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Abstract. The aim of this research is to examine various statistical approximation properties of Kantorovich
Ó-Baskakov operators using wavelets. We discuss and investigate the weighted statistical approximation
employing a Bohman-Korovkin type theorem as well as a statistical rate of convergence applying a weighted
modulus of smoothness ωρα correlated with the space Bρα(R+) and Lipschitz type maximal functions.

1. Preliminaries and introduction

In 1995, Agratini [1] introduced a class of Szász-type operators by means of compactly supported
wavelets of Daubechies. Later on in 1997, Gonska and Zhou [20] used the Daubechies’ compactly-supported
wavelets to establish a new class of Baskakov-type operators. This technique of employing wavelets in
modifying the classical operators is very useful which provides a tool to achieve the local information of
approximation by such operators. In [28], Nasiruzzaman et al. further modified the operators of Gonska
and Zhou [20] by defining their Ó-analog to get a better rate of convergence. In this article, our focus is to
study various approximation properties exhibited by the operators described in [28]. Our proposed study
aims to further enhance our understanding of these operators and their potential applications.

Note that that the Bernstein polynomials [14] converge uniformly to the value ¥(x) for every continuous
function ¥, where x is any real value between 0 and 1. The following defines the Bernstein polynomials:(

B
∗

Ô¥
)

(x) =
Ô∑

s=0

(
Ô

s

)
xs(1 − x)Ô−s¥

(
s
Ô

)
, (1)

where
(r

i
)

refers to the binomial coefficients.
The Szász [34] as well as Baskakov [13] operators were formed in approximating the continuous

functions which were defined for the unbounded interval [0,∞). Here, the Baskakov operators are written
as
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(
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Ô

)
.

Bernstein operators were modified by Kantorovich [23] and were called Bernstein-Kantorovich operators.
These operators are utilized in approximating the functions of broader classes as opposed to continuous
functions. Moreover, the following are the operators that define Bernstein-Kantorovich operators:

(
KÔ ¥

)
(x) = ( Ô + 1)

Ô∑
s=0

(
Ô

s

)
xs(1 − x)Ô−s

∫ s+1
Ô+1

s
Ô+1

¥(ú)dú, (2)

for functions ¥ ∈ Lp[0, 1] (1 ≤ p < ∞).
To determine the Lp-approximation, Ditzian and Totik [17] provided the Kantorovich modification of

Baskakov operators, which is called the Baskakov-Kantorovich operators written as

(Km ¥) (x) = m
∞∑
í=0

(
m + í − 1

í

)
xí

(1 + x)m+í

∫ í+1
m

í

m

¥ (ú) dú. (3)

There are various modifications and generalizations of these operators which have been studied by
several authors to get better and better approximation, e.g. [4, 6, 7, 9–12, 29, 31, 33]. The Ó-calculus
application appeared as a relatively new research field in the approximation theory. Here, the first Ó-
analogue of the famous Bernstein polynomials was established by Lupaş [24] by employing the concept of
Ó-integers. On the other hand, in 1997, Phillips [30] took into consideration a different Ó-analogue of the
classical Bernstein polynomials. Subsequently, numerous researchers investigated the Ó-generalizations
with regard to a variety of operators by examining their approximation properties, e.g. [8, 12, 26, 27]. For
instance, the Ó-variant of Baskakov operators [5] is defined as

(
Vm, Ó ¥

)
(x) =

∞∑
í=0

Bm,í,Ó(x) ¥
(

[í] Ó

Óí−1[m]Ó

)
, (4)

where

Bm, Ó(x) =
[

m + í − 1
í

]
Ó

xí

(1 + x)m+í
Ó

Ó
í(í−1)

2 ,

while the Ó-Baskakov-Kantorovich operators [21] are defined by

(
Tm, Ó ¥

)
(x) = [m]Ó

∞∑
í=0

Óí−1Bm,í,Ó(x)
∫ [í+1]Ó

[m] Ó

Ó[í]Ó
[m]Ó

¥
(
Ó1−í ú

)
dÓú. (5)

Lemma 1.1. With respect to the test functions given by e j = ú j, j = 0, 1, 2, it follows that

(1)
(
Vm, Ó e0

)
(x) = 1,

(2)
(
Vm, Ó e1

)
(x) = x,

(3)
(
Vm, Ó e2

)
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x
[m]Ó

(
1 +

x
Ó

)
.
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1.1. Basics of Ó-Calculus
The Ó-integer [m]Ó, the Ó-factorial [m]Ó! as well as the Ó-binomial coefficient are given as below (see

[22]) :

[m]Ó :=
{ 1−Óm

1−Ó , if Ó ∈ R+ \ {1}
m, if Ó = 1,

for m ∈N and [0]Ó = 0,

[m]Ó! :=
{

[m]Ó[m − 1]Ó · · · [1] Ó, m ≥ 1,
1, m = 0,[

m
í

]
Ó

:=
[m]Ó!

