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Abstract. We present new additive results regarding the pseudo core inverse in a ring with involution.
We establish the necessary and sufficient conditions under which the sum of two pseudo core invertible
elements in a ring is also pseudo core invertible. As an application, we investigate the pseudo core
invertibility of operator matrices. These findings extend the additive result on pseudo core invertibility by
Gao and Chen [Comm. Algebra, 46 (2018), 38-50].

1. Introduction

An involution of a ring R is an anti-automorphism whose square is the identity map 1. A ring R with
involution ∗ is called a *-ring, e.g., C∗-algebra. Let R be a *-ring. An element a ∈ R has p-core inverse (i.e.,
pseudo core inverse) if there exist x ∈ R and k ∈N such that

xak+1 = ak, ax2 = x, (ax)∗ = ax.

If such x exists, it is unique, and denote it by aDO. An element a ∈ R has Drazin inverse provided that there
exists x ∈ R such that

xak+1 = ak, ax2 = x, ax = xa,

where k is the index of a (denoted by i(a)), i.e., the smallest k such that the previous equations are satisfied.
Such x is unique if exists, denoted by aD, and called the Drazin inverse of a. As is well known, a square
complex matrix A has group inverse if and only if rank(Ak) = rank(Ak+1). The p-core invertibility in a ring is
attractive. This notion was introduced by Gao and Chen in 2018 (see [6]). This is a natural extension of the
core inverse which is the first studied by Baksalary and Trenkler for a complex matrix in 2010 (see [1]). A
matrix A ∈ Cn×n has core inverse A #O if and only if AA #O = PA and R(A #O) ⊆ R(A), where PA is the projection
on R(A) (see [1]). Rakic et al. (see [12]) generalized the core inverse of a complex to the case of an element
in a ring. An element a in a ring R has core inverse if and only if there exist x ∈ R such that

a = axa, xR = aR,Rx = Ra∗.
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If such x exists, it is unique, and denote it by a #O. Recently, many authors have studied core and p-core
inverses from many different views, e.g., [4, 5, 7, 9–15]. An element a ∈ R has (1, 3) inverse provided that
there exists some x ∈ R such that a = axa and (ax)∗ = ax. We list several characterizations of p-core inverse.

Theorem 1.1. (see [6, Theorem 2.3 and Theorem 2.5], [14, Theorem 3.1]) Let R be a ring, and let a ∈ R. Then the
following are equivalent:

(1) a ∈ RDO.
(2) a ∈ RD and ak has (1, 3) inverse, where k = i(a).
(3) There exists x ∈ R such that anxan = a and anR = xR = x∗R for some n ∈N.
(4) am

∈ R has core inverse for some positive integer m.

Let a, b ∈ R have p-core inverses. In [6, Theorem 4.4], Gao and Chen proved that a+ b has p-core inverse
when ab = ba = 0 and a∗b = 0. This inspires us to investigate new additive properties for p-core invertibility
in a *-ring.

In Section 2, we focus on additive findings concerning p-core invertible elements within a ring. When
ab = ba and a∗b = ba∗, we delineate the necessary and sufficient conditions that ensure a + b, an element of
the ring R, is p-core invertible.

Let X be a Hilbert space. Let B(X) represent the *-ring of all bounded linear operators acting from X to
itself. The involution in this context is specified as the conjugate transpose of the bounded linear operators.
In Section 3, we extend our additive findings to the realm of bounded linear operators, and we deduce
several criteria that govern when a block operator matrix admits a p-core inverse.

Throughout the paper, all *-rings are associative with an identity. An element p ∈ R is a projection if
p2 = p = p∗. RD,RDO and Rnil denote the sets of all Drazin, p-core invertible and nilpotent elements in R,
respectively. Let a ∈ RD. We use aπ to stand for the spectral idempotent of a corresponding to {0}, i.e.,
aπ = 1 − aaD.

