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Inequalities with parameters for twice-differentiable functions
involving Riemann-Liouville fractional integrals

Fatih Hezenci?®

*Department of Mathematics, Faculty of Science and Arts, Duzce University, Turkiye

Abstract. In this paper, it is given an equality for twice-differentiable functions whose second derivatives
in absolute value are convex. By using this equality, it is established several left and right Hermite-
Hadamard type inequalities and Simpson type inequalities for the case of Riemann-Liouville fractional

integral. Namely, midpoint, trapezoid and also Simpson type inequalities are obtained for Riemann-
Liouville fractional integral by using special cases of main results.

1. Introduction

The theory of inequalities has an important place in nonlinear analysis. Over the last two decade, one
of the most famous inequalities for convex functions is Hermite-Hadamard inequality because of its rich
geometrical significance and applications (see Ref. [11] and p. 137 of Ref. [28]). Thus, remarkable number
of mathematicians have considered the Hermite-Hadamard-type inequalities and related these inequalities
such as trapezoid, midpoint, and Simpson type inequalities.

The Hermite-Hadamard-type inequalities are investigated firstly by C. Hermite and ]. Hadamard for

convex functions. Let f : I — IR be a convex function on the interval I of real numbers and a,b € I with
a < b. Then, the following inequalities

b
b
f(a;b)s 1 ff(x)dxsf(a);rf()

b-a )

are valid for the case of all convex functions, is well-known in the literature as the Hermite-Hadamard
inequality. If f is concave, then both inequalities in (1) hold to the reverse direction.

In recent years, a great number of studies have been written about trapezoid and midpoint type
inequalities which give bounds for the right-hand side and left-hand side of the inequality (1), respectively.
Dragomir and Agarwal first obtained trapezoid inequalities for convex functions in [10] and Kirmaci
first established midpoint inequalities for convex functions in the paper [21]. In the paper [34], it was
generalized the inequalities (1) for fractional integrals and it was also presented some corresponding
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trapezoid type inequalities. In addition to this, some fractional midpoint type inequalities for the case of
convex functions were investigated in the paper [18]. On the other hand, Dragomir established the Hermite—
Hadamard inequalities for co—ordinated convex functions in the paper [12]. Moreover, the midpoint and
trapezoid type inequalities for co-ordinated convex functions were established in the papers [22] and [32],
respectively. Furthermore, Tung et al. proved some fractional midpoint type inequalities for co—ordinated
convex functions in [40]. In [38], Sarikaya and Ertugral first introduced new fractional integrals, are called
generalized fractional integrals. The authors also proved several midpoint and trapezoid type inequalities
for generalized fractional integrals. For results connected with these type of inequalities one can see Refs.
[6,8,9,20, 25] and the references therein.

In the literature, considerable number of researchers have focused on twice differentiable functions to ob-
tain many important inequalities. For instance, Barani et al. established inequalities for twice-differentiable
convex functions, which are connected with the Hermite-Hadamard inequalities in [4, 5]. In the paper [26],
it was proved the Hermite-Hadamard type inequalities for functions whose second derivatives absolute
values are P—convex. Some new generalized fractional integral inequalities of midpoint and trapezoid
type for twice differentiable convex functions are obtained in [24]. Moreover, the authors established some
new inequalities of the Simpson and the Hermite-Hadamard-type for functions whose absolute values
of derivatives are convex in [30]. In addition, ]. Park investigated new estimates on generalization of
Hadamard, Ostrowski and Simpson type inequalities for functions whose second derivatives in absolute
value at certain powers are convex and quasi—convex functions in [27]. In addition, it is proved some mid-
point and trapezoid type inequalities for functions whose second derivatives in absolute value are convex
in [7]. For more information about these type of inequalities involving twice-differentiable functions, we
refer to[2, 16, 31, 35, 41, 42].

We will present mathematical preliminaries of fractional calculus theory which are used further in the
following of this paper.