[ í]Ó![m − í]Ó!
,

accordingly. Here, the Ó-analogue of (1 + x)m is given by the polynomial

(1 + x)m
Ó :=

{
(1 + x)(1 + Óx) · · · (1 + Óm−1x) m = 1, 2, 3, · · ·
1 n = 0.

The Gauss binomial formula is written as

(x + a)m
Ó =

m∑
í=0

[
m
í

]
Ó

Óí( í−1)/2aíxm−í.

On the other hand, the Ó-derivative DÓ ¥ of a function ¥ is as follows

(DÓ¥)(x) =
¥(x) − ¥(Óx)

(1 − Ó)x
, x , 0,

as well as (DÓ¥)(0) = ¥′(0), provided that ¥′(0) exists. If ¥ is differentiable, then

lim
Ó→1

DÓ¥(x) = lim
Ó→1

¥(x) − ¥(Óx)
(1 − Ó)x

=
d¥(x)

dx
.

For m ≥ 1,

DÓ(1 + x)m
Ó = [m]Ó(1 + Óx)m−1

Ó , DÓ

(
1

(1 + x)m
Ó

)
= −

[m]Ó
(1 + x)m+1

Ó

,

DÓ

(u(x)
v(x)

)
=

v(Óx)DÓu(x) − u(Óx)DÓv(x)
v(x)v(Óx)

.

The Ó-Jackson definite integral is given by∫
∞/A

0
f (x)dÓx = (1 − Ó)

∞∑
n=−∞

f
(
Ón

A

)
Ón

A
(A ∈ R − {0}).

1.2. Ó-Statistical convergence
The definition of Ó-analog of Cesàro matrix C1 is not unique (see [2], [3]). Here, we may take into

consideration the Ó-Cesàro matrix, C1(Ó) = (c1
nk(Ók))∞n,k=0 expressed by

c1
nk(Ók) =

 Ók

[n+1]Ó
if k ≤ n,

0 otherwise.
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which is regular for Ó ≥ 1.
Suppose K ⊆ N (the set of natural numbers). Then, δ(K ) = limÔ

1
Ô
#{k ≤ Ô : k ∈ K} is known as

the asymptotic density of K , in which # denotes the cardinality of the enclosed set. Moreover, a sequence
η = (ηk) is known as statistically convergent to the number s provided that δ(Kε) = 0 for every ε > 0, in
whichKε = {k ≤ Ô : |ηk − s| > ε} (refer to [19]).

In the recent past, Aktuğlu and Bekar [3] defined Ó-density as well as Ó-statistical convergence. The
Ó-density is defined as

δÓ(K ) = δCÓ

1
(K ) = lim inf

n→∞
(CÓ

1χK )n = lim inf
n→∞

∑
k∈K

Ók−1

[n]
, Ó ≥ 1.

A sequence η = (ηk) is known to be Ó-statistically convergent to L provided that δÓ(Kε) = 0, in which
Kε = {k ≤ n : |ηk − L| ≥ ε} for every ε > 0. In other words, for each ε > 0,.

lim
n

1
[n]

#{k ≤ n : Ók−1
|ηk − L| ≥ ε} = 0.

In this case we write StÓ − lim ηk = L.
Note that if δ(K ) = 0 =⇒ δÓ(K ) = 0. Therefore, statistical convergence [19, Example 15] implies

Ó-statistical convergence but not conversely (refer to [Example 15 ][3]).