2. Key lemmas

To establish the primary findings, we require several lemmas. We commence with the following:

Lemma 2.1. ( [6, Proposition 4.2])) Let a, b ∈ RDO. If ab = ba and a∗b = ba∗, then aDOb = baDO.

Lemma 2.2. ( [6, Theorem 4.3])) Let a, b ∈ RDO. If ab = ba and a∗b = ba∗, then ab ∈ RDO and (ab)DO = aDObDO.

Lemma 2.3. ( [6, Theorem 4.4])) Let a, b ∈ RDO. If ab = ba = 0 and a∗b = 0, then a + b ∈ RDO.

Lemma 2.4. Let a ∈ RDO and b ∈ R. Then the following are equivalent:

(1) (1 − aDOa)b = 0.
(2) (1 − aaDO)b = 0.

Proof. (1)⇒ (2) Since (1 − aDOa)b = 0, we have b = aDOab. Hence, (1 − aaDO)b = (1 − aaDO)aDOab = 0.
(2)⇒ (1) Let m = i(a). Then aDO = amaD(am)(1,3) (see [6, Theorem 2.3]). Since (1− aaDO)b = 0, we get b = aaDOb.

Therefore
(1 − aDOa)b = (1 − aDOa))aaDOb

= (1 − aDOa))a[amaD(am)(1,3)]b
= (1 − aDOa))am+1aD(am)(1,3)b
= (am

− aDOam+1)aaD(am)(1,3)b
= [am

− aD(am(am)(1,3)am)a]aaD(am)(1,3)b
= (am

− aDam+1)aaD(am)(1,3)b
= 0,

as desired.
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Let a, p2 = p ∈ R and pπ = 1 − p. Then a has the Pierce decomposition relative to p, i.e., p = pap + papπ +

pπap + pπapπ. We denote it by a matrix form:
(

pap appπ

pπap pπapπ

)
p
. We now derive

Lemma 2.5.

(1) Let x =
(

a b
0 d

)
. Then x ∈M2(R)DO and xDO =

(
∗ ∗

0 ∗

)
if and only if a, d ∈ RDO and

m∑
i=1

ai−1aπbdm−i = 0 for

some m ≥ i(a).

(2) Let p be a projection and x =
(

a b
0 d

)
p
. Then x ∈ RDO and pπxDOp = 0 if and only if a ∈ (pRp)DO, d ∈

(pπRpπ)DO and
m∑

i=1
ai−1aπbdm−i = 0 for some m ≥ i(a).

Proof. (1). ” ⇒ ” Since x ∈ RDO, it follows by [6, Theorem 2.5] that xm
∈ R #O, where m = i(x). Then

m ≥ i(a). In this case, (xm) #O = (xDO)m and xDO = xm−1(xm) #O. By hypothesis, we can write xDO =

(
∗ ∗

0 ∗

)
, and

so (xDO)m =

(
∗ ∗

0 ∗

)
. This implies that (xm) #O =

(
∗ ∗

0 ∗

)
. Obviously, we have xm =

(
am bm
0 dm

)
p
, where

b1 = b, bm = abm−1 + bdm−1. By induction, we get bm =
m∑

i=1
ai−1bdm−i. In light of [13, Theorem 2.5], am, dm

∈ R #O

and (am)πbm = 0. By virtue of [6, Theorem 2.5], a, d ∈ RDO.
Since a ∈ RD, we see that am

∈ RD and (am)D = (aD)m. Hence, (am)π = 1 − am(am)D = 1 − am(aD)m =

1 − (aaD)m = 1 − aaD = aπ. Therefore
m∑

i=1
ai−1aπbdm−i = (am)πbm = 0, as required.

” ⇐ ” Since a, d ∈ RDO, it follows by [6, Theorem 2.5] that ak, dk
∈ R #O, where k = max{i(a), i(d)}. Write

xk =

(
ak bk
0 dk

)
, where b1 = b, bk = abk−1 + bdk−1. Then bm =

m∑
i=1

ai−1bdm−i. By hypothesis, we have aπbm = 0.

