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Abstract. We give a complete characterization of functions which are at the same time harmonic andM-
harmonic in the unit polydisc. These are precisely functions which are harmonic in each of the variables, or
equivalently those that can be written as a linear combination of functions which are in each of the variables
either holomorphic or conjugate holomorphic. As a consequence we obtain characterization of functions u
such that both u and us (an integer s ≥ 2) have this property. If we additionally assume that u is real valued,
then u is constant. Our results stand in contrast to results known for such functions in the unit ball in Cn.

1. Introduction

Motivation for this paper is the following result of Walter Rudin:

Theorem 1.1 ([6]). A function defined on the unit ball in Cn is pluriharmonic if and only if it is harmonic and
M-harmonic (i.e. annihilated by the invariant Laplacian ∆̃ on Bn).

We show that this is false if the unit ball is replaced by the unit polydisc Dn. Moreover, we give a
description of the space of all functions u which are simultaneously harmonic andM-harmonic inDn.

We use standard notation and terminology. The open unit ball in Cn is denoted by Bn, the unit polydisc
in Cn is

Dn = {z = (z1, . . . , zn) ∈ Cn : |z j| < 1, j = 1, . . . ,n}.

The space of all holomorphic functions in an open setΩ ⊂ Cn is denoted by H(Ω). We need also standard
first order differential operators

∂
∂z j
=

1
2

(
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We sometimes write ∂u
∂z j

and ∂u
∂z j

as uz j and uz j .
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Let us observe that

4
∂2u
∂z j∂z j

= ∆ ju =
∂2u
∂x2

j

+
∂2u
∂y2

j

is the usual Laplacian with respect to real variables x j and y j.
For the unit ball in Cn the invariant Laplacian is given by the following formula:

(∆̃u)(z) = (1 − |z|2)

∆u(z) − 4
n∑

i, j=1

ziz j
∂2u
∂zi∂z j

 .
The invariant Laplacian for the unit polydisc is given by the following formula:

(∆̃u)(z) = 4
n∑

j=1

(1 − |z j|
2)2 ∂2u
∂z j∂z j

=

n∑
j=1

(1 − |z j|
2)2∆ ju(z). (1)

A function u ∈ C2(Dn) is said to beM-harmonic if ∆̃u = 0 inDn.
We say that a function u ∈ C2(Dn) is separately harmonic if ∆ ju = 0 for all j = 1, . . .n, i.e. if u is

harmonic in each of the complex variables separately. We alert the reader that in some papers alternative
term n-harmonic is used instead of separately harmonic.

A function u ∈ C2(Ω) u is said to be pluriharmonic in a domainΩ ⊂ Cn if it is harmonic on every complex
line, see [5] for a discussion of pluriharmonic functions. Equivalently, u ∈ C2(Ω) is pluriharmonic if

∂2u
∂z j∂zk

(z) = 0 for all z ∈ Ω, j, k = 1, . . . ,n. (2)

2. Results

We have several vector spaces of functions defined on Dn: h(Dn) consisting of harmonic functions,
Mh(Dn) consisting of M-harmonic functions, sh(Dn) consisting of separately harmonic functions and
ph(Dn) consisting of pluriharmonic functions. The following propositions give some inclusions between
these spaces.

Proposition 2.1. If a function u is separately harmonic inDn, then u is harmonic andM-harmonic.

Proof. This follows from ∆ =
∑n

j=1 ∆ j and ∆̃ =
∑n

j=1(1 − |z j|
2)2∆ j.

Example 2.2. For z = (z1, z2) ∈ D2 and ζ = (ζ1, ζ2) ∈ T2 Stoll in his book [4], defines the function

u(z1, z2) =
[

1 − |z1|
2

|1 − z1ζ1|
2

]λ1+
1
2
[

1 − |z2|
2

|1 − z2ζ2|
2

]λ2+
1
2

and proves that, when λ1, λ2 ,
1
2 and λ2

1 + λ
2
2 =

1
2 , that this function isM-harmonic but not separately harmonic in

D2.

