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Well-posedness and stability result for a swelling porous elastic system
with neutral delay and porous damping

Marwa Boudeliou?, Brahim Kilani?, Abdelhak Djebabla®*

*Numerical Analysis, Optimization and Statistics Laboratory, Badji Mokhtar-Annaba University, Algeria

Abstract. This study takes into account a one-dimensional swelling porous elastic system with neutral
delay and porous damping acting on the second equation. We verify the existence and uniqueness of the
solution using Faedo-Galerkin approach, and we prove that the porous damping dissipation is powerful

enough to stabilize the system exponentially even in the presence of neutral delay using the multiplier
method.

1. Introduction

In recent decades, the theory of mixtures of solids has received a lot of attention by researchers and
an increasing interest has been oriented to the study of the qualitative properties of solutions related to
mixtures composed by two interacting continua, see [1]-[2]-[3]. Note that one of the first works in continuity
theory applied to mixtures were the contributions of [4]-[5]. Eringen in [6] developed the first mathematical
model consisting of three partial differential equations that give form to the problem of saturation of porous
solids by the action of a gas or fluids. This mathematical model represents, in fact, the theory of mixtures
for the saturation of porous solids by the action of a gas or fluid. Then, several mathematical results
on the existence, uniqueness and asymptotic behaviour for this theory have been developed by many
researchers see [7]-[8]. Alves et al. in [9], considered the one-dimensional system composed of a mixture
of two thermoelastic solids. By using the semi-group method, they established a necessary and sufficient
condition over the coefficients of the system to get the exponential stability of the corresponding semigroup.
As established by lesan [10], towards the end of the 19th century and simplified by Quintanilla in [11], the
basic field equations for the theory of swelling of one-dimensional porous elastic soils are given by

P2z = Pix — G1 + Hy,

1)
Pullyy = Py + Gy + Hy,

here P; denotes the partial tensions, H; are the external forces and G; are internal body forces associated with
the dependent variables z and u, respectively. And we assume that the constitutive equations of partial
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tensions are given by

P a, a Zy
(7 )= 2 ) )
N———
=A

where a1, a3 > 0 and a, # 0 is a real number. The matrix A is positive definite such that a;a3 > u%.

Ramos et al. [12] studied the case H; = 0 and Hy = —y (t) g (4;) where y () g (u¢) is a nonlinear damping
term, which acts only in the second equation. Using the multiplier method and some properties of convex
functions, they established an exponential decay rate provided that the wave speeds of the system are
equal. Similarly, in [13] Wang and Guo considered (1) with initial and some mixed boundary conditions
and took

Gl = GZ = 0/ Hl = _Pu)/(x)ut/ HZ = 0/ (3)

where y(x) is an internal viscous damping function with positive mean. Using the Riesz basis approach,
they proved that the whole system can be exponentially stabilized by a single internal viscous damping.
For more interesting results on swelling porous elastic soils, we refer the reader to [14]-[15].

Now, on the other hand, the scientific community is observing a considerable growth interest in problems
involving time delays, because most phenomena naturally depend not only on the current state but also
on some past events see [16]-[17]. Tatar in [18], considered the following damped wave equation with a
neutral delay.

¢
Uy = uxx_ut_fh(t_s)utt(s)dsr x€(0,1), t>0,
0

with initial and boundary conditions

M(X,O) = MO(X), ut(xro) = U (X), X € (0/1)1
u(,t)=u(l,t)=0, t>0,

he demonstrated that the solution decays exponentially under certain conditions on the kernel /. In many
cases, it has been shown that delay is a source of instability unless additional conditions or control terms
are added, as in the work of Kerbal and Tatar [19], where they investigated the following neutrally delayed
viscoelastic Timoshenko beam system

P =(Px+Y),, t
(¢t+f0k(t_s)¢t(s)d5)t:l;bxx_Lg(t_s)wxx(s)ds_(¢x+¢)/

for x € (0,1), t > 0 with initial and boundary conditions

P (x,0) = o (x), ¢:(x,0)=1(x), x€(0,1),
Y (x,0) =1 (x), P (x,0) =91 (x), x€(0,1).

{pOH=p1H=y0OH=y1,H=0, t=0,
they obtained an exponential stability result.

Our present work focuses on the study of system (1) with internel and eternal body forces which act
only on the elastic solid present the porous dissipation and the neutral delay term respectively.