Definition 1.1. Let us consider f € Li[a, b]. The Riemann—Liouville integrals Jg, f and ] f of order a > 0 with
a > 0 are described as

Jarf(x) = ﬁ f (x=t* f(B)dt, x>a

and

b
o f) = ﬁ f (t -2 f(hit, x<b,

respectively. Here, I'() is the Gamma function and its defined by

T(a)zf e"utdu.
0

Let us note that 2, f(x) = J)_f(x) = f(x).
Remark 1.2. For @ = 1 in Definition 1.1, the fractional integral becomes to the classical integral.

The fractional integral inequalities and applications by using Riemann-Liouville fractional integral
have been investigated by many authors. For example, Sarikaya and Yildirim investigated the the
Hermite-Hadamard-type inequality for the Riemann-Liouville fractional integrals in [36]. In the paper
[29], some new integral inequalities of Hermite-Hadamard and Simpson type using s— (a, m)—convex
function by Riemann-Liouville fractional integrals in order to generalize Hermite-Hadamard-type in-
equalities. Furthermore, Tomar et al. proved for several new Hermite-Hadamard-type of inequalities
for Riemann-Liouville fractional integrals on twice-differentiable functions in [39]. The reader is referred
to [13, 14, 23, 33] and the references therein for more information and unexplained subjects about sev-
eral properties of Riemann-Liouville fractional integrals. While many mathematicians have studied the
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Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals, some authors have also in-
vestigated the Hermite-Hadamard inequalities for other type of fractional integrals such as Hadamard
fractional integrals, Conformable fractional integrals, k—fractional integral, etc. There have been a great
number of research papers written on these subjects, (see, [1, 3, 19, 37]) and the references therein.

It is remarkable that Sarikaya et al. [34] first give the following interesting integral inequalities of the
Hermite-Hadamard-type involving Riemann-Liouville fractional integrals.

Theorem 1.3 (See [34]). Let f : [a,b] — R denote a positive function with O <a < band f € L [a,b]. Let f be a
convex function on [a, b]. Then, the following inequalities for fractional integrals

a+b F(a+1) f@+f(
R E
2 )5 20- 2

[f;af(b )+ Ji_f(a) 2)

are valid with a > 0.
Remark 1.4. If we choose o = 1, then inequality (2) reduces to inequality (1).

Igbal et. al. [18] establish new upper bound for the left-hand side of (2) for convex functions is proposed
in the following theorem.

Theorem 1.5 (See [18]). Let us consider that f : [a,b] — R is differentiable function on (a,b) with a < b. If |f’| is
convex on [a, b, then the following midpoint type inequality for Riemann—Liouville fractional integrals

‘f ””’ zr((“” [12.£0) + Ji_f@))| <

2‘”1(0: +1) [
is valid with 0 < a < 1.

Theorem 1.6 (See [34]). Let us note that f : [a,b] — R is differentiable function on (a,b) with a < b. If |f’| is
convex on [a, b], then the following trapezoid type inequality for Riemann—Liouville fractional integrals holds:

‘f(a)+f(b) F(a+1)
2(b-a)

a 1 ,
i f @)+ Jif@]| < 2(a<+1)( _27)[
The main purpose of this paper is to establish left and right Hermite-Hadamard-type inequalities and
also Simpson type inequalities for Riemann-Liouville fractional integral. The entire structure of the study
takes the form of four sections including introduction. In Sect. 2, an identity for twice-differentiable
functions is investigated. By utilizing this equality, parameterized Hermite-Hadamard-types inequalities
and Simpson type inequalities for Riemann-Liouville fractional integral are proved. With the help of special
choices, midpoint, trapezoid and simpson type inequalities are given in subsections of Sect. 3, respectively.
Moreover, some remarks and corollaries are presented. Some conclusions and further directions of research
are discussed in Sect. 4.

2. Main results

Let’s start with the following lemma, which will form the basic structure of our article to obtain our
main results.