As in the preceding discussion, we prove that aπbk = 0. In light of [13, Theorem 2.5], xk
∈ R #O. According

to [6, Theorem 2.5], we get x ∈ RDO. Further, pπ(xk) #Op = 0, and so pπ(xDO)kp = 0, Write (xDO)k =

(
∗ ∗

0 ∗

)
. Then

xDO = xk−1(xDO)k =

(
∗ ∗

0 ∗

)
. This implies that pπxDOp = 0, as desired.

(2). ” ⇒ ” Since x ∈ RDO, we have xm
∈ R #O, where m = i(x) ≥ i(a). Moreover, (xm) #O = (xDO)m and

xDO = xm−1(xm) #O. Since pπxDOp = 0, we can write xDO =

(
∗ ∗

0 ∗

)
p
, and so (xDO)m =

(
∗ ∗

0 ∗

)
p
. As in the proof

in (1), am, dm
∈ pR #Op ⊆ (pRp) #O and (am)πbm = 0. In view of [6, Theorem 2.5], a ∈ (pRp)DO and d ∈ (pπRpπ)DO.

Moreover, we have
m∑

i=1
ai−1aπbdm−i = 0, as required.

” ⇐ ” Since a ∈ (pRp)DO, d ∈ (pπRpπ)DO, we easily check that ak
∈ (pRp) #O, dk

∈ (pπRpπ) #O, where k =

max{i(a), i(b)}. Write xk =

(
ak bk
0 dk

)
p
, where b1 = b, bk = abk−1 + bdk−1. Similarly to the discussion in (1),

x ∈ RDO and xDO = xk−1(xDO)k =

(
∗ ∗

0 ∗

)
p
, as asserted.

3. Main Results

This section is dedicated to examining the p-core inverse of the sum of two p-core invertible elements
within a ring. We are now prepared to demonstrate the following:
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Theorem 3.1. Let a, b ∈ RDO. If ab = ba and a∗b = ba∗, then the following are equivalent:

(1) a + b ∈ RDO and aπ(a + b)DOaaDO = 0.
(2) 1 + aDOb ∈ RDO and

n∑
i=1

[1 + aDOb]i−1ai−1[1 + aDOb]πa[aaDO
− aDOa](a + b)n−i = 0

for some n ≥ i(1 + aDOb).

Proof. Since ab = ba and a∗b = ba∗, it follows by Lemma 2.1 that aDOb = baDO. Let p = aaDO. Then pπbp =
(1 − aaDO)baaDO = (1 − aaDO)aaDOb = 0. Moreover, we have pbpπ = aaDOb(1 − aaDO) = abaDO(1 − aaDO) = 0. Evidently,
aD = aDaaD and aDO = amaD(am)(1,3) with m = i(a). Then we compute that

pπap = (1 − aaDO)aaaDO

= (1 − aaDO)aaD(am)(am)(1,3)

= (1 − aaDO)am+1(aD)m(am)(am)(1,3)

= (am+1
− aaDOam+1)(aD)m(am)(am)(1,3)

= 0.

So we get

a =
(

a1 a2
0 a4

)
p
, b =

(
b1 0
0 b4

)
p
.

Hence

a + b =
(

a1 + b1 a2
0 a4 + b4

)
p
.

(i) Clearly, we check that

(1 − aDOa)a2aDO = (1 − aDOa)a2aDam(am)(1,3)

= (1 − aDOa)am+2aD(am)(1,3)

= (am
− aDOam+1)a2aD(am)(1,3)

= 0.

In view of Lemma 2.4, (1 − aaDO)a2aDO = 0. Hence

a1 = aaDOa2aDO = a2aDO.

Obviously, (1 − aaDO)baaDO = b(1 − aaDO)aaDO = 0. It follows by Lemma 2.4 that (1 − aDOa)baaDO = 0. Hence we
have b1 = aaDObaaDO = baaDO = aDOabaaDO = aDOba2aDO, and then

a1 + b1 = a2aDO + aDOba2aDO

= (1 + aDOb)a2aDO

∈ RDO.