G =0, Gy=—puy, H =0, Hy=- [j(; h(t - r)ut(r)dr] , 4)
¢
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where f is a positive constant and / is a given kernel.
Thus, when we substitute (4) into (1), our system becomes

P22t = M1Zxx + Aollxy, inQ,
h . (©)
Pu [ut + fo h(t — ru(x, r)dr]t = A3Uyy + ApZyy — Py, N Q,
where Q = (0,1) X (0, o0), with initial conditions
Z(x/ 0) = Zo(x)/ Zt(x/ 0) = Zl(x)/ (6)
u(x, 0) = uo(x)/ Mt(x, 0) = Ml(x)/ X € [0/ 1]
and boundary conditions given by
z(0,t) =z(1,t) = u(0,t) = u(l,£) =0, t > 0. (7)

In what follows, we consider (z, 1) to be a solution of system (5)-(7) with some assumptions on the kernel
h needed to justify the calculations. In section 2, we present preliminary materials which will be helpful
in obtaining our results. In section 3, we prove the existence and uniqueness of the solution by using
Faedo-Galerkin method. In section 4, we establish some useful lemmas to study the exponential stability
result of our system.

2. Preliminaries

As a starting point, we make certain assumptions about the kernel /1, and then we introduce the energy
functional, which is nonnegative; at the very least, we provide a lemma and a definition that will be
employed later.

(H) The kernel  is a nonnegative continuously differentiable and summable function satisfying

K (t) < —nh(t), f h e |h(t)ldr < oo, t 20, (8)
0

for some positive constants 1 and 7. The associated energy E(f) is a nonnegative functional defined as

1 1/
E(t) = > f (‘ozzt2 + @122 + 2007,y + puut2 + a3u§) dx + % f (f h(t - r)utz(x, r)dr | dx.
0 0 \Jo
Observing that
1 a \? a \? a 5
agui + 205U,z + 611232( = = [ag (ux + _sz) + aq (Zx + —2Mx) + (613 -2 Lljzc +1a, — 2 Zi ,
2 as a a
and using the assumption a1a3 > a3, we get

2 21 3\ , a3\ ,
asuy + 2axuyzy + a1zy > = ||as — = uy + (a1 — = | z5].
2 a) as

Now, we conclude that

t

1
E(t) > % f [pzzf + aizﬁ + puuf + agui + Pu f h(t - r)utz(x, r)drldx,
0 0

2

2
r_ o, % r_ D
where 24| = a; s and 24} = a3 e
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Lemma 2.1. We have for t > 0

1 ¢
fout(t)j;h(t—r)utt(x,r)drdx

=—= W Owdx + = — h(t — ryu; (x, rydrdx + —= uydx — h(t) uy(H)u(0)dx, )

forall uy € C*([0,00);L2(0,1)) and I € C* ([0, o0)).

Definition 2.2. We define the binary operators O and o respectively by
¢
o= [ =l = o),
0

how = f It = Pl () — )P
0

In this study, we shall utilize the regular Lebesgue space L? (0, 1) and the Sobolev space H (0,1) with
their typical scalar products and norms .
The space H is defined as

H=[H)0,1)x120,1)] . (10)

3. The well-posedness result

In this part, we will use Faedo-Galerkin technique to demonstrate the global existence and uniqueness
of system’s solutions (5)-(7). The following theorem is used as the first outcome.

Theorem 3.1. For all (zo,z1,u0,u1) € H, (H) is verified, and T > 0, there existes a unique weak solution of problem
(5)-(7) on (0, T), such that

(z ) € C([0, T1, H} (0, 1)) n C1([0, T1, L* (0, 1),
(zt, ur) € L([0, T1, (0, 1)) N L*([0, T1, Hy (0, 1)).
Proof. Existence : The main tool of our proof is the use of Faedo-Galerkin’s method, which base on the
construction of approximations of the solutions, then we obtain an energy estimates proving that t, = T
for n € IN. Finally, we pass to the limit of the approximations, for more details see [20]-[21].
Step 1: Faedo-Galerkin approximations.