Proposition 2.3. If a function u is pluriharmonic inDn, then u is separately harmonic. In particular it is harmonic
andM-harmonic.

Proof. Every real valued pluriharmonc function u onDn is locally the real part of a holomorphic function.
Therefore every pluriharmonic function on Dn is locally represented as a sum f + 1̄, where f and 1 are
analytic. This implies u is separately harmonic.
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It is natural to ask if u is necessarily pluriharmonic under these conditions? The answer is no, as is seen
from the following example.

Example 2.4. The function u(z1, z2) = z1z̄2 is harmonic andM-harmonic inD2, but it is not pluriharmonic inD2.

Indeed, for a fixed z1 this function is conjugate analytic in z2 and for a fixed z2 it is analytic in z1. Hence it
is separately harmonic and thereforeM-harmonic. However, the restriction of u to the unit disc in the plane
{(λ, λ) : λ ∈ C} produces a function ϕ(λ) = |λ|2, which is subharmonic but not harmonic. Alternatively:

∂2u
∂z1∂z2

= 1 , 0.

Clearly, this example can be extended to any complex dimension n ≥ 3 by setting u(z1, z2, . . . zn) =
z1z̄2z3 · · · zn. This function is separately harmonic and therefore both harmonic andM - harmonic, but it is
not pluriharmonic. Therefore the analogue of Theorem 1.1 for the polydisc fails in any dimension n ≥ 2.

In order to present another class of functions, we need some notation. For J ⊂ {1, . . . ,n} = In we define
a mapping CJ : Dn

→ Dn by setting CJ(z) = w, where w j = z j if j < J and w j = z j if j ∈ J. If ψ : Dn
→ C is

holomorphic then ψ ◦ CJ is holomorphic in variables z j for j < J and conjugate holomorphic in variables z j
for j ∈ J. Hence, for holomorphic ψ, ψ ◦CJ is always separately harmonic. The set of all such functions is a
vector space which we denote by hJ(Dn), that is:

hJ(Dn) = {ψ ◦ CJ : ψ ∈ H(Dn)}. (3)

The functions in hJ(Dn) are conjugate analytic in variables z j with j ∈ J and analytic in the remaining
variables.

The vector sum of these function spaces is the following vector space:

Σh(Dn) =

∑
J⊂In

φJ : φJ ∈ hJ(Dn) for all J ⊂ In

 . (4)

It contains all holomorphic and all conjugate holomorphic functions. Using Propositions 2.1, 2.3 and the
above remarks we obtain the following inclusions:

ph(Dn) ∪ Σh(Dn) ⊂ sh(Dn) ⊂ h(Dn) ∩Mh(Dn). (5)

From the main result of this paper, Theorem 2.6 below, we can deduce that these inclusions are in fact
equalities.

Every subspace hJ(Dn) ofΣh(Dn) is a function algebra, which means that it is closed under multiplication.
However, the space Σh(Dn) is not an algebra: for example f (z1, z2) = z1 + z1z2 is in Σh(D2) but f 2 is not in
Σh(D2). Proposition 2.9 below gives more information on this failure ofΣh(Dn) to be an algebra. Aditionaly,
the vector sum

Σh(Dn) =
∑
J⊂In

hJ(Dn)

is not direct, even if we factor out constants. For example, if K = J1 ∩ J2 , ∅, where J1, J2 ⊂ In are distinct,
then any function f in hK(Dn) which depends only on variables z j with j ∈ K belongs to both spaces hJ1 (Dn)
and hJ2 (Dn).

Let Pk stand for the space of all homogeneous polynomials in x1, y1, . . . , xn, yn (or, equivalently in
z1, z1, . . . , zn, zn), of degree k, k ≥ 0 and set P−1 = P−2 = 0.

Let u be a real analytic function onDn. We have the following expansion:

u(z) =
∞∑

k=0

uk(z), z ∈ Dn, (6)
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where uk ∈ Pk, k ≥ 0. The series above converges locally uniformly and can be differentiated term by term
repeatedly. It is well known that harmonic functions are real analytic, the same is true for M -harmonic
functions by theory of elliptic equations.