This implies that
(a1 + b1)i−1 = (1 + aDOb)i−1(a2aDO)i−1 = (1 + aDOb)i−1aiaDO.

Since (1 + aDOb)a2aDO = a2aDO(1 + aDOb), we verify that

(a1 + b1)D = [(1 + aDOb)a2aDO]D

= (1 + aDOb)D[a2aDO]D

= (1 + aDOb)DaDO.
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Thus
(a1 + b1)π = 1 − (a1 + b1)(a1 + b1)D

= 1 − (1 + aDOb)a2aDO(1 + aDOb)DaDO

= (1 + aDOb)(1 + aDOb)D[a2aDOaDO]
= 1 − (1 + aDOb)(1 + aDOb)DaaDO.

(ii) Obviously, we have (1 − aaDO)aaaDO = a2aDO
− aaDOaaaDO = 0. Then

a4 = (1 − aaDO)a(1 − aaDO) = (1 − aaDO)a.

Since (1 − aaD)am+1 = 0, we deduce that

am+1
4 = (1 − aaDO)am+1

= [1 − a(amaD(am)(1,3))]am+1

= [am
− aaD(am(am)(1,3))am)]a

= (am
− aDam+1)a

= (1 − aaD)am+1 = 0,

and so a4 ∈ Rnil. Moreover,
b4 = (1 − aaDO)b(1 − aaDO) = (1 − aaDO)b.

Since bpπ = pπb, b∗pπ = (pπb)∗ = (bpπ)∗ = pπb∗. In light of Lemma 2.2, b4 = pπb ∈ RDO and bDO

4 = pπbDO.

a4 + b4 = (1 − aaDO)(a + b)

(a4 + b4)m−i = (1 − aaDO)(a + b)m−i.

(1)⇒ (2) We have

(a + b)DO =

(
α β
0 γ

)
p
.

Then [p(a + b)p]DO = α. That is, (a + b)aaDO
∈ RDO.

We observe that
1 + aDOb = [1 − aaDO] + [aaDO + aDOb]

= [1 − aaDO] + [aaDO + baDO]
= [1 − aaDO] + [a + b]aDO

By hypothesis and (aaDO)∗ = aaDO, we easily check that

[(a + b)aaDO]aDO = aDO[(a + b)aaDO],(
(a + b)aaDO

)∗
aDO = aDO

(
(a + b)aaDO

)∗
.

In view of Lemma 2.2, (a+ b)aDO = [(a+ b)aaDO]aDO
∈ RDO. Then (a+ b)aDO

∈ R(1,3), and so we have k ∈N and y ∈ R
such that

[(a + b)aaDO]k = [(a + b)aaDO]ky[(a + b)aaDO]k,(
[(a + b)aaDO]ky

)∗
= [(a + b)aaDO]ky.

By induction, we have
[(a + b)aDO]k[a2aDO]k = [(a + b)aaDO]k.

We verify that
[(a + b)aDO]k[(a2aDO)ky][(a + b)aDO]k[a2aDO]k

= [(a + b)aaDO]ky[(a + b)aaDO]k

= [(a + b)aaDO]k

= [(a + b)aDO]k[a2aDO]k.
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Clearly, [a2aDO]k(aDO)k = aaDO. Then

[(a + b)aDO]k[(a2aDO)ky][(a + b)aDO]k = [(a + b)aDO]k,

(((a + b)aDO)k(a2aDO)ky)∗ = [((a + b)aaDO)ky]∗

= ((a + b)aaDO)ky

= [(a + b)aDO]k(a2aDO)ky.

Therefore [(a + b)aDO]k has (1, 3)-inverse (a2aDO)ky. By virtue of [6, Theorem 2.3], (a + b)aDO
∈ RDO. Obviously, we

have
(1 − aaDO)(a + b)aDO = (1 − aaDO)∗(a + b)aDO = 0.