Lemma 2.1. Let us note that f : [a,b] — R is an absolutely continuous mapping (a,b) such that f” € L ([a, b]).
Then, the following equality holds:

Q*(a+1)+p1 - A1) (f(ﬂ)+f(b))+ A =B f(a+b)

20 (a +1) 2 20 (@ + 1) 3)
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F(a+1)

oo S O+ f @]

(b-a

=—————I[h+L-6L -1,
2a+3(0(+1)[2+3 1—14]

where

L= (=" =t = Aa) £ (Sta+ o) dt,

o

Mt + Ay = (1= 7 (Sta + Lp)dt,
2 2

II
o .

(Bt +pa— @=D"") f (Bta + Lb)dt,

&
I
o

1
= [(@=0"" =it = B2) f7 (Lo + Ztb)dt
0

and A1 + Ay + [32 =21 with a > 0.

Proof. By using integration by parts, we obtain

1
14t 1-t
=f((1—t)“+1—A1t—A2)f ( o a+Tb)dt
0

_2(A1+/\2) , 2(1—/\2) , a+b
~ b-a fr@+ b-a f(z)

1+t 1—t
(b ) f(A1+(a+1)(1—t) )f( == b)dt
_2(A1+/\2) , 2(1—/\2) , a+b
- 20 20 p (0

1
4d(@+1+Ay) fa+b) da(a+1) a1 (141
— f( )+ (b_a)z f(l—t) f(T +—b

(b—-a)® 2

By using the equation (4) and with the help of the change of the variable x = 1

be rewritten as follows

3278

g+ b fort €[0,1], it can

)
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2(A1 + Ap)

n =20 f’(a)+2(;:;\2)f’(a;b) (4A12f()

atb

_4(a+1+/\1)f(a+b)+ 27@ D0+ ) 1 et f (g ax,

(b —a)? 2 (b—-a)**? ['(a) y

Similarly, we have

L= 2()\1+/\2)f(b) 2(1- ;\z)f(a;rb) (4A12f()

b
4(a+1+A1) a+b 2“*2(a+1)1“(a+1) 1 a1
b - d
(b—-a)* f ( 2 ) (b -a)**? f xS ey

z(ﬁl+ﬁ2—1)f,(a+b)+2(2“”—ﬁz)

3 , 4(a+1+p1) (a+b
b= b-a 2 b= @ b - a)? ( 2 )
4Q2%a+D+p) - 2@+ Dl (a+1) 1 r ot
YT e @ (b—a)*?? F(a)”f =2 f @,
and
2 -1 b\ 2(2*"'-B 4(a+1 b
o 2B (000 2D el (o

b
_4(2“(a+1)+‘31) 2a+2(a+1)r(a+1) 1 o
(b - ll)z f (b) (b a)OH-Z T (a) ( LZ) f (X) dx.

2

From equations (5) and (8), we get

L+I3—-1—14

2(29%1 = By = Ay = Aa) 4% (@ +1)+ 1 — A1)

= — (f (@)= f (b)) + e (f @+ f )
8(A1—p1) (a+b) 22 (@ + DT (a+1) 7, N
Yo oo [12.f 0+ J_f @)].

3279
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_g)

Choosing A1 + A, + 2 = 2941 and multiplying the both sides of (9) by T

This completes the proof of Lemma 2.1. [J

we obtain equation (3).

is convex on [a,b] with o > 0. Then, we have the following inequality

@ (@+D)+p1—A1) (f@) +f () a+b
2¢ (@ +1) ( 2 ) 20‘(04+1)f( )

F(a+1)

“Soa S O+ f @]

(b —a)®

< W [Ql (a; A1, A2) + Qo (a;ﬂllﬁz)] [

fN (ﬂ)‘ +

£ o).