Foreveryn > 1,let V,, = Span {w;, ..., w,}, 1 < i < n, be an Hilbert basis of the space H(l) (0,1) and L?(0,1).
As Hilbert space is a separable space, we can choose zjj, z, uj and ] € [wy, ..., w,] such that

n

n _ n : 1

zy = E agwr — z9in Hy (0,1),
k=1

n
2 =Y piwe -z in Hy (0,1),
k=1

n
n o _ ~N : 1
ug = E aywp — upin H (0,1),
k=1

n
Wl = Zﬁ‘gwk — up in HL(0,1). (11)
k=1
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Now, we search for solution having the following form
Z' = ZHZ () wi (x),
k=1

w' =Y g Hw ),
k=1

of the following approximate system, fork =1,...,n

Pz f01 Zhwidx + 1y fol ZNWidx + ap fol ulwidx =0,
1 t 1
Pu fo [u;’ + fo h(t = r)uj(x, r)dr]t wrdx + as fo UL Wi dX (12)

+a, j(;l ZR Wi dx + fol ujwrdx =0,
with initial data
Z"(x,0) = z;(x), 2} (x,0) = z] (x), u"(x, 0) = ug(x), ui(x,0) = uj(x). (13)

By using the Caratheodory theorem for an ordinary differential equation, we derive that the aforementioned
Cauchy problem (12) — (13) has a unique global solution (gz ®), g‘Z(t)) . defined on [0, £,,] .
Step 2: Energy estimates.

The main purpose of this step is to prove that t, = T, we obtain this result by multiplying in L? the

k=1,...

first and the second equation of system (12) by ((gZ (t))l , (g‘l’:(t))’) respectively, and by using integration by
parts, boundary-initial conditions and lemma 1, we find for all t > 0

1d
24dt J,

- —(%h(t) + ﬁ) fo L+ £ fo wourds, (14)

for every n > 1. From the hypotheses on the function #, and by integrating (14) over (0, t), we obtain

t
[pz (z'f)2 + a4y (z,’c‘)2 + 20,128 + py (u;’)2 +az (uﬁ)2 + Pu f h(t —7) (u’f(r))2 dr] dx
0

1 ! ¢
5 f [pz (z?)2 +aq (z?)2 + 215z + py (uf‘)2 + as (uﬁ)2 + Py f h(t — ) (uf’(r))2 dr] dx
0 0

1 2 1\2 . 2 N2 t Y
< 5 L [Pz (21) + a4 (Zo) + 2ayupzny + py (ul) +4az (”0) + pu j(; h(t —r) (ul(r)) dr] dx. (15)

(15) may be noted as
E"(t) < E*(0). a8

Now, since the energy is nonnegative, from (11) and the hypotheses on the function /;, we can write (16) as
E"(t) <E@0) <C, (17)
where C is a positive constant independent of n and ¢. From (17), we deduce that

(z",u") are bounded in L™ ([O, T] ;Hé (o, 1)) , (18)
(z},u}) are bounded in L* ([O, T] ;Hé (0, 1)) )
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Step 3 : The limit process.
Now, by using Aubin-Lions Theorem [22] and up to the subsequence, we can observe from (18) that
there exists a subsequences (2", u™) of (z", u"), such that

(2",u™) - (z,u) weak*in L* ([0, T]; H} (0, 1)), (19)
(", ul"y = (z:, us) weak *in L™ ([0, T1; H; (0, 1)) ,
and by using the fact that

L™ ([0, T1; H} (0, 1)) < L*([0, T1; Hy (0,1)).

We get
(z",u") are bounded in L? ([O, T] ;H(l) (0, 1)) , (20)
(z},u}) are bounded in L? ([0, T] ;H(l) (0, 1)) .

Therefore,
(z",u") are bounded in H' ([O, T1;H' (0, 1)) . (21)

Since the embedding H'! ([O, T]; H' (0, 1)) e [2 ([0, T1;L2 (0, 1)) is compact, then the subsequences

(", u™) — (z,u) strongly in 12 ([O, T];L? (0, 1)) , (22)
(2", u}") = (24, u;) strongly in L? ([O, T];L? (0, 1)) .