2. Wavelets aided Ó-Baskakov-Kantorovich operators

We now recall some basic properties of wavelets [15, 25]. Here, the wavelets denotes the set of functions
of the form

Ψµ,ν(x) = µ−
1
2Ψ

(
x − ν
µ

)
µ > 0, ν ∈ R,

which are formed by translations and dilations of a single function Ψ, which is called the mother wavelet
or basic wavelet. Moreover, following the Franklin-Strom̈berg theory, the constant µmay be substituted by
2i while ν may be substituted by 2ií having i and í to be the integers. For an arbitrary function ¥ ∈ L2(R),
the wavelets have a crucial part in the orthonormal basis, in which the ¥ function is given as:

¥(x) =
∞∑
−∞

∞∑
−∞

γ(i, í)Ψi,í(x),

in which

γ(i, í) = 2
i
2Ψi,í(x)

∫
R

f (x)Ψ(2ix − í)dx.

Daubechies [16] constructed an orthonormal basis for L2(R) of the form

2
i
2Ψs(x)(2ix − í),

where s refers to the non-negative integer, i, í denote the integers as well as the support of Ψs is [0, 2s + 1].
For a positive constant ξ, ifΨs has ξs order of continuous derivatives, then for any 0 ≤ í ≤ s, s ∈N,we have

∫
R

xíΨs(x)dx = 0. (6)

Evidently, when s = 0, the system is reduced to the Haar system. Here, with regard to any Ψ ∈ L∞(R),
we now have the conditions given by: (i) a finite positive ξ having the property supΨ ⊂ [0, ξ], while (ii)
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its first s moment vanishes. Furthermore, for 1 ≤ í ≤ s, s ∈ N, we have
∫
R

tíΨ(ú)dú = 0 and
∫
R
Ψ(ú)dú = 1.

Therefore, by employing the Haar basis, the Baskakov type operators are expressed as [1]:

(Lm ¥) (x) = m
∞∑
í=0

(
m + í − 1

í

)
xí

(1 + x)m+í

∫
R

¥ (ú)Ψ (mú − í) dú, (7)

in which the operators Lm refer to the extensions of Baskakov-Kantorovich operators. By considering the
supΨ ⊂ [0, ξ], the operators Lm are given as [1]:

(Lm ¥) (x) =
∞∑
í=0

(
m + í − 1

í

)
xí

(1 + x)m+í

∫ ξ

0
¥

(
ú + í

m

)
Ψ(ú)dú. (8)

Now, we recall the Ó-Baskakov type operators by employing compactly-supported wavelets of
Daubechies constructed in [28].
Let

∫
R

xsΨk(x)d Óx = 0 when 0 ≤ s ≤ k for k ∈N as well as Ó > 0.

With regard to Ψ ∈ L∞(R), we assume the conditions given below in terms of wavelets: (i) a finite
positive ξ having the property supΨ ⊂ [0, ξ]; and (ii) its first k moment vanishes. For 1 ≤ s ≤ k and k ∈ N,
we now obtain

∫
R
úsΨ(ú)dÓú = 0 as well as

∫
R
Ψ(ú)dÓú = 1. Therefore, for all 1 ≤ s ≤ k, k ∈ N as well as

0 < Ó < 1, Nasiruzzaman et al. [28] constructed the Ó-analogue of Baskakov-Kantorovich type wavelets
operators given by:

(
SÔ,Ó ¥

)
(x) = [Ô]Ó

∞∑
s=0

Ós−1BÔ,s,Ó(x)
∫
R

¥ (ú)Ψ
(
Ós−1[Ô]Óú − [s]Ó

)
dÓú. (9)

Thus, these operators SÔ, Ó(¥; x) extend the Ó-Baskakov-Kantorovich operators given by (5). For the
choices of k = 0 as well as Ψ Haar basis, we obtain the Ó-Baskakov-Kantorovich operators TÔ, Ó(¥; x) by
(5). Additionally, for the choices k = 0, Ó = 1 as well as Ψ Haar basis, we get the Baskakov-Kantorovich
operators KÔ, Ó(¥; x) by (3). Considering the supΨ ⊂ [0, ξ], the operators SÔ,Ó(¥; x) we get the following
operators:

(
SÔ,Ó ¥

)
(x) =

∞∑
s=0

BÔ,s,Ó(x)
∫ ξ

0
¥

(
ú + [s] Ó

Ós−1[Ô]Ó

)
Ψ (ú) dÓ ú. (10)

It is evident that by choosing Ó = 1, we obtain classical Baskakov-Kantorovich wavelets operatorsLÔ,s
by (7) as well as (8).