Here,

Q1 (@ A1, 1) = f|(1 B = Mt — Ao dt,

(10)
1
Qz (0(,‘ ﬁl,‘Bz) = f|(2 - t)a+1 - ﬁlt - ﬁ2| dt.
0
Proof. By taking modulus in Lemma 2.1, we have
Q*@+1)+p1—M)(f@)+ f(b) a+b
‘ 20 (o + 1) ( 2 )+2“(0<+1)f( ) -
o O+ S @]
2(b Ja b-

(o¢+1)2a+3[f‘(1‘t)ﬁHl Mt = Ao "( ;tb)'dt

1
_opotl _ 1 u u)’
+f|(1 B = Ayt A21’f (e + b))
0

1
+ | |@-0" =it B
/

(2t
f ( _ a+2b)‘dt

+j|(2 — Byt — o | (%a ; ?b)‘dt‘.
0
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Q% (a+1)+p1—M) (fa)+ f(b) N AM—=P1 _[(a+D
29 (ax + 1) 2 2% (o + 1)f

T ((; LRI
(a + ])2a+3 lf‘(l _ - A2|[ o )|
fl(l 01+1 - Mt - /\2‘ [ fu @ )‘ 1 + t f" (b)|]

1

+f|(2—t)a+1—,31t—,32|[¥

0

+f1|(2—t)“+1—ﬁ1t—52|[£
0

£ (@) + é 1z (b)” dt

ol 2

I @] 4

- (a+ 1)2a+3 [f'(l He! Alt—/\2|dt+f’(2 H*! — Bt - ,Bz‘dt][

This ends the proof of Theorem 2.2. [

Theorem 2.3. Assume that the assumptions of Lemma 2.1 is valid. Assume also that the function

convex on [a, b] with a > 0. Then, the following inequalities hold:

Y+ 1)+p1— A1) (f(a)+ f(b) . -B1 . fa+b
29 (a+ 1) 2 2“(0z+1)f

F(a+1)
2(b-a)

[Lﬁf )+ Ji_f @]

(b—a)

= W((Pl (@, p; A, A2) + @2 (o, p; 1, B2))

l[s £ @[ + | (b)|q]3 ( £ @ +3|f (b)rﬂ
X 1 * 1

Ly o) a

3281
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f// (ﬂ)) +

(b —a)? ”
- (1 (@, p Av, A2) + 92 (0, p3 B, ) | £ ),

- (a+1)2"‘+1+3
141
wherep +y= 1 and

1

1 P
o1 (a,p; A1, Ag) = (f|(1 — " = Ayt = Aoff dt) ,
0

1 ’
2 (a,p; B1,B2) = (“(2 — )~ Byt~ ﬁ2|p dt) .
0
Proof. By applying Holder inequality in inequality (11), it follows

Q% (a+1)+p1— M) (fa)+ f(b) L M-B a+b)
29 (a+ 1) 2 2“(a+1)f

F(a+1)
2(b-a)"

[Lﬁf )+ f @)

1

2 | ) oy
< %l]('(l—t)aﬂ_/\lt—fiﬂ dt [f 1+t b) dt]
0

0

(1=t 1+t
f ( 2 ‘T b)

1
+f(|(1 — 1)+ —Alt—A2|pdt)’l’[
0

1 1

o%H

1 P 1 q
_pat+l _ p ’r 2t b 1
+[Of|(2 D = Bit — B dt] [Off ( . b) dt]
1 bl t o i
_ pa+l _ p 7 -t ]
L |

Q*@+1)+p1—M)(f@)+ f(b) a+b
2@+ 1) ( 2 )+2“(0z+1)f( )

F(a+1)
2(b-

[J;:f )+ Ji_f @]
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1

1 P
b—a) o
g% [f|(1—t) +1—/\1t—/\2lpdtJ
0

1

[( 1 g 1
% [f 1+t f,,( )|ﬂ f// (b)| ] _,'_[f f//( ﬂ 2 (b)|q:ldt]

0 0

1

1
+ |(2 — f)a+1 — [311’ — ﬁz'p dt]
/

x[ fl f"<>|" = "<b>| ]+[ fl tf"(b))’*]dt]

17 2_
fr@f + 25
0

_ )2 ! % 1 %
) (zx(il% [f'“‘t)m‘w-blpdf] +[f|(2—t)“+1—ﬁlt—ﬁ2|pdt]
0

0

|:(3 f/r (ﬂ)|q+ f// (b)|q]}a [f// (a)|"7+3 f// (b)|q];]
X 1 + 7 .