According to Lemma 2.3, 1 + aDOb ∈ RDO.Moreover, we have

n∑
i=1

[a1 + b1]i−1(a1 + b1)πa2(a4 + b4)n−i = 0

for some n ≥ i(a1 + b1). Therefore

n∑
i=1

[1 + aDOb]i−1ai−1[1 + aDOb]πa[aaDO
− aDOa](a + b)n−i = 0

for some n ≥ i(1 + aDOb).
(2)⇒ (1) Let x = (1 + aDOb)DO. Since (1 + aDOb)aaDO = aaDO(1 + aDOb) and (aaDO)∗ = aaDO, we have

aaDO(1 + aDOb)∗ = (1 + aDOb)∗aaDO.

In light of Lemma 2.1, we get aaDOx = xaaDO.
Step 1. It is easy to verify that

(a2aDO)aDO = aaDO = aDO(a2aDO),
aDO(a2aDO)aDO = aDO(aaDO) = aDO,

(a2aDO)aDO(a2aDO) = (aaDO)(a2aDO) = a2aDO

Thus a2aDO
∈ RD. As 1+aDOb ∈ RDO, it follows by Theorem 1.1 that 1+aDOb ∈ RD. Since (1+aDOb)a2aDO = (a+b)aaDO =

aaDO(a + b) = a2aDO(1 + aDOb), it follows by [16, Lemma 2] that (1 + aDOb)a2aDO
∈ RD and

[(a + b)aaDO]π = [(1 + aDOb)a2aDO]π

= 1 − (1 + aDOb)a2aDO(1 + aDOb)DaDO

= 1 − (1 + aDOb)(1 + aDOb)DaaDO.

Step 2. We check that

[(1 + aDOb)a2aDO]k[(aDO)kx] = [(1 + aDOb)]k[a2aDO]k[(aDO)kx]
= [(1 + aDOb)]kx][aaDO]

Hence, (
[(1 + aDOb)a2aDO]k[(aDO)kx]

)∗
= [(1 + aDOb)]kx]∗[aaDO]∗

= [(1 + aDOb)]kx][aaDO]
= [(1 + aDOb)a2aDO]k[(aDO)kx].

Moreover, we have

[(1 + aDOb)a2aDO]k[(aDO)kx][(1 + aDOb)a2aDO]k = [(1 + aDOb)]kx][aaDO][(1 + aDOb)a2aDO]k

= [(1 + aDOb)]kx[(1 + aDOb]k[aaDO][a2aDO]k

= [(1 + aDOb)]k[a2aDO]k

= [(1 + aDOb)a2aDO]k.
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Accordingly, (a + b)aaDO = (1 + aDOb)a2aDO
∈ RDO.

Step 3. Case 1. b4 ∈ Rnil. It is easy to verify that a4b4 = (1 − aaDO)ab = (1 − aaDO)ba = b4a4. Therefore
a4 + b4 ∈ Rnil

⊆ RDO.
Case 2. b4 < Rnil.
Let q = b4bDO

4 . Then pπbp = (1 − aaDO)baaDO = (1 − aaDO)abaDO = 0. Similarly, pbpπ = 0. Moreover,

pπap = (1 − aaDO)aaaDO

= (1 − aaDO)a(aaDO)m

= (1 − aaDO)am+1aDO

= 0.

So we get

a4 =

(
c1 0
0 c4

)
q
, b4 =

(
d1 d2
0 d4

)
q
.

Hence a4 + b4 =

(
c1 + d1 d2

0 c4 + d4

)
q
. Here a1 + b1 = (a + b)aaDO, a4 + b4 = pπ(a + b)pπ = pπ(a + b).