We need the following result of [28]:

Theorem 2.1. Suppose e j = t j when 0 ≤ j ≤ k and k ∈N. Then, we obtain(
SÔ,Ó e j

)
(x) =

(
VÔ,Ó e j

)
(x),

in which x ∈ [0,∞) as well as the operators
(
VÔ,Ó ¥

)
(x) are defined as above.

3. Weighted Ó-Statistical approximation

This section presents the statistical approximation of wavelets Kantorovich Ó-Baskakov operators SÔ,Ó

defined by (9) employing a Bohman-Korovkin type theorem [18].
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Suppose N¥ is the constant depending on the function ¥ and Bρ(R) represents the weighted space of a
real valued function ¥ with the property that |¥(x)| ≤ N¥ρ(x) for all x ∈ R. Now, we take into consideration
the weighted subspace Cρ(R) of Bρ(R) which is defined as

Cρ(R) = {¥ ∈ Bρ(R) : ¥ continuous in R}.

with the norm ∥ ¥ ∥ρ= sup
x∈R

|¥(x)|
ρ(x)

and both Cρ(R) and Bρ(R) are Banach spaces. By the use of A-statistical

convergence, Duman and Orhan [18] proved the theorem given below, which is useful in proving our main
result.

Theorem 3.1. (Duman and Orhan [18]). If A = (a jÔ) j,Ô is a positive regular summability matrix, and let (LÔ)Ô denote

a sequence of positive linear operators from Cρ1 (R) to Bρ2 (R), in which ρ1 as well as ρ2 satisfies lim
|x|→∞

ρ1

ρ2
= 0. Then

stA − lim
Ô
∥ LÔÓ − Ó ∥ρ2= 0, ∀Ó ∈ Cρ1 (R)

if and only if

stA − lim
Ô
∥ LÔHv −Hv ∥ρ1= 0 f or v = 0, 1, 2,

in which Hv =
xvρ1(x)
1 + x2 .

By examining this result, it is clear that if R is substituted by R+, then the theorem holds true. Also,
by analyzing Lemma 1.1, we see that the sequence of operators (SÔ,Ó)Ô fails to satisfy the properties of
Bohman-Korovkin theorem. Now, let us take into consideration the weight functions ρ0(x) = 1 + x2 and
ρα(x) = 1 + x2+α for x ∈ R+ and α > 0 together with the remark below.

Remark 3.2. It is true that for Ó ∈ (0, 1), lim
Ô→∞

[Ô]Ó = 0 or
1

1 − Ó
. Now, we consider the sequence ( ÓÔ)Ô for ÓÔ ∈ (0, 1)

with the property that st − lim
Ô→∞

Ó Ô = 1 and st − lim
Ô→∞

Ó
Ô
Ô = 1. Based on these facts, we have lim

Ô→∞
[ Ô]Ó = ∞. This will

lead to check the convergence of the operators (9). Thus, we now obtain the theorem stated as:

Theorem 3.3. Suppose that the sequence (ÓÔ) Ô satisfies Remark 3.2 above and S Ô,Ó be a positive linear operator.
Then, we have:

StÓ − lim
Ô
∥ (SÔ,Ó(¥) − ¥ ∥ρα= 0, ∀¥ ∈ Cρ0 (R+).

Proof. Based on Lemma 1.1(i) and Theorem 2.1, we have:

∥ (SÔ,Ó(¥) − ¥ ∥ρ0 = sup
x∈R

|(SÔ,ÓÔ
e0)(x) − e0(x)|

1 + x2 ,

= sup
x∈R

|1 − 1|
1 + x2 ,

= 0.

In other words,

StÓ − lim
Ô
∥ (S Ô,Ó(¥) − ¥ ∥ρ0= 0.
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Again, based on Lemma 1.1 (ii) and Theorem 2.1, we have:

∥ (SÔ,Ó(¥) − ¥ ∥ρ0 = sup
x∈R

|(SÔ,ÓÔ
e1)(x) − e1(x)|

1 + x2 ,

= sup
x∈R

|x − x|
1 + x2 ,

= 0.