Let us consider a; = 3 =|f" (a)(q and b, = 3|f” (b)|q . Using the facts that,

f( =1
Z(ak+bk) <Zak+2b5,0<s<1
k=1

and 1+ 31 < 4. The desired result can be obtained straightforwardly. This finishes the proof of Theorem
23. O

q .
”I", g = 1is convex

Theorem 2.4. Suppose that the assumptions of Lemma 2.1 hold. Suppose also that the function
on [a,b] with a > 0. Then, we have the following inequality

Q*@+1)+p1—M)(f@)+ f(b) a+b
29 (@ + 1) ( 2 ) 2“(0z+1)f( )

F(a+1)
2(b-a)

[Lﬁf )+ f @]

-

w [(Ql (a; A1, A2)' 7
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y (Q1 (a; A1, Az) + Q3 (a, Ag, Ag) Q1 (a; A1, A2) — Q3 (ar, Ay, Ar)

17 q (Y 17 q %
: @'+ . iy

. O (a; A1, An) + Qs (a, Aq, A
f (a)‘q_'_ 1(a; Ay 2)2 3 (a, A1, A2)

(Q1 (a; A1, A2) — Qs (ar, A1, Ag)
* 2

1% (b))q);l

Q4 (a; /31/52)

+(Q (s p1, o)) (ZQZ (a; 51’:82)2_ Q4 (a;B1, p2)

@+

o]

20 (a; 1, ﬁz) Q4 (a; p1, B2)

(Q4 ((X ‘81 ﬁZ) f//( ‘
Here, Oy (ov; A1, A2) and Qs (a; B1, B2) are defined in (10) and

1
Qs (o, M, A2) = [0 =0 = At = Ag| tat,
0

1
Qu(a; 1, B2) = f|(2 - - Bt — ﬁ2| tdt.
0

Proof. By applying power-mean inequality in inequality (11), we have

Q% (@+1)+p1— A1) (f(@)+ f(b) N M—=p1 _[a+b
2¢(a+1) 2 2“(a+1)f

F(a—i—l)
2(b

1
(b-a) [ o
< — |-+t —/\1t—/\2|dt]
(a+1)2 [of

[LHf )+ I3 f @]

_1
14

1

_ q
(ﬂa ub)‘ dt]

X f|(1 B = At = Ay
1

+ f|(1—t)“+1—/\1t—)t2|dt]
0
1

x[f|(1—t)“+l—/\1t—A2
0

2

1
1‘7

1

q
L(1—-t 14t
(e o

@) )

3284
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~1
14

( _patl _
+[0f|(2 H** — Byt ﬁ2|dt]

1

_ patl _

x[0f|(2 ) it — Pa

1

a+l

+ bf|(2—t) —ﬁlt—ﬁz|dt]

f"(%a + %b)'th]q

1
X |(2 _ t)a+1 _ﬁ]t _ﬁz
/

it 2—t
f (2‘”r 2 b)

Since

at| |.
f,,q

QY a+1D)+p1—A1) (f(a)+ f(b) N M-=PB1 _[(a+Db
29 (a + 1) 2 29 ( + 1)

is convex, we obtain

F(a+1)
2(b-a)

1
(b-a) [ "
(a+1)2 [ J

[Lﬁf )+ I3 f @]

_1
14

1

" [f =0 = dat = ol [ | @f + 2 | 0| dt]

[\ O

1

i (b)|q] dt]q\

1+t

+ f|(1 a+1 /\1t-A2|[

f//( )|‘7

_1
1‘7

1
+ [ |@-8"" =it = dt]
/

3285
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x [ fl @01 = put = pal [ | @l + f"(b)lq]dt]q