Step 1. c1 ∈ Rnil, b1 ∈ RDO. By the preceding discussion, we have c1 + d1 ∈ RDO.
Step 2. Clearly, (1 − aaDO)a(1 − aaDO) = (1 − aaDO)a. Hence, a4 ∈ Rnil. As (1 − aaDO)b(1 − aaDO) = (1 − aaDO)b, we

see that b4 ∈ Rnil. Moreover, a4b4 = (1 − aaDO)ab = (1 − aaDO)ba = b4a4. Therefore a4 + b4 ∈ Rnil.
Step 3.

n∑
i=1

(c1 + d1)i−1(c1 + d1)πd2(c4 + d4)n−i

= (1 − bbDO)(1 − aaDO)
n∑

i=1
[1 + aDOb]i−1ai−1[1 + aDOb]π

a[aaDO
− aDOa](a + b)n−i

= 0.

Therefore a4 + b4 ∈ RDO.Moreover, we have

n∑
i=1

(a1 + b1)i−1(a1 + b1)πa2(a4 + b4)n−i

=
n∑

i=1
[(1 + aDOb)i−1aiaDO][1 − (1 + aDOb)(1 + aDOb)#aaDO]aaDOa

(1 − aaDO)(a + b)n−i

= −

n∑
i=1

[1 + aDOb]i−1ai−1[1 + aDOb]πa[aaDO
− aDOa](a + b)n−i

= 0.

Therefore a + b ∈ RDO. Moreover, we have pπ(a + b)DOp = 0. In view of Lemma 2.4, aπ(a + b)DOaaDO = 0. This
completes the proof.

Recall that a ∈ R be *-DMP, if there exists some n ∈N such that an has More-Penrose inverse and group
inverse and (an)† = (an)# (see [3]). We now derive

Corollary 3.2. Let a ∈ R be *-DMP, b ∈ RDO. If ab = ba and a∗b = ba∗, then the following are equivalent:

(1) a + b ∈ RDO.
(2) 1 + aDOb ∈ RDO.

Proof. Since a ∈ R is *-DMP, it follows by [8, Theorem 2.10] that aaDO = aDOa. The result follows by Theorem
3.1.

The preceding conditions ab = ba and a∗b = ba∗ are necessary as the following shows.
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Example 3.3. Let R = C2×2 be the ring of 2×2 complex matrices, with conjugate transpose as the involution. Choose

a =
(

i 0
0 0

)
, b =

(
0 0
1 0

)
∈ R.

Then a is *-DMP, aDO =

(
−i 0
0 0

)
, bDO = 0 and 1 + aDOb = 1 ∈ RDO. But a + b =

(
i 0
1 0

)
< RDO. In this case, ab , ba.

4. Applications

Let X and Y be Hilbert spaces. We denote byB(X,Y) the set of all bounded linear operators from X to Y.

The objective of this section is to delve into the p-core invertibility of a block operator matrix M =
(

A B
C D

)
,

where A ∈ B(X)DO,B ∈ B(X,Y),C ∈ B(Y,X),D ∈ B(Y)DO and BC ∈ B(X)DO,CB ∈ B(Y)DO. Here, M is a bounded
linear operator on X ⊕Y. For the detailed formula of MDO, we leave to the readers as they can be derived by
the straightforward computation according to our proof.

Theorem 4.1. If AB = BD,DC = CA,A∗B = BD∗,D∗C = CA∗ and ADOBDDOC is nilpotent, then M has p-core
inverse.

Proof. Write M = P +Q, where

P =
(

A 0
0 D

)
,Q =

(
0 B
C 0

)
.

Since A and D have p-core inverses, so has P, and that

PDO =

(
ADO 0
0 DDO

)
.

By hypothesis, Q2 =

(
BC 0
0 CB

)
has p-core inverse. In light of [6, Theorem 2.6], Q has p-core inverse. We

easily check that

PQ =
(

0 0
DC 0

)
=

(
0 0

CA 0

)
= QP.

Likewise, we verify that P∗Q = QP∗. Moreover, we check that

IX⊕Y + PDOQ =

(
IX ADOB

DDOC IY

)
.