Using Lemma 1.1 and Theorem 2.1, we have:

∥ (SÔ,Ó(¥) − ¥ ∥ρ0 = sup
x∈R

∣∣∣(SÔ,ÓÔ
e2)(x) − e2(x)

∣∣∣
1 + x2 ,

= sup
x∈R

∣∣∣∣∣∣
x2 + x

1
[Ô]ÓÔ

(
1 +

1
ÓÔ

x
) − x2

∣∣∣∣∣∣
1 + x2 ,

= sup
x∈R

∣∣∣∣∣∣
(
1 +

1
ÓÔ [Ô]Ón

− 1
)

x2 + x
1

[Ô]ÓÔ

∣∣∣∣∣∣
1 + x2 ,

≤ sup
x∈R

∣∣∣∣∣∣ 1
ÓÔ [Ô]ÓÔ

x2 + x
1

[Ô]ÓÔ

∣∣∣∣∣∣ ,
≤ sup

x∈R

∣∣∣x2
∣∣∣ 1
ÓÔ [Ô]ÓÔ

+ |x|
1

[Ô]ÓÔ

 ,
=

∥ e2 ∥ρ0

1
ÓÔ [Ô]ÓÔ

+ ∥ e1 ∥ρ0

1
[Ô]ÓÔ

 ,
≤

 1
ÓÔ [Ô]ÓÔ

+
1

[Ô]ÓÔ

 .
From Remark 3.2, we have st − lim

Ô→∞
ÓÔ = 1. Furthermore, we also obtain lim

Ô→∞
[Ô] Ó = ∞. Consequently

StÓ − lim
Ô
∥ (SÔ,Ó(¥) − ¥ ∥ρ0= 0.

By employing Lemma 1.1 and also selecting A = C1, known as the Cesáro matrix of order one, ρ0(x) = 1+x2,
ρα(x) = 1 + x2+α for x ∈ R+ and α > 0, the proof is immediate from Theorem 3.1.

4. The Rate of Convergence

In this section, we present the rate of statistical convergence of the operators SÔ,Ó (9) by means
of weighted modulus of smoothness and Lipschitz type maximal functions. The weighted modulus of
smoothness ωρα correlated to the space Bρα(R+) of a function ¥ is defined as:

ωρα (¥; δ) = sup
x≥0, 0<i<δ

|¥(x + i) − ¥(x)|
1 + (x + i)2+α , δ > 0, α ≥ 0. (11)

It satisfies the following three axioms.
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(a) ωρα (¥; βδ) ≤ (β + 1)ωρα (¥; δ) for δ > 0 and β > 0 .

(b) ωρα (¥; Ôδ) ≤ Ôωρα (¥; δ) for δ > 0 and Ô ∈N.

(c) lim
δ→∞
ωρα (¥; δ) = 0.

The following theorem gives an error estimate of an operator SÔ,Ó for the unbounded function h by
means of weighted modulus of smoothness correlated to the space Bρα(R+).

Theorem 4.1. Suppose that Ó ∈ (0, 1) and α ≥ 0. Then, for any ¥ ∈ Bρα(R+), we have

∣∣∣(SÔ,Ó ¥)(x) − ¥(x)
∣∣∣ ≤ √

SÔ,Ó(µ2
x,α; x)

(
1 +

1
δ

√
SÔ,Ó(ϕ2

x; x)
)
ωρα (¥; δ),

where µx,α(y) = 1 +
(
x +

∣∣∣y − x
∣∣∣)2+α

as well as ϕx(y) =
∣∣∣y − x

∣∣∣ for y ≥ 0.

Proof. Suppose that Ô ∈N and ¥ ∈ Bρα(R+). Using equality (11) and axiom (a) above, we can write that

∣∣∣¥(y) − ¥(x)
∣∣∣ ≤ (

1 + (x +
∣∣∣y − x

∣∣∣)2+α
)(

1 +
1
δ

∣∣∣y − x
∣∣∣ )ωρα (¥; δ),

= µx,α(y)
(
1 +

1
δ
ϕx(y)

)
ωρα (¥; δ).

Next, using the Cauchy inequality of the positive linear operators yields

∣∣∣(SÔ,Ó ¥)(x) − ¥(x)
∣∣∣ ≤ [Ô]Ó

∞∑
s=0

Ós−1υÓs,Ô(x)
∫
R

∣∣∣¥(y) − ¥(x)
∣∣∣Ψ (

[Ô]Ó
Ós−1

1
y − [s]Ó

)
dÓy,

≤

(
SÔ,s,Ó(µx,α; x) +

1
δ
SÔ,s,Ó(µx,αϕx; x)

)
ωρα (¥; δ),

≤

√
SÔ,s,Ó(µ2

x,α; x)
(
1 +

1
δ

√
SÔ,s,Ó(ϕ2

x; x)
)
ωρα (¥; δ).