Uniqueness : Let (zl, ul) and (zz, uz) two solutions of (5)-(7), and let

z=z!-z?and i1 = u' — u? satisfy
Pzztt — 12y — A3l = 0, 23
~ t ~ - ~ .
Pu [ut + j(; h(t — r)iig(x, r)dr]t — @30y — A2Zxy + il = 0. (23)
Multiplying (23) by Z;, ii; respectively, then, integrating over (0, 1) and by using lemma 1, we get
1d (! f
37 [pzitz + M2 + 2apilZy + pyil? + asii + py f h(t - r)ﬁtz(r)dr] dx
0 0
p ' pu ("
—_ (—”h(t) + ﬁ) f 2adx+ 2 f I Oildx. (24)
2 0 2 Jo

Now, we integrate (24) over (0, t), we obtain :

1

1 t
> f [pzzf + alii + 20511, Z, + puﬂf + 6131132( + pu f h(t — r)ﬁf(r)dr] dx
0 0

ou (T ! pa (T
- _ (_“ f h(7)dT + 51&) f #2dxds — —— f f hOiidxds < 0. (25)
2 J 0 2 Jo Jo

From estimate (25), we deduce that (2, i) = (0,0), which implies that problem (5)-(7) has a unique solution.
Continuous dependence : Multiplying the first and the second equation of system (5) by z;, u; respectively,
we obtain

1d (!

t
YT, [pzz% + MZ5 + 201 Zy + Pty + a3U3 + Py f h(t - r)uf(r)dr] <0, (26)
0 0
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integrating (26) over (0, t), and from the positivity of the energy, we can get the following estimate :

t

t
E(t) < EQ0) + E f f 0227 + mZ2 + 2001, Zy + Pyttt + py f h(t — r)u?(r)dr + azu? |dx|d. (27)
2 0 0 ~—— 0
fo

Now, applying young’s inequality to fy with the fact that a1a3 > a3, gives

1 1
E(t) < E(0) + 3 I) [~f0 (pzzt2 + Zalzi + +puuf + 2a3u§ + puj(;

tro ol t
< EQ0) + p1 f [f (zt2 +22+ +uf +ul + f h(t - r)uf(r)dr) dx] dt, (28)
0 LJo 0

where 2p; = max (p;, 241, pu, 2a3). On the other side, we know that

t

h(t — r)uf(r)dr) dx] dt

1 ¢
E(t) > 7 f [pzzf + aizﬁ + puuf + aéui + pu f h(t - r)uf(x, r)dr] dx,
0 0
1 t
> P2 f [ztz +Z22+ul + f h(t — r)u?(x, r)dr + uﬁ] dx, (29)
0 0

2 2
where 2p, = max (pz,a’l, pu,aé), 207 =ay - :—i and 2a, = a3 — Z—f From (28) — (29), we get

1 ¢
P2 f [ztz + zi + uf + f h(t — r)uf(x, r)dr + u%] dx
0 0

T ¢
< EQ) + p1 j(; [fo (zf +22+ +ut2 +u + j(; h(t — r)utz(r)dr) dx] drt. (30)

Applying Gronwall’s inequality on (30), we obtain

1 t
| [z§+z,%+uf+ | h(t—r)u%<x,r>dr+u§]dxSE(0>6P35 D
0 0

where p3 is a positive constant. From (31), we deduce that the solution of problem (5)-(7) continuously
depends on initial data. O

4. Stability Result

In this section, we state and prove some technical lemmas. Subsequently, we end the section with the
statement and proof of our stability result.

Lemma 4.1. The energy functional E, defined by

1 1/
Elt) = % f (pzzt2 + @72 + 2apz iy + Pyt + a3u)2€) dx + % f (f h(t - r)u?(x, r)dr) dx, t >0, (32)
0 o \Jo
satisfies

1 1
E'(t) < —ﬁf w?dx + % f W Oudx, t > 0. (33)
0 0
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Proof. Multiplying the first equation of (5) by z;, and integrating by parts over (0, 1), we obtain

p- d 1 , d [ 2 1
> 7 zpdx +EE Zydx + ap | Uzpedx =0, £ > 0. (34)

Multiplying the second equation of (5) by u;, and integrating by parts over (0, 1), we obtain
Ou d 1 1 t d 1 1 1
—_—— ufdx + Pu f f h(t — ryu(r)dr utdx + idx +ap f ZylpxdX + ufdx =0. (35)
We have
¢ t
[f h(t - r)ut(r)dr] = f h(t — ryug(r)dr + h(t)u(0). (36)
0 t 0