It is convenient to use multi-index notation adapted for our purposes. Namely, for non negative integers
p1, q1, . . . , pn, qn we set p = (p1, . . . , pn),and q = (q1, . . . , qn). We interpret p · q as the usual dot product, i.e. as∑

j p jq j . We call (p, q) pure if p · q = 0, otherwise we call it mixed.
The order of multi-index (p, q) is |(p, q)| = |p| + |q| =

∑n
j=1 p j + q j. Let us set p + 1 j = (p1, . . . , p j + 1, . . . , pn),

q + 1 j = (q1, . . . , q j + 1, . . . , qn), and p − 1 j = (p1, . . . , p j − 1, . . . , pn), q − 1 j = (q1, . . . , q j − 1, . . . , qn) . Here we
interpret p j − 1 as zero, in the case p j = 0, similarly for q j. We define monomials zpz̄q of degree |(p, q)| by

zpz̄q = zp1

1 · · · z
pn
n z̄q1

1 · · · z̄
qn
n .

Note that zpzq is analytic (resp. belongs to Σh(Dn)) if and only if q = 0 (resp. (p, q) is pure). Using this
notation in (6) we can write

uk(z) =
∑
|(p,q)|=k

cp,qzpz̄q, u(z) =
∑
(p,q)

cp,qzpz̄q. (7)

Now assume (p, q) is pure and set J = { j : q j , 0}. Then the monomial zpz̄q belongs to hJ(Dn). Hence
u =

∑
(p,q) cp,qzpz̄q belongs to Σh(Dn) if and only if cp,q = 0 for all mixed (p, q).

Let us introduce the following second order linear partial differential operators acting on the space of
real analytic functions. Namely, we set

Λu(z) =
n∑

j=1

z jz̄ j∆ ju(z) = 4
∑
(p,q)

(p1q1 + · · · pnqn)cp,qzpz̄q (8)

and

Ψu(z) =
n∑

j=1

z2
j z̄

2
j∆ ju(z) = 4

∑
(p,q)

n∑
j=1

p jq jcp,qzp+1 j z̄q+1 j . (9)

Note that Λ maps the space Pk of all homogeneous polynomials of order k into itself, ∆ maps Pk into Pk−2
whileΨmaps Pk into Pk+2. We clearly have

∆̃u = ∆u − 2Λu +Ψu. (10)

Lemma 2.5. Let u be a harmonic function in the unit polydisc and let

u(z) =
∑
(p,q)

cp,qzpz̄q (11)

be its expansion into monomials in z j and z̄ j. Then u is M-harmonic if and only if the coefficients cp,q satisfy the
following recurrent formula:

(p · q)cp,q =
1
2

n∑
j=1

(p j − 1)(q j − 1)cp−1 j,q−1 j . (12)

Proof. Since ∆u = 0 we see, using (10), that ∆̃u = 0 if and only ifΨu = 2Λu inDn. However, we can rewrite
(9) in the following form:

Ψu(z) = 4
n∑

j=1

∑
(p,q)

(p j − 1)(q j − 1)cp−1 j,q−1 j z
pz̄q. (13)

Uniqueness of expansion of real analytic functions combined with (13) and (8) gives equivalence of Ψu =
2Λu with (12).
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Theorem 2.6. Σh(Dn) = sh(Dn) = h(Dn) ∩Mh(Dn).

Proof. In view of (5) it suffices to prove that h(Dn)∩Mh(Dn) ⊂ Σh(Dn). Let us choose u ∈ h(Dn)∩Mh(Dn).
Then we have

u(z) =
∑
(p,q)

ap,qzpz̄q =
∑

(p,q) pure

ap,qzpz̄q +
∑

(p,q) mixed

ap,qzpz̄q = up(z) + um(z). (14)

Clearly up belongs to Σh(Dn) and um belongs to h(Dn)∩Mh(Dn). Let us prove that um = 0, which completes
the proof. We have an expansion

um(z) =
∑
(p,q)

cp,qzpz̄q, z ∈ Dn, (15)

where cp,q = 0 for pure (p, q) and cp,q = ap,q for mixed (p, q). Clearly cp,q = 0 for |(p, q)| ≤ 1. The coefficients cp,q
in (15) satisfy relation (12). Therefore, if cp,q = 0 for all |(p, q)| = k, then cp,q = 0 for all mixed (p, q) such that
|(p, q)| = k+ 2. Since cp,q = 0 for all pure (p, q), this is precisely inductive step which completes the proof.