[\ O

1

1ol ]

f//( )|‘7

+ f|(2—t)“+1—ﬁ1t—ﬁ2|[

0

(s

= m [(Q1 (a; A1, A2)™

—

7

y (Q1 (a; A1, Ag) -ZF Qs (o, A1, A2) ’f" (a)|'1 N Q1 (a; A1, A2) ; Qs (o, A1, A2)

I <b>1'*)

i (bm);l

Qy (a; ﬁlfﬁZ)

. Q1 (@ A1, Aa) + Qs (@, Ag, A
f (a)‘q_'_ 1(a; Ay 2)2 3 (a, A1, A2)

(Q1 (a; A1, A2) = Qs (a, A1, Ag)
* 2

f// (a)|‘7

+(Qa (031, ) .

(202 (D{, ﬁl/ ,82) Q4 (0(, ﬁl/ ,BZ) fll (b)| )

(Q4(a BB o ) s 20 (@31, fo) = @B o) o, (”‘)3”
2

Then, we obtain the desired result of Theorem 2.4. [

3. Special cases

3.1. Special choices of main results to obtain fractional midpoint type inequalities

In this subsection, let us consider A; = A =0, 1 = — (a + 1) 2% and B, = 2°*!. Then, main results will be
reduced midpoint type inequalities for the case of Riemann-Liouville fractional integral forms.

Remark 3.1. Assume that the assumptions of Theorem 2.2 hold. Then, the following midpoint type inequality for
Riemann—Liouville fractional integral holds:

(50 ) s o+ s

4

f// (ﬂ)| +

b-aPp1 1 a-3
Sz(a+1)[a+z+ 8 “

which is proved by [17].
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Remark 3.2. Let us consider a = 1 in Remark 3.1. Then, the following midpoint type inequality holds:

‘f(“b) ff(t)dt o)),

which is given by [31, Theorem 5].

(b [

17 )|

Corollary 3.3. Suppose that the assumptions of Theorem 2.3 hold. Then, the following inequality

(50 T s e s

(b-a)

< —— 7
(o +1)2a+3

y |[3 f// (ll)|q + If// (b)|q]; N ( f// (ﬂ)|q +3 f// (b)|q]}7]
4 4

(b —a)’

- (a + 1) 21+a+%

(<P1 (a,p;0,0) + @2 (a, p;—(a+1)2%, 2"‘”))

(@1 (@, p:0,0) + @2 (a, p; = (@ + 1) 2%, 2 ) | @)| + |7 0)]]

1
is valid. Here, 717 +1=1and ¢ (a,p;0,0) = (W)” .

q

Remark 3.4. In Corollary 3.3, let us note that « = 1. Then, the following inequalities hold:

y 1
a+b 1 b-a?( 1 Y
‘f(T)_w—a)ff(t)dt— = (559)
x “3 o (”)V]; * (3 fr@ + <b>lﬂ
4 4

S(b—a)z( 4 )v[
16 \2p+1

which are established in the paper [7, Corollary 4.8].

4

f// (ﬂ)| +

Corollary 3.5. If the assumptions of Theorem 2.4 hold, then the following inequality

a+b F(oz+1)
i(5h)- o)

_ - |1 [(eralr@f s @2 I20IA%
T (a+ 1203 |a+2 2(a +3)

[1.f ) + ¢ f @)]
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@+ @ + @+l o )] (221 -}
¥ 2G5 +( —5 +2 1(04—3))

77 q 2a+3 - (0( + 4) 24" 1 0( 2) 7"
f" @) (2(a+2)(a+3)+ )’f (b)|)
o]

" @[+ (2(3;31)”“_1(%(3—_7))

)

2043 _(q 4+ 4) 2071 (q—2)
+((2(a+2)(a+3)+ 3 )

is valid.