By using (9) and (36), we get

Pu d 24, Pu / Pu 4 Pu 2 2

5 dtf vdx fhl:lutdx+ ht)f 2 dtf fh(t r)u (r)drdx+ f “dx

+a2f zxutxdx+ﬁf 2dx— (37)
0

Now by adding (34) to (37) and by using the fact that the kernel & is a nonnegative function, we get, for any
t>0,

t
2dt [pzzt +alz + 207, Uy + puut +a3u + puf h(t — r)uz(x r)dr]dx

S—ﬁf ufdx+?”f W Ougdx.
0 0

This completes the proof of the lemma. [

Lemma 4.2. The functional

1 t 1 1
L(t) = puj; (ut +[) h(t — r)ut(r)dr) udx + gfo uldx — Z—jpzfo ziudx, t>0, (38)

satisfies, for any €1 > 0,

2 1 1 1 1 ¢ 1
I(t) < - (a3 - —z)f u2dx + & f zfdx +C f utzdx + = (f h(r)dr)f houwdx, t >0, (39)
a1/ Jo 0 0 2\Jo 0

where C; = 2 + pu (1 + fo r)dr + p”)

Proof. A simple differentiation of (38) and by using the first and the second equation of (5), we find

22 1 1 1 1 t
I(t) = - (a3 — ﬁ)f u,zcdx + puf ufdx - Z—jpzf zidx + py f utf h(t — r)ug(r)drdx, t > 0. (40)
0 0 0 0 0

fl fz
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Applying Young's inequality to f; and f,, gives
1 202 1
fi< elf Z2dx + 42'022[ u?dx. (41)
0

&14a

fo=pu f h(r)dr f updx — py f s f h(t = 1) (ug(t) — ue(r)) drdx,
Spu( fo h(r)dr + p—) f 12dx + = f h(r)dr f I o udx. 42)

Substituting (41) and (42) into (40), we find (39). O
Lemma 4.3. The functional

1 ¢ 1 1
_ _ _ i
L) =a; [ fo (ut + fo h(t r)ut(r)dr) zdx fo ziudx + on fo zudx] ,t>0, (43)

satisfies, for any e, > 0,
1 1 t 1
f ufdx + — (f h(r)dr) f h o udx
0 €2 \Jo 0

2 2

2 1 1 ¢
I(t) < ——Zf Z2dx + u%ezf ZHdx + — (f h(r)dr)
2pu Jo 0 €2 \Jo

1
+Cs (&2) f uldx, t >0, (44)

— 2 Pu a 2 B
where Cy (e2) = -+ pz o) Tz

Proof. A 51mple differentiation of (43) and using the first and the second equation of (5), we obtain

2 1
I)(t) = -2 f zﬁdx +ap (a_1 - a—S)f ZyUdx + = zdx + azf ztf h(t — r)uy(r)drdx
Pu Jo Pz Pu pz

f
1
a
+ iﬁ f zudx. (45)
Pu Jo
fs
Now, by using Poincaré’s and Young's inequalities, we get
Res 1 2 1
< 2—3f Z2dx + L (a_1 - a_z) f udx, (46)
2 Jo 2e3\pz pu) Jo
e, (1 1 1/ pt 2
fa < z—f 2dx + — (f h(t — r)ut(r)dr) dx
a%sz 1 2

1 ¢
5 i dx+ 21?2 (—f h(t—r) [ut(t)—ut(r)—ut(t)]dr) dx

2 1 2 t 1
azzez dx + — f (f (t —7) (ue(t) — ug(r)) dr) dx + gl (f h(r)dr) f utzdx
0 2 \Jo 0
e 1 1 1 1 ¢ 2 A1
< 272 i Z2dx + o ( fo (r)dr) fo h o udx + 5_3( fo h(r)dr) fo u?dx, (47)

e 1 2 1
f5 < =22 f Z2dx + P f uldx. (48)
2 Jo 2¢e202 Jo

2
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We end up with (44), by substituting (46), (47) and (48) into (45) and taking e3 = pl—u. O

Lemma 4.4. The functional

1
I3(t) = —pzf zpzdx, t > 0, (49)
0
satisfies
1 1 2 (1
I(t) < —pzf z2dx + 2111f Z2dx + Zsf udx, t > 0. (50)
0 0 0

Proof. A simple differentiation of (49) and using the second equation of (5), we find

1 1 1
I(t) = —pzf ztzdx +ay f zidx + azf Uy ZdX. (51)
0 0 0

————
f5

Since a1a3 > a3 and thanks to Young’s inequality, we find

1 1
fs<m f Z2dx + %3 f udx. (52)
0 0

Substituting (52) into (51), we end up with (50). O

Lemma 4.5. The functional

1t
L(t) =™ f f e K(t — ryu?(r)drdx, t > 0, (53)
0 Jo

where

K(t) = f " e endr,
t

satisfies

1 1
mo:%h@+J‘mmﬁM—j‘ij—oﬁmmwx>a (54)
0 0o Jo
Now, by using the previous lemmas and the Lyapunov functional F(t) defined by
F(t) = NE(t) + N111(t) + NoLp(t) + Is(t) + Lu(t), t > 0, (55)
where N, N1 and N, are positive constants. Then, our stability result reads.