This theorem gives two descriptions of the space of functions which are simultaneously harmonic and
M-harmonic inDn. Hence, it can be seen as an analogue of Theorem 1.1 for the polydisc.

Now we turn to applications of Theorem 2.6. Related results, in the case of the unit ball, can be found
in [1] and [2].

Note that if u ∈ C2(Dn) is a real valued function, then for an integer s ≥ 2, we have

∆ jus = sus−1∆ ju + s(s − 1)us−2
|∇ ju|2 (16)

for 1 ≤ j ≤ n.

Proposition 2.7. Let u be a real valued harmonic andM - harmonic function inDn and suppose us
∈ Mh(Dn) for

some integer s ≥ 2. Then u is a constant function.

Proof. By Theorem 2.6, u is separately harmonic, therefore by (16) ∆ jus = s(s − 1)us−2
|∇ ju|2. Since ∆̃us = 0

we obtain

0 = s(s − 1)us−2
n∑

j=1

(1 − |z j|
2)2
|∇ ju(z)|2.

from this we get ∇ ju = 0 for all j = 1, 2, . . . ,n and this implies u is constant.

Proposition 2.8. If u is a realM-harmonic function in the unit polydisc such that us
∈ h(Dn) ∩Mh(Dn) for some

integer s ≥ 2, then u is a constant function.

Proof. By Theorem 2.6 the function us is separately harmonic and using formula (16), we get

u∆ ju + (s − 1)|∇ ju|2 = 0 for all 1 ≤ j ≤ n.

Since
n∑

j=1

(1 − |z j|
2)2∆ ju(z) = 0, we have

n∑
j=1

(1 − |z j|
2)2
|∇ ju(z)|2 = 0 and this gives again ∇ ju = 0 for all

j = 1, 2, . . . ,n, which suffices.

Proposition 2.9. Let u ∈ Σh(Dn) and let s ≥ 2 be an integer. Then us is in Σh(Dn) if and only if u belongs to hJ(Dn)
for some J ⊂ In.
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Proof. We already noted that hJ(Dn) is an algebra, so the ”if” part is trivial. Now we assume u and us are in
Σh(Dn) for some integer s ≥ 2. By Theorem 2.6 u and us are separately harmonic, hence for each 1 ≤ j ≤ n
we have

1
4
∆ j(us) = sus−1uz jz j + s(s − 1)us−2uz j uz j = 0.

Since uz jz j = 0, this gives us−2uz j uz j = 0. This is a product of three real analytic functions, hence at least one
of the factors is identically equal to zero. Excluding the trivial case when u is zero function, this means that
u does not depend on z j and z j simultaneously. This condition is equivalent to u ∈ ∪J⊂In hJ(Dn).

It is an interesting problem to determine whether in the above propostion one can replace condition
us
∈ Σh(Dn) with a weaker condition ∆̃us = 0?
Note that anM - harmonic function is separately harmonic if and only if it is harmonic, this is a part of

Theorem 2.6. However, the following proposition is proved in [3].

Proposition 2.10. ([3], Corollary 1.2.) If u ∈ C(Dn) isM-harmonic function then u is separately harmonic.

Proposition 2.11. Let u ∈ C(Dn), ∆̃u = 0 and suppose ∆̃us = 0 for some integer s ≥ 2. Then u belongs to hJ(Dn)
for some J ⊂ In.

Proof. The proposition follows from Proposition 2.10, Theorem 2.6 and Proposition 2.9.
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