Now, we introduce the lemma given below, which may facilitate in proving the primary findings for
this research, since it is one of the facts which ensure that (SÔ,Ó¥)(x) ∈ Bρα(R+) .

Lemma 4.2. Suppose that 0 < Ó ≤ 1, then for i, Ô ∈N and x ∈ R+, we obtain

(VÔ,Ó ei)(x) ≤
1

[Ô]i−1
Ó (1 + x)ÔÓ

x +
2i−1

Ói−1
x(VÔ+1,Ó ei−1)(x). (12)

Proof. For s ∈N as well as 0 < Ó ≤ 1, we have the inequality given below:

1 ≤ [s + 1]Ó ≤ 2[s]Ó. (13)
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Now, let i ∈N. Using Equation (4), we have:

(VÔ,Óei)(x) =
∞∑

s=0

υÓÔ,s(x)ei

 [s]Ó
Ós−1 [Ô]Ó

 ,
=

∞∑
s=0

υÓÔ,s(x)

 [s]Ó
Ós−1 [Ô]Ó

i

,

=

∞∑
s=0

υÓÔ,s(x)
[s]i

Ó

Ó(s−1)i [Ô]i
Ó

,

=

∞∑
s=1

xυÓ
Ô+1,s−1(x)

[s]i−1
Ó

Ó(s−1)(i−1) [Ô]i−1
Ó

,

=

∞∑
s=0

xυÓ
Ô+1,s(x)

[s + 1]i−1
Ó

Ós(i−1) [Ô]i−1
Ó

,

=
1

[Ô]i−1
Ó (1 + x)ÔÓ

x + x
∞∑

s=1

υÓ
Ô+1,s(x)

[s + 1]i−1
Ó

Ós(i−1) [Ô]i−1
Ó

.

Using Inequality (13), we have,

(VÔ,Ó ei)(x) ≤
x

[Ô]i−1
Ó (1 + x)ÔÓ

+ x
∞∑

s=1

υÓ
Ô+1,s(x)

(2 [s]Ó)i−1

Ós(i−1) [Ô]i−1
Ó

,

=
x

[Ô]i−1
Ó (1 + x)ÔÓ

+
2i−1

Ói−1
x
∞∑

s=1

υÓ
Ô+1,s(x)

[s]i−1
Ó

Ó(s−1)(i−1) [Ô]i−1
Ó

.

Based on Equation (4), we have that:

(VÔ+1,Ó ei−1)(x) =
∞∑

s=1

υÓ
Ô+1,s(x)

[s]i−1
Ó

Ó(s−1)(i−1) [Ô]i−1
Ó

.

Consequently,

(VÔ,Ó ei)(x) ≤
1

[Ô]i−1
Ó (1 + x)ÔÓ

x +
2i−1

Ói−1
x(VÔ+1,Óei−1)(x).

Remark 4.3. Any positive and linear operator is monotone. Theorem 2.1 and Lemma 12 ensure that (SÔ,Ó¥)(x) ∈
Bρα(R+) for any ¥ ∈ Bρα(R+) and α ∈N0, whereN0 = {0} ∪N.

We may state the major outcome of this section as follows:

Theorem 4.4. Let (ÓÔ)Ô be the sequence satisfying Remark 3.2 above and α ∈ N0. Then, for every ¥ ∈ Bρα(R+), we
have

lim
Ô
∥ (SÔ,ÓÔ

¥)(x) − ¥(x) ∥ρα≤ 3Cαωρα (¥; δÔ),

where Cα > 0 is a constant and δÔ =

√
1

ÓÔ[Ô]ÓÔ

.
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Proof. From Lemma 1.1, we have the following:

SÔ,ÓÔ
(ϕ2

x; x) =

x2 + x
1

[Ô]ÓÔ

(
1 +

1
ÓÔ

x
) − x2,

=

1 +
1

ÓÔ [Ô]ÓÔ

− 1

 x2 + x
1

[Ô]ÓÔ

,

=
1

ÓÔ [Ô]ÓÔ

x2 +
1

[Ô]ÓÔ

x.