Lemma 4.6. For some positive constants ay and ay, the Lyapunov functional F(t) introduced by (55) is equivalent
to NE(t) + I4(t), such that

aE(H) < F(t) < ap [E(H) + ()], £ > 0. (56)
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Proof. By exploiting relation (55) with the use of (38), (43) and (49), we get

|F(t) = NE(t) = L(t)]
= IN1L1(£) + NaLo(t) + I3(%)]

1 t ﬁNl 1 1
< pulN1 f Uy + f h(t — r)u(r)dr||u| dx + Tf w?dx + Nzazf
0 0

1 1
2ﬁzf|||u|dx—az( +Nz)f |zt||u|dx—pzf 2 Izl d,
0 0

by using Poincaré’s, Cauchy-Schwarz and Young’s inequalities, we obtain

|z| dx

t
U + f h(t — r)u(r)dr
0

|F(t) — NE(t) — I4(})| < AE(t), A>0. (57)
Thus, (57) leads to
(N = A)E(t) + Iy(t) < F(t) < (N + A) E(t) + L4(t),

we conclude (56), when we set a1 = min{N - A,1} and a, = max{N + A, 1} such that N is sufficiently
large. O

Theorem 4.7. Under the above assumptions (H), we have
E(t) < Me™, t>0, (58)
for some positive constants M and .

Proof. Recalling (33), (39), (44), (50) and (54), we obtain

N t 2 1
F)<- [N,B — NGy — 8—2 ( f h(r)dr) - K(O)] f w2dx
2 \Jo 0
a2 1 1
[Nl (a3 - —) N,C; (e2) — —]f uidx - [pz —Ni& — Nzagsz]f zfdx
ay 0 0

2 1 ! 1
_[NZ“Z f 2dx+[]\2] fh( )dr+l(f h(r)dr”f o udx
0 0 0

2pu

N 1
~Pu f W Ouydx — 81u(t) — f f h(t — r)u(r)drdx,
2 0 0 0

by taking &1 = 35~ and &, =

- 2&1

‘;N , we end up with

2 1 2 1
F(t) < - [Nﬁ - NiCy - @hg - K(O)]f udx + [1\2[1 ho + Mké]f h o udx
0

z z

2 1 2 1
3 M) Pz |\ a3 24 Naa; 3 2
[Nl (613 (11) N2C2( 2N2) 4][0 uydx [Zpu 2a1]f0 zdx
’;Z f 2dx + 5“ f W Ougdx — S14(t) — f f h(t — P (drdx, (59)
0

where, for all t >ty > 0,

¢ to
f h(r)dr > f h(r)dr = hy.
0 0




M. Boudeliou et al. / Filomat 38:9 (2024), 3055-3067 3066
Now, we choose N, large enough such that

4pum

N>, >

4

2
T
then, we select N; large enough such that

a% Pz az
N1 ﬂ3—a—1 —N2C2 M —Z>O.
2IN2

Finally

NB - NGy

2
— th — K(0) > 0.

As a result, the relation (59) becomes
1
F'(H) < -Cs f (2 + 12 + 22 + 22+ s uf) dx = Calu(t), Yt >0, (60)
0

where C3 and Cy are positive constants. We also have from (32), after using Young’s inequality, that

1 1/
E(t) < % f [pzzf + (a1 + @) 23 + puud + (a3 + a0) uﬁ] dx + % f (f h(t — r)u?(x, r)dr) dx
0 0

0
1
<u [
0

The combination of (60) and (61) results in

¢
zf +22+ ut2 +ul+ (f h(t — r)utz(x, r)dr)} dx, Ay > 0. (61)
0

F'(t) < =Cs [E(t) + L4(t)], C5 > 0. (62)

From (62) and the right side of (56), we obtain

C
F() < Cee @', t>0, (63)

where Cs is a positive constant. Which yields the desired result (58) by using the other side of the equivalence
relation again. [
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