Proof. Let us consider the following notations

1
10,00 = [|@-p™|dt = 215
0

1
D (5= (@ +1)2%,2%1) = [|@ = " + (@ + 1) 2% =221 |dt = 251+ 2071 (a - 3),
0
(13)

1
Q3 (2;0,0) = [ |1 - )| tdt = miaryy,
0

1 Da+3_ 4 20 (=2
O ae D22 = [0 s @ D202 = Bt 22,

If we substitute equalities (13) in Theorem 2.4, then the desired result of Corollary 3.5 is obtained. [J

Remark 3.6. If we choose a = 1 in Corollary 3.5, then the following midpoint type inequality holds:

b
a+b 1
f(z)—w_m]}ww

_o-?|(3lf" O +5|7 @Y (3] @[ +5] O
=T 8 ’ 8 ’

which is presented in [30, Proposition 5].

3.2. Special cases of main results to obtain fractional trapezoid type inequalities
In this subsection, let us consider A; = 1 = 2%, A, = 2% and B = 2%+l Then, main results will be
reduced trapezoid type inequalities for Riemann-Liouville fractional integral forms.

Corollary 3.7. Suppose that the assumptions of Theorem 2.2 hold. Then, the following trapezoid type inequality for
Riemann—Liouville fractional integral holds:

f@+f0) F(a+1)

7 ap_a eSO+ f@)]
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- (b-a)ia [
4(a+1)(x+2)

f// (ﬂ)| +

£ o]

Remark 3.8. Let us now note that for « = 1 in Corollary 3.7, then the following trapezoid type inequality holds:

b
b
‘f(a);f()_(bia)ff(t)dtS

which is given in [30, Proposition 2].

4

(b—a)’
|

f// (ﬂ)| +

Corollary 3.9. Assume that the assumptions of Theorem 2.3 hold. Then, the following trapezoid type inequality

f@+f®) Tat
| - o O+ ff @)

N2
: % (1 (@, p:=2%,2%) + o (o, p; =27, 2*))

(
X

(b —a)*
- (a +1) 2a+1+%

@l +3
1

WWHW®W [ WMT
1 +

S —— |

((Pl (a, p; =2%,27) + @3 (a, p;—2%, 2a+1)) [

fN (ﬂ)' +

f/l (b)”
. . 1,1 _
is valid. Here, st = 1.

Corollary 3.10. If the assumptions of Theorem 2.4 hold, then the following inequality holds:

f@+f® T(a+1) g, )
‘ T2(b-a)f [ a+f(b)+]b_f(a)]

(b-a)? . 1 \'7s
S(0¢+1)20‘+3[(2 1_0c+2)
MIes a+4

3 2(@+2)(a+3)

2« 1
+((T 2(oc+3))

1_2a+2
+
( a+2

T

17 ‘ ol 1 1 b|q
rrof (55 - s b o

ﬂwwfl

’r q a+4
fr@f+ ( 2(a+2)(a+3))

1-1
+3- 2“—1) ”
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1

Za—l 1 —2a+ . q o« a+4 2a+3 . q q
X[((7 3 2@ +3) @ + ( 2(a+2)(a+3))|f (b)|)

24 a+4—24+3 , sa-1 1 _»9 y
5+ sy ol + (7 + 1 +3))f()|)H

Proof. Consider the following notations

a+27

1
Oy (;-2%,2% = [|1 -0 =20 (1 = p|dt =221 = L5
0

_24r+2
a+2

+3.2071,

1
y (a;—2%,2041) = 0f|(z — ) —29 2 - p)|dt =1
(14)

1
(a+2)(a+3)”

1
Qs (a;-2%,2%) = [|1 =™ =20 (1 = p)|tdt = I~ ~
0

3 (a+2)(a+3) *

1
4 ;7 a/ = - - - = - + ;
Qy (@5 -2%,201) = [|@-H™" =20 - p)|tdt = L + =20
0

If we substitute equalities (14) in Theorem 2.4, then the desired result of Corollary 3.10 is obtained. [

Remark 3.11. Let us now note that for & = 1 in Corollary 3.10, the following trapezoid type inequality holds:

b
b
f(a)+f()_(bia)ff(t)dt

2

(b_a 1|7 @\ +5|f” ®)| g 5|f”(a)|q+11 £ @) ;
24 16 16 ’

which is established by [30, Proposition 6].

