

) =
1

r1 + n2

n1∑
i=1

(r1 + n2)2 + λ2
i (G1)

(2r1 − λi(G1))(r1 + n2) − λ2
i (G1)

+
n1

r1 + n2

+

n2∑
i=1

1
n1 + r2 − λi(G2)

−
1
n1
.

(32)

Moreover, from (25), it is easy to verify that

eTL(1)
G1⊼G2

e = e1
TM1e1 + e1

TM2e2 + e2
TM3e1 + e2

TS−1
M e2 + e3

TF#e3,

where e1, e2 and e3 are the column vectors of size n1, n1 and n2, respectively, whose all entries are 1.
With a proof similar to Theorem 3.2, we have

n1 = e2
TSMS−1

M e2

= e2
T(r1In1 + LG1 −

1
r1 + n2

(AT
G1

AG1 ))S−1
M e2

= (r1 −
r2

1

r1 + n2
)e2

TS−1
M e2.
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Thus, we can obtain e2
TS−1

M e2 =
n1(r1+n2)

r1n2
. Further, according to (19), we get

e1
TM1e1 = e1

T
( 1
r1 + n2

In1 +
1

(r1 + n2)2 AG1 S−1
M AT

G1

)
e1

=
n1

r1 + n2
+

r2
1

(r1 + n2)2 e1
TS−1

M e1

=
n1

n2
.

By using a similar method as above, we get

e1
TM2e2 = e2

TM3e1 =
r1

r1 + n2
e2

TS−1
M e2 =

n1

n2
.

Moreover, since F = n1In2 +LG2 −
n1
n2

Jn2×n2 , we have F is a real symmetric matrix and Fe3 = 0. So, according
to Lemma 2.7, we have eTF# = 0 and eTF#e = 0. Hence, we obtain

eTL(1)
G1⊼G2

e = 3
n1

n2
+

n1(r1 + n2)
r1n2

. (33)

Finally, combining (32) with (33), we have

K f (G1 ⊼ G2) =(2n1 + n2)[
1

r1 + n2

n1∑
i=1

(r1 + n2)2 + λ2
i (G1)

(2r1 − λi(G1))(r1 + n2) − λ2
i (G1)

+

n2∑
i=1

1
n1 + r2 − λi(G2)

]

+
2n2

1 + n1n2

n2 + r1
−

(4r1 + n2)n2
1 + 2r1n1n2 + r1n2

2

r1n1n2
.

At last, we get an example as follows.

Example 4.3

��
���

��

HH
HHH

HH

r r
rr

r r

VG1

SG1

VG2r r

v1 v2

v3v4

v5 v6

v7v8

Figure 3: P2 ⊼ C4.

Note that SpecA(P2) = {1,−1} and SpecA(C4) = {2, 02,−2}. The splitting S-vertex join P2 ⊼ C4 of P2 and
C4 is shown in Figure 3. According to Theorem 4.1, for any two vertices in P2 ⊼ C4, we first calculate the
resistance distance.
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1O For any v1, v2 ∈ VG1 , we have

r12 (P2 ⊼ C4) =
1

2r1

∞∑
k=0

1
(2r1)k

(
wk(vi, vi) + wk(v j, v j) − 2wk(vi, v j)

)
=

5
7
.

2O Let vi, v j ∈ VG2 , taking v5 and v8 as an example. Then

r58 (P2 ⊼ C4) =
[ (

LG2 + n1In2

)−1
]

ii
+

[ (
LG2 + n1In2

)−1
]

j j
− 2

[ (
LG2 + n1In2

)−1
]

i j
=

5
12
.

3O For v3, v4 ∈ SG1 , we obtain

r34 (P2 ⊼ C4) =
1

2r1 (r1 + n2)2

[ ∑
vs∈NG1 (v′i)
vt∈NG1 (v′i)

∞∑
k=0

1
(2r1)k

wk(vs, vt) +
∑

vs∈NG1

(
v′j

)
vt∈NG1

(
v′j

)
∞∑

k=0

1
(2r1)k

wk(vs, vt)

− 2
∑

vs∈NG1 (v′i)
vt∈NG1

(
v′j

)
∞∑

k=0

1
(2r1)k

wk(vs, vt)
]
+

2
r1 + n2

=
3
7
.

4O Suppose vi ∈ VG1 , v j ∈ VG2 , taking v1 and v5 as an example. Then

r15 (P2 ⊼ C4) =
1

2r1

∞∑
k=0

[ 1
(2r1)k

wk(vi, vi)
]
+

[ (
LG2 + n1In2

)−1
]

j j
−

1
n1n2

=
163
168
.

5O Let vi ∈ SG1 , v j ∈ VG2 , taking v3 and v5 as an example. Then

r35 (P2 ⊼ C4) =
1

r1 + n2
+

1
2r1(r1 + n2)2

∑
vs∈NG1 (v′i)
vt∈NG1 (v′i)

∞∑
k=0

[ 1
(2r1)k

wk(vs, vt)
]

+
[ (

LG2 + n1In2

)−1
]

j j
−

1
n1n2

=
67
168
.

6O Assume vi ∈ SG1 , v j ∈ VG2 , taking v1 and v3 as an example. Then

r13 (P2 ⊼ C4) =
1

2r1 (r1 + n2)2

∑
vs∈NG1 (v′i)
vt∈NG1 (v′i)

∞∑
k=0

[ 1
(2r1)k

wk(vs, vt)
]
+

1
2r1

∞∑
k=0

[ 1
(2r1)k

wk(v j, v j)
]

−
2

2r1(r1 + n2)

∑
vs∈NG1 (v′i )

∞∑
k=0

[ 1
(2r1)k

wk(vs, v j)
]
+

1
r1 + n2

=
5
7
.

Meanwhile, using Theorem 4.2, we can compute Kirchhoff index of P2 ⊼ C4 as follows:

K f (P2 ⊼ C4) =(2n1 + n2)[
1

r1 + n2

n1∑
i=1

(r1 + n2)2 + λ2
i (G1)

(2r1 − λi(G1))(r1 + n2) − λ2
i (G1)

+

n2∑
i=1

1
n1 + r2 − λi(G2)

]

+
2n2

1 + n1n2

n2 + r1
−

(4r1 + n2)n2
1 + 2r1n1n2 + r1n2

2

r1n1n2
=

376
21
.
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Similarly, by using Mathematica, we obtain the resistance distance matrix of P2 ⊼ C4 as shown below:

R(P2 ⊼ C4) =



0 5
7

5
7

6
7

163
168

163
168

163
168

163
168

5
7 0 6

7
5
7

163
168

163
168

163
168

163
168

5
7

6
7 0 3

7
67

168
67
168

67
168

67
168

6
7

5
7

3
7 0 67

168
67
168

67
168

67
168

163
168

163
168

67
168

67
168 0 5

12
1
2

5
12

163
168

163
168

67
168

67
168

5
12 0 5

12
1
2

163
168

163
168

67
168

67
168

1
2

5
12 0 5

12
163
168

163
168

67
168

67
168

5
12

1
2

5
12 0


.

Since our results coincides with the true value of the resistance distance and the Kirchhoff index which
could be measured, the Theorem 4.1 and Theorem 4.2 are very useful.
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