Since ADOBDDOC is nilpotent, we prove that IX⊕Y+PDOQ is invertible, and so it has p-core inverse. Additionally,
[IX⊕Y + PDOQ]π = 0. According to Theorem 3.1, M has p-core inverse, as asserted.

Let T ∈ B(X,Y). The conjugate transpose of T is an operator T∗ ∈ B(Y,X). It is easy to see that if
T ∈ B(X)DO, then T∗ ∈ B(X)DO.

Corollary 4.2. If AB = BD,DC = CA,D∗C = CA∗,A∗B = BD∗ and BDDOCADO is nilpotent, then M has p-core
inverse.

Proof. Obviously, M∗ =

(
A∗ C∗

B∗ D∗

)
. By hypothesis, we have A∗C∗ = C∗D∗,D∗B∗ = B∗A∗,AC∗ = C∗D,DB∗ =

B∗A and (A∗)DOC∗(D∗)DOB∗ is nilpotent. Applying Theorem 4.1 to the operator M∗, we prove that M∗ has p-core
inverse. Therefore M has p-core inverse, as desired.
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We are now ready to prove:

Theorem 4.3. If AB = BD,DC = CA,B∗A = DB∗ and B(CB)DODC(BC)DOA is nilpotent, then M has p-core inverse.

Proof. Write M = P +Q, where

P =
(

A 0
0 D

)
,Q =

(
0 B
C 0

)
.

As is the proof of Theorem 4.1, P and Q have p-core inverses. Moreover, we check that

Q∗P =

(
0 C∗

B∗ 0

) (
A 0
0 D

)
=

(
0 C∗D

B∗A 0

)
=

(
0 AC∗

DB∗ 0

)
=

(
A 0
0 D

) (
0 C∗

B∗ 0

)
= PQ∗.

Similarly, QP = PQ. Since (Q2)DO =

(
(BC)DO 0

0 (CB)DO

)
, it follows by [6, Theorem 2.6] that

QDO = Q(Q2)DO

=

(
0 B
C 0

) (
(BC)DO 0

0 (CB)DO

)
=

(
0 B(CB)DO

C(BC)DO 0

)
.

Further, we verify that

IX⊕Y +QDOP = IX⊕Y +

(
0 B(CB)DO

C(BC)DO 0

) (
A 0
0 D

)
=

(
IX B(CB)DOD

C(BC)DOA IY

)
.

Since B(CB)DODC(BC)DOA is nilpotent, we prove that IX⊕Y + QDOP is invertible; hence, it has p-core inverse.
Additionally, [IX⊕Y +QDOP]π = 0. In light of Theorem 3.1, M has p-core inverse.

Corollary 4.4. If AB = BD,DC = CA,C∗A = DC∗ and A(CB)DOBD(BC)DO C is nilpotent is nilpotent, then M has
p-core inverse.

Proof. Similarly to Corollary 4.2, it is enough to apply Theorem 4.3 to the operator M∗.

Theorem 4.5. If BC = 0,CB = 0,CA = DC,AC∗ = C∗D and

i(A)∑
i=1

Ai−1AπBDm−i = 0,

then M has p-core inverse.
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Proof. Write M = P +Q, where

P =
(

0 0
C 0

)
,Q =

(
A B
0 D

)
.

Clearly, P has p-core inverse. According to Lemma 2.5, Q has p-core inverse. We check that

PQ =

(
0 0

CA CB

)
=

(
BC 0
DC 0

)
= QP;

P∗Q =

(
0 C∗D
0 0

)
=

(
0 AC∗

0 0

)
= QP∗.

Clearly PDO = 0, and so IX⊕Y + PDOQ = IX⊕Y has p-core inverse. Therefore M has p-core inverse by Theorem
3.1.

Corollary 4.6. If BC = 0,CB = 0,AB = BD,A∗B = BD∗ and
i(A)∑
i=1

CAi−1Aπ = 0,

then M has p-core inverse.

Proof. As in the discussion in Corollary 4.2, we may apply Theorem 4.5 to the bounded linear operator
M∗.
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