3.3. Special choices of main results to obtain fractional Simpson type inequalities

In this subsection, let us consider A; = —w, Ay = w, B = —M and 8, = 2241 Then,
main results will be reduced Simpson type inequalities for the case of Riemann-Liouville fractional integral
forms.

Remark 3.12. Assume that the assumptions of Theorem 2.2 hold. Then, the following midpoint type inequality for
Riemann—Liouville fractional integral holds:

Hf()+4f( )+f<b>] e IR IC)

(b - a)? 22N a+1) 22N (a+1)
e e e
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£ @) +

ol

207l (a+1) 297 1(a+1 [
3 7
which is proved by [15]. Here,

+Q2 ((X,‘

Q, (0(; 20~ 1(3a+1) 2471 a+1)) f|(1 )a+1 — Ayt — A2|dt

=11+ (2“(a+1))1+%  2v ()
= \—3 6’

dt.

1
Q, (a; _2“"1(;-%—1), 2“*1(3%1)) _ f|(2 — el g 5(a+é)2‘*’1 f_ pa+l

Remark 3.13. Let us consider a = 1 in Remark 3.1. Then, the following Simpson type inequality holds:

s () sol- 5 )fmdt

which is given in [30, Proposition 3].

-

4

e [f" @]+

Remark 3.14. Suppose that the assumptions of Theorem 2.3 hold. Then, the following inequality

2(0-a)"

-2 ro]-He Bl o

(b—-a)? 22 a+1) 22 (a+1)
—(a+1)2a+3(¢1(“”’_ E )

a-1
+(P2 (a, P; — %’ Za+1))

{eetiony (rorror)]
4 4

. -a ( (ap'_za-l(aﬂ) 2“‘1(0(+1))
T@+pret U s T8

a-1
+(P2 (a, p; — %’ 20‘+1)) [

which are established by [15, Theorem 3].

44

£ @)+

Corollary 3.15. If the assumptions of Theorem 2.4 hold, then the following inequality

Hf<>+4f( )+f<b>] e CEICRY 0]
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_(b-ay
T (@ +1)2043

|1 @)

1 (@) - 1/’3 @ (b)|q)3

1% <b>|‘7);l

¢4()

f//( )|‘7

[(wl (@) + ¥3 (@)

Y1 (@) + 1,03 (@)

f//( )|‘7

+(1,b1 (@) = x3 ()

+ (Yo (ac))l‘i {(—2% (a)z_ $: @ " (a)|q

7 o) )

o]

(1P4 (@) 2y () — P4 (@)
2

f//( |

3292

is valid. Here, Y (@) = (y (04/ w, z l(a“ ) and P (@) = (a;—%‘%&,zaﬂ) are defined in (10) and

a-1 a-1 1 . .
Y3 () = Qs (oz; —#, %) and Py (o) = Qy (oz; —%,Z““) are given in (12).

Remark 3.16. If we choose o = 1 in Corollary 3.15, then the following midpoint type inequality holds:

‘%[f(a) i (5)+ f(b)]—ﬁfbf(t)dt

£ @) +133

3 (b _ a)2 59 ) q fN (b)|‘7 % 133 )f/l (a)|‘7 +59 fN (b)|‘7 %
TS 3% 26 * 3% 26 ’

which is given in [30, Proposition 7].

4. Conclusion

In this paper, an identity is presented for the case of twice-differentiable functions whose second
derivatives are convex. With the help of this equality, it is given midpoint, trapezoid and simpson type
inequalities for Riemann-Liouville fractional integral. Furthermore, it is provided the our results by using

special cases of obtained theorems.

In future studies of the mathematicians, improvement or generalization of our results can be investigated
by using different kind of convex function classes or other type fractional integral operators. Moreover,
the field of mathematical inequalities remains ripe for exploration and innovation. Future researchers may
continue to explore new inequalities with diverse fractional types, building upon the foundation we have

laid with these type of inequalities.
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