Consequently, we have the inequality:

SÔ,ÓÔ
(ϕ2

x; x) ≤
1

ÓÔ [Ô]ÓÔ

x2 +
3

[Ô]Ó Ô

x. (14)

Let α ≥ 0 be a constant and ¥ ∈ Bρα( R+). Using Theorem 4.1 as well as the inequality in (14) above, we get
the following:

lim
Ô
∥ (SÔ,Ó¥)(x) − ¥(x) ∥ρα =

∣∣∣(SÔ,Ó¥)(x) − ¥(x)
∣∣∣

1 + x2+α ,

≤

√
SÔ,Ó(µ2

x,α; x)

1 + x2+α

1 +
1
δ

√
SÔ,Ó(ϕ2

x; x)
1 + x1+α

ωρα (¥; δ),

≤

√
SÔ,Ó(µ2

x,α; x)

1 + x2+α

1 +
1
δ

√∣∣∣∣∣∣ 1
ÓÔ [Ô]ÓÔ

x2 +
3

[Ô]ÓÔ

x

∣∣∣∣∣∣
 ,

× ωρα (¥; δ),

≤

√
SÔ,Ó(µ2

x,α; x)

1 + x2+α

1 +
1
δ

√
1

ÓÔ [Ô]ÓÔ

∥ e2 ∥ρα +
3

[Ô]ÓÔ

∥ e2 ∥ρα


× ωρα (¥; δ).

Furthermore,

lim
Ô
∥ (SÔ,ÓÔ

¥)(x) − ¥(x) ∥ρα ≤

√
SÔ,Ó(µ2

x,α; x)

1 + x2+α

1 +
2
δ

√
1

ÓÔ [Ô]ÓÔ

ωρα (¥; δ),

≤∥ SÔ,Ó(µ2
x,α; x) ∥δα

1 +
2
δ

√
1

ÓÔ [Ô]ÓÔ

ωρα (¥; δ).

Let Cα =∥ SÔ,Ó(µ2
x,α; x) ∥δα and choose δ =

√
1

ÓÔ [Ô]ÓÔ

, we have:

lim
Ô
∥ (SÔ,ÓÔ

¥)(x) − ¥(x) ∥ρα≤ 3Cαωρα (¥; δÔ).

Remark 4.5. Since (ÓÔ)Ô satisfies Remark 3.2, the sequence (δ Ô)Ô is statistically null, that is st − lim
Ô
ωρα (¥; δÔ) = 0.

Therefore, Theorem 4.4 above gives the statistical rate of convergence of S Ô,ÓÔ
(x) to ¥ .
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5. Graphical analysis

Using computer software, we will demonstrate some numerical examples with illustrative graphics.

Example 5.1. Let ¥(x) = (x − 1
5 )(x − 4

9 ), Ó = 0.95 and n ∈ {10, 30, 80}. The convergence of the operator towards the
function ¥(x) is shown in Figure 1.

x (for q=0.95)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5

10

15

20

25

30

For n=10

For n=30

For n=80

function

Figure 1: convergence of the operator towards the function ¥(x) = (x − 1
5 )(x − 4

9 )

Example 5.2. Let ¥(x) = x2
− 1, Ó = 1 and n ∈ {10, 30, 60}. The convergence of the operator towards the function

¥(x) is shown in Figure 2.
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x ( for q=1 )

1 1.5 2 2.5
0

1

2

3

4

5

6

7

For n=10

For n=30

For n=60

function

Figure 2: convergence of the operator towards the function ¥(x) = x2
− 1

Example 5.3. Let f (x) = x2
− 4x + 3. For n = 50 and different values of Ó, the convergence of the operator towards

the function f (x) is shown in Figure 3.
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x (for n=50)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5

10

15

20

25

30

35

40

For q=0.5

For q=0.85

For q=1

function

Figure 3: Convergence of the operator for different values of Ó

6. Conclusion

With the facilitation of Bohman Korovkin-type theorem, the investigation on weighted statistical ap-
proximation behavior of wavelets Kantorovich Ó-Baskakov operators SÔ,Ó is discussed under this study.
Moreover, the statistical rate of the operators SÔ,Ó is provided in this research with regard to the weighted
modulus of smoothness correlated to the space Bρα(R+). The statistical approximation properties discussed
in this study are the same as those of classical Ó-Baskakov operators defined by (4) since they share the
same